Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# This work is licensed under the LICENSE file
|
5 |
+
# located at the root directory.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import gradio as gr
|
9 |
+
import spaces
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
import tempfile
|
14 |
+
import gc
|
15 |
+
from datetime import datetime
|
16 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
17 |
+
|
18 |
+
from addit_flux_pipeline import AdditFluxPipeline
|
19 |
+
from addit_flux_transformer import AdditFluxTransformer2DModel
|
20 |
+
from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler
|
21 |
+
from addit_methods import add_object_generated, add_object_real
|
22 |
+
|
23 |
+
# Global variables for model
|
24 |
+
pipe = None
|
25 |
+
device = None
|
26 |
+
original_image_size = None
|
27 |
+
|
28 |
+
# Initialize model at startup
|
29 |
+
print("Initializing ADDIT model...")
|
30 |
+
try:
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
print(f"Using device: {device}")
|
33 |
+
|
34 |
+
# Load transformer
|
35 |
+
my_transformer = AdditFluxTransformer2DModel.from_pretrained(
|
36 |
+
"black-forest-labs/FLUX.1-dev",
|
37 |
+
subfolder="transformer",
|
38 |
+
torch_dtype=torch.bfloat16
|
39 |
+
)
|
40 |
+
|
41 |
+
# Load pipeline
|
42 |
+
pipe = AdditFluxPipeline.from_pretrained(
|
43 |
+
"black-forest-labs/FLUX.1-dev",
|
44 |
+
transformer=my_transformer,
|
45 |
+
torch_dtype=torch.bfloat16
|
46 |
+
).to(device)
|
47 |
+
|
48 |
+
# Set scheduler
|
49 |
+
pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
50 |
+
|
51 |
+
print("Model initialized successfully!")
|
52 |
+
|
53 |
+
print("Initialization SAM model:")
|
54 |
+
sam = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error initializing model: {str(e)}")
|
58 |
+
print("The application will start but model functionality will be unavailable.")
|
59 |
+
|
60 |
+
def validate_inputs(prompt_source, prompt_target, subject_token):
|
61 |
+
"""Validate user inputs"""
|
62 |
+
if not prompt_source.strip():
|
63 |
+
return "Source prompt cannot be empty"
|
64 |
+
if not prompt_target.strip():
|
65 |
+
return "Target prompt cannot be empty"
|
66 |
+
if not subject_token.strip():
|
67 |
+
return "Subject token cannot be empty"
|
68 |
+
if subject_token not in prompt_target:
|
69 |
+
return f"Subject token '{subject_token}' must appear in the target prompt"
|
70 |
+
return None
|
71 |
+
|
72 |
+
def resize_and_crop_image(image):
|
73 |
+
"""
|
74 |
+
Resize and center crop image to 1024x1024.
|
75 |
+
Returns the processed image, a message about what was done, and original size info.
|
76 |
+
"""
|
77 |
+
if image is None:
|
78 |
+
return None, "", None
|
79 |
+
|
80 |
+
original_width, original_height = image.size
|
81 |
+
original_size = (original_width, original_height)
|
82 |
+
|
83 |
+
# If already 1024x1024, no processing needed
|
84 |
+
if original_width == 1024 and original_height == 1024:
|
85 |
+
return image, "", original_size
|
86 |
+
|
87 |
+
# Calculate scaling to make smaller dimension 1024
|
88 |
+
scale = 1024 / min(original_width, original_height)
|
89 |
+
new_width = int(original_width * scale)
|
90 |
+
new_height = int(original_height * scale)
|
91 |
+
|
92 |
+
# Resize image
|
93 |
+
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
94 |
+
|
95 |
+
# Center crop to 1024x1024
|
96 |
+
left = (new_width - 1024) // 2
|
97 |
+
top = (new_height - 1024) // 2
|
98 |
+
right = left + 1024
|
99 |
+
bottom = top + 1024
|
100 |
+
|
101 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
102 |
+
|
103 |
+
# Create status message
|
104 |
+
if new_width == 1024 and new_height == 1024:
|
105 |
+
message = f"<div style='background-color: #e8f5e8; border: 1px solid #4caf50; border-radius: 5px; padding: 8px; margin-bottom: 10px;'><span style='color: #2e7d32; font-weight: bold;'>✅ Image resized to 1024×1024</span></div>"
|
106 |
+
else:
|
107 |
+
message = f"<div style='background-color: #e8f5e8; border: 1px solid #4caf50; border-radius: 5px; padding: 8px; margin-bottom: 10px;'><span style='color: #2e7d32; font-weight: bold;'>✅ Image resized and center cropped to 1024×1024</span></div>"
|
108 |
+
|
109 |
+
return cropped_image, message, original_size
|
110 |
+
|
111 |
+
def handle_image_upload(image):
|
112 |
+
"""
|
113 |
+
Handle image upload and preprocessing for the Gradio interface.
|
114 |
+
|
115 |
+
This function is called when a user uploads an image to the real images tab.
|
116 |
+
It stores the original image size globally and processes the image to the required dimensions.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
image: PIL.Image object uploaded by the user, or None if no image is uploaded.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
Tuple containing:
|
123 |
+
- processed_image: PIL.Image object resized and cropped to 1024x1024, or None if no image.
|
124 |
+
- message: HTML-formatted string indicating the processing status, or empty string.
|
125 |
+
"""
|
126 |
+
global original_image_size
|
127 |
+
|
128 |
+
if image is None:
|
129 |
+
original_image_size = None
|
130 |
+
return None, ""
|
131 |
+
|
132 |
+
# Store original size
|
133 |
+
original_image_size = image.size
|
134 |
+
|
135 |
+
# Process image
|
136 |
+
processed_image, message, _ = resize_and_crop_image(image)
|
137 |
+
return processed_image, message
|
138 |
+
|
139 |
+
@spaces.GPU
|
140 |
+
def process_generated_image(
|
141 |
+
prompt_source,
|
142 |
+
prompt_target,
|
143 |
+
subject_token,
|
144 |
+
seed_src,
|
145 |
+
seed_obj,
|
146 |
+
extended_scale,
|
147 |
+
structure_transfer_step,
|
148 |
+
blend_steps,
|
149 |
+
localization_model,
|
150 |
+
progress=gr.Progress(track_tqdm=True)
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
Process and generate images using ADDIT for the generated images workflow.
|
154 |
+
|
155 |
+
This function generates a source image from a text prompt and then adds an object to it
|
156 |
+
based on the target prompt and subject token using the ADDIT pipeline.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
prompt_source: String describing the source scene without the object to be added.
|
160 |
+
prompt_target: String describing the target scene including the object to be added.
|
161 |
+
subject_token: String token representing the object to add (must appear in target prompt).
|
162 |
+
seed_src: Integer seed for generating the source image.
|
163 |
+
seed_obj: Integer seed for generating the object.
|
164 |
+
extended_scale: Float value (1.0-1.3) controlling the extended attention scale.
|
165 |
+
structure_transfer_step: Integer (0-10) controlling structure transfer strength.
|
166 |
+
blend_steps: String of comma-separated integers for blending steps, or empty string.
|
167 |
+
localization_model: String specifying the localization model to use.
|
168 |
+
progress: Gradio progress tracker for displaying progress updates.
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
Tuple containing:
|
172 |
+
- src_image: PIL.Image of the generated source image, or None if error.
|
173 |
+
- edited_image: PIL.Image with the added object, or None if error.
|
174 |
+
- status_message: String describing the result or error message.
|
175 |
+
"""
|
176 |
+
global pipe
|
177 |
+
|
178 |
+
if pipe is None:
|
179 |
+
return None, None, "Model not initialized. Please restart the application."
|
180 |
+
|
181 |
+
# Validate inputs
|
182 |
+
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
|
183 |
+
if error_msg:
|
184 |
+
return None, None, error_msg
|
185 |
+
|
186 |
+
# Print current time and input information
|
187 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
188 |
+
print(f"\n[{current_time}] Starting Generated Image Processing")
|
189 |
+
print(f"Source Prompt: '{prompt_source}'")
|
190 |
+
print(f"Target Prompt: '{prompt_target}'")
|
191 |
+
print(f"Subject Token: '{subject_token}'")
|
192 |
+
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
|
193 |
+
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
|
194 |
+
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
|
195 |
+
|
196 |
+
try:
|
197 |
+
# Parse blend steps
|
198 |
+
if blend_steps.strip():
|
199 |
+
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
|
200 |
+
else:
|
201 |
+
blend_steps_list = []
|
202 |
+
|
203 |
+
# Generate images
|
204 |
+
src_image, edited_image = add_object_generated(
|
205 |
+
pipe=pipe,
|
206 |
+
prompt_source=prompt_source,
|
207 |
+
prompt_object=prompt_target,
|
208 |
+
subject_token=subject_token,
|
209 |
+
seed_src=seed_src,
|
210 |
+
seed_obj=seed_obj,
|
211 |
+
show_attention=False,
|
212 |
+
extended_scale=extended_scale,
|
213 |
+
structure_transfer_step=structure_transfer_step,
|
214 |
+
blend_steps=blend_steps_list,
|
215 |
+
localization_model=localization_model,
|
216 |
+
display_output=False
|
217 |
+
)
|
218 |
+
|
219 |
+
return src_image, edited_image, "Images generated successfully!"
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
error_msg = f"Error generating images: {str(e)}"
|
223 |
+
print(error_msg)
|
224 |
+
return None, None, error_msg
|
225 |
+
|
226 |
+
@spaces.GPU
|
227 |
+
def process_real_image(
|
228 |
+
source_image,
|
229 |
+
prompt_source,
|
230 |
+
prompt_target,
|
231 |
+
subject_token,
|
232 |
+
seed_src,
|
233 |
+
seed_obj,
|
234 |
+
extended_scale,
|
235 |
+
structure_transfer_step,
|
236 |
+
blend_steps,
|
237 |
+
localization_model,
|
238 |
+
use_offset,
|
239 |
+
disable_inversion,
|
240 |
+
progress=gr.Progress(track_tqdm=True)
|
241 |
+
):
|
242 |
+
"""
|
243 |
+
Process and edit a real uploaded image using ADDIT to add objects.
|
244 |
+
|
245 |
+
This function takes an uploaded image and adds an object to it based on the target prompt
|
246 |
+
and subject token using the ADDIT pipeline with optional inversion and offset techniques.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
source_image: PIL.Image object of the uploaded source image to edit.
|
250 |
+
prompt_source: String describing the source image content.
|
251 |
+
prompt_target: String describing the desired result including the object to add.
|
252 |
+
subject_token: String token representing the object to add (must appear in target prompt).
|
253 |
+
seed_src: Integer seed for source image processing.
|
254 |
+
seed_obj: Integer seed for object generation.
|
255 |
+
extended_scale: Float value (1.0-1.3) controlling the extended attention scale.
|
256 |
+
structure_transfer_step: Integer (0-10) controlling structure transfer strength.
|
257 |
+
blend_steps: String of comma-separated integers for blending steps, or empty string.
|
258 |
+
localization_model: String specifying the localization model to use.
|
259 |
+
use_offset: Boolean indicating whether to use offset technique.
|
260 |
+
disable_inversion: Boolean indicating whether to disable DDIM inversion.
|
261 |
+
progress: Gradio progress tracker for displaying progress updates.
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
Tuple containing:
|
265 |
+
- src_image: PIL.Image of the processed source image, or None if error.
|
266 |
+
- edited_image: PIL.Image with the added object, or None if error.
|
267 |
+
- status_message: String describing the result or error message.
|
268 |
+
"""
|
269 |
+
global pipe
|
270 |
+
|
271 |
+
if pipe is None:
|
272 |
+
return None, None, "Model not initialized. Please restart the application."
|
273 |
+
|
274 |
+
if source_image is None:
|
275 |
+
return None, None, "Please upload a source image"
|
276 |
+
|
277 |
+
# Validate inputs
|
278 |
+
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
|
279 |
+
if error_msg:
|
280 |
+
return None, None, error_msg
|
281 |
+
|
282 |
+
# Print current time and input information
|
283 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
284 |
+
print(f"\n[{current_time}] Starting Real Image Processing")
|
285 |
+
if original_image_size:
|
286 |
+
print(f"Original uploaded image size: {original_image_size[0]}×{original_image_size[1]}")
|
287 |
+
print(f"Source Image Size: {source_image.size}")
|
288 |
+
print(f"Source Prompt: '{prompt_source}'")
|
289 |
+
print(f"Target Prompt: '{prompt_target}'")
|
290 |
+
print(f"Subject Token: '{subject_token}'")
|
291 |
+
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
|
292 |
+
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
|
293 |
+
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
|
294 |
+
print(f"Use Offset: {use_offset}, Disable Inversion: {disable_inversion}")
|
295 |
+
|
296 |
+
try:
|
297 |
+
# Resize source image
|
298 |
+
source_image = source_image.resize((1024, 1024))
|
299 |
+
|
300 |
+
# Parse blend steps
|
301 |
+
if blend_steps.strip():
|
302 |
+
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
|
303 |
+
else:
|
304 |
+
blend_steps_list = []
|
305 |
+
|
306 |
+
# Process image
|
307 |
+
src_image, edited_image = add_object_real(
|
308 |
+
pipe=pipe,
|
309 |
+
source_image=source_image,
|
310 |
+
prompt_source=prompt_source,
|
311 |
+
prompt_object=prompt_target,
|
312 |
+
subject_token=subject_token,
|
313 |
+
seed_src=seed_src,
|
314 |
+
seed_obj=seed_obj,
|
315 |
+
extended_scale=extended_scale,
|
316 |
+
structure_transfer_step=structure_transfer_step,
|
317 |
+
blend_steps=blend_steps_list,
|
318 |
+
localization_model=localization_model,
|
319 |
+
use_offset=use_offset,
|
320 |
+
show_attention=False,
|
321 |
+
use_inversion=not disable_inversion,
|
322 |
+
display_output=False
|
323 |
+
)
|
324 |
+
|
325 |
+
return src_image, edited_image, "Image edited successfully!"
|
326 |
+
|
327 |
+
except Exception as e:
|
328 |
+
error_msg = f"Error processing image: {str(e)}"
|
329 |
+
print(error_msg)
|
330 |
+
return None, None, error_msg
|
331 |
+
|
332 |
+
def create_interface():
|
333 |
+
"""Create the Gradio interface"""
|
334 |
+
|
335 |
+
# Show model status in the interface
|
336 |
+
model_status = "Model ready!" if pipe is not None else "Model initialization failed - functionality unavailable"
|
337 |
+
|
338 |
+
with gr.Blocks(title="🎨 Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models", theme=gr.themes.Soft()) as demo:
|
339 |
+
gr.HTML(f"""
|
340 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
341 |
+
<h1>🎨 Add-it: Training-Free Object Insertion</h1>
|
342 |
+
<p>Add objects to images using pretrained diffusion models</p>
|
343 |
+
<p><a href="https://research.nvidia.com/labs/par/addit/" target="_blank">🌐 Project Website</a> |
|
344 |
+
<a href="https://arxiv.org/abs/2411.07232" target="_blank">📄 Paper</a> |
|
345 |
+
<a href="https://github.com/NVlabs/addit" target="_blank">💻 Code</a></p>
|
346 |
+
<p style="color: {'green' if pipe is not None else 'red'}; font-weight: bold;">Status: {model_status}</p>
|
347 |
+
</div>
|
348 |
+
""")
|
349 |
+
|
350 |
+
# Main interface
|
351 |
+
with gr.Tabs():
|
352 |
+
# Generated Images Tab
|
353 |
+
with gr.TabItem("🎭 Generated Images"):
|
354 |
+
gr.Markdown("### Generate a base image and add objects to it")
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
with gr.Column(scale=1):
|
358 |
+
gen_prompt_source = gr.Textbox(
|
359 |
+
label="Source Prompt",
|
360 |
+
placeholder="A photo of a cat sitting on the couch",
|
361 |
+
value="A photo of a cat sitting on the couch"
|
362 |
+
)
|
363 |
+
gen_prompt_target = gr.Textbox(
|
364 |
+
label="Target Prompt",
|
365 |
+
placeholder="A photo of a cat wearing a blue hat sitting on the couch",
|
366 |
+
value="A photo of a cat wearing a blue hat sitting on the couch"
|
367 |
+
)
|
368 |
+
gen_subject_token = gr.Textbox(
|
369 |
+
label="Subject Token",
|
370 |
+
placeholder="hat",
|
371 |
+
value="hat",
|
372 |
+
info="Single token representing the object to add **(must appear in target prompt)**"
|
373 |
+
)
|
374 |
+
|
375 |
+
with gr.Accordion("Advanced Settings", open=False):
|
376 |
+
gen_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
|
377 |
+
gen_seed_obj = gr.Number(label="Object Seed", value=42, precision=0)
|
378 |
+
gen_extended_scale = gr.Slider(
|
379 |
+
label="Extended Scale",
|
380 |
+
minimum=1.0,
|
381 |
+
maximum=1.3,
|
382 |
+
value=1.05,
|
383 |
+
step=0.01
|
384 |
+
)
|
385 |
+
gen_structure_transfer_step = gr.Slider(
|
386 |
+
label="Structure Transfer Step",
|
387 |
+
minimum=0,
|
388 |
+
maximum=10,
|
389 |
+
value=2,
|
390 |
+
step=1
|
391 |
+
)
|
392 |
+
gen_blend_steps = gr.Textbox(
|
393 |
+
label="Blend Steps",
|
394 |
+
value="15",
|
395 |
+
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
|
396 |
+
)
|
397 |
+
gen_localization_model = gr.Dropdown(
|
398 |
+
label="Localization Model",
|
399 |
+
choices=[
|
400 |
+
"attention_points_sam",
|
401 |
+
"attention",
|
402 |
+
"attention_box_sam",
|
403 |
+
"attention_mask_sam",
|
404 |
+
"grounding_sam"
|
405 |
+
],
|
406 |
+
value="attention_points_sam"
|
407 |
+
)
|
408 |
+
|
409 |
+
gen_submit_btn = gr.Button("🎨 Generate & Edit", variant="primary")
|
410 |
+
|
411 |
+
with gr.Column(scale=2):
|
412 |
+
with gr.Row():
|
413 |
+
gen_src_output = gr.Image(label="Generated Source Image", type="pil")
|
414 |
+
gen_edited_output = gr.Image(label="Edited Image", type="pil")
|
415 |
+
gen_status = gr.Textbox(label="Status", interactive=False)
|
416 |
+
|
417 |
+
gen_submit_btn.click(
|
418 |
+
fn=process_generated_image,
|
419 |
+
inputs=[
|
420 |
+
gen_prompt_source, gen_prompt_target, gen_subject_token,
|
421 |
+
gen_seed_src, gen_seed_obj, gen_extended_scale,
|
422 |
+
gen_structure_transfer_step, gen_blend_steps,
|
423 |
+
gen_localization_model
|
424 |
+
],
|
425 |
+
outputs=[gen_src_output, gen_edited_output, gen_status]
|
426 |
+
)
|
427 |
+
|
428 |
+
# Examples for generated images
|
429 |
+
gr.Examples(
|
430 |
+
examples=[
|
431 |
+
["An empty throne", "A king sitting on a throne", "king"],
|
432 |
+
["A photo of a man sitting on a bench", "A photo of a man sitting on a bench with a dog", "dog"],
|
433 |
+
["A photo of a cat sitting on the couch", "A photo of a cat wearing a blue hat sitting on the couch", "hat"],
|
434 |
+
["A car driving through an empty street", "A pink car driving through an empty street", "car"]
|
435 |
+
],
|
436 |
+
inputs=[
|
437 |
+
gen_prompt_source, gen_prompt_target, gen_subject_token
|
438 |
+
],
|
439 |
+
label="Example Prompts"
|
440 |
+
)
|
441 |
+
|
442 |
+
# Real Images Tab
|
443 |
+
with gr.TabItem("📸 Real Images"):
|
444 |
+
gr.Markdown("### Upload an image and add objects to it")
|
445 |
+
gr.HTML("<p style='color: orange; font-weight: bold; margin: -15px -10px;'>Note: Images will be automatically resized and center cropped to 1024×1024 pixels.</p>")
|
446 |
+
|
447 |
+
with gr.Row():
|
448 |
+
with gr.Column(scale=1):
|
449 |
+
real_image_status = gr.HTML(visible=False)
|
450 |
+
real_source_image = gr.Image(label="Source Image", type="pil")
|
451 |
+
real_prompt_source = gr.Textbox(
|
452 |
+
label="Source Prompt",
|
453 |
+
placeholder="A photo of a bed in a dark room",
|
454 |
+
value="A photo of a bed in a dark room"
|
455 |
+
)
|
456 |
+
real_prompt_target = gr.Textbox(
|
457 |
+
label="Target Prompt",
|
458 |
+
placeholder="A photo of a dog lying on a bed in a dark room",
|
459 |
+
value="A photo of a dog lying on a bed in a dark room"
|
460 |
+
)
|
461 |
+
real_subject_token = gr.Textbox(
|
462 |
+
label="Subject Token",
|
463 |
+
placeholder="dog",
|
464 |
+
value="dog",
|
465 |
+
info="Single token representing the object to add **(must appear in target prompt)**"
|
466 |
+
)
|
467 |
+
|
468 |
+
with gr.Accordion("Advanced Settings", open=False):
|
469 |
+
real_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
|
470 |
+
real_seed_obj = gr.Number(label="Object Seed", value=0, precision=0)
|
471 |
+
real_extended_scale = gr.Slider(
|
472 |
+
label="Extended Scale",
|
473 |
+
minimum=1.0,
|
474 |
+
maximum=1.3,
|
475 |
+
value=1.1,
|
476 |
+
step=0.01
|
477 |
+
)
|
478 |
+
real_structure_transfer_step = gr.Slider(
|
479 |
+
label="Structure Transfer Step",
|
480 |
+
minimum=0,
|
481 |
+
maximum=10,
|
482 |
+
value=4,
|
483 |
+
step=1
|
484 |
+
)
|
485 |
+
real_blend_steps = gr.Textbox(
|
486 |
+
label="Blend Steps",
|
487 |
+
value="18",
|
488 |
+
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
|
489 |
+
)
|
490 |
+
real_localization_model = gr.Dropdown(
|
491 |
+
label="Localization Model",
|
492 |
+
choices=[
|
493 |
+
"attention",
|
494 |
+
"attention_points_sam",
|
495 |
+
"attention_box_sam",
|
496 |
+
"attention_mask_sam",
|
497 |
+
"grounding_sam"
|
498 |
+
],
|
499 |
+
value="attention"
|
500 |
+
)
|
501 |
+
real_use_offset = gr.Checkbox(label="Use Offset", value=False)
|
502 |
+
real_disable_inversion = gr.Checkbox(label="Disable Inversion", value=False)
|
503 |
+
|
504 |
+
real_submit_btn = gr.Button("🎨 Edit Image", variant="primary")
|
505 |
+
|
506 |
+
with gr.Column(scale=2):
|
507 |
+
with gr.Row():
|
508 |
+
real_src_output = gr.Image(label="Source Image", type="pil")
|
509 |
+
real_edited_output = gr.Image(label="Edited Image", type="pil")
|
510 |
+
real_status = gr.Textbox(label="Status", interactive=False)
|
511 |
+
|
512 |
+
# Handle image upload and preprocessing
|
513 |
+
real_source_image.upload(
|
514 |
+
fn=handle_image_upload,
|
515 |
+
inputs=[real_source_image],
|
516 |
+
outputs=[real_source_image, real_image_status]
|
517 |
+
).then(
|
518 |
+
fn=lambda status: gr.update(visible=bool(status.strip()), value=status),
|
519 |
+
inputs=[real_image_status],
|
520 |
+
outputs=[real_image_status]
|
521 |
+
)
|
522 |
+
|
523 |
+
real_submit_btn.click(
|
524 |
+
fn=process_real_image,
|
525 |
+
inputs=[
|
526 |
+
real_source_image, real_prompt_source, real_prompt_target, real_subject_token,
|
527 |
+
real_seed_src, real_seed_obj, real_extended_scale,
|
528 |
+
real_structure_transfer_step, real_blend_steps,
|
529 |
+
real_localization_model, real_use_offset,
|
530 |
+
real_disable_inversion
|
531 |
+
],
|
532 |
+
outputs=[real_src_output, real_edited_output, real_status]
|
533 |
+
)
|
534 |
+
|
535 |
+
# Examples for real images
|
536 |
+
gr.Examples(
|
537 |
+
examples=[
|
538 |
+
[
|
539 |
+
"images/bed_dark_room.jpg",
|
540 |
+
"A photo of a bed in a dark room",
|
541 |
+
"A photo of a dog lying on a bed in a dark room",
|
542 |
+
"dog"
|
543 |
+
],
|
544 |
+
[
|
545 |
+
"images/flower.jpg",
|
546 |
+
"A photo of a flower",
|
547 |
+
"A bee standing on a flower",
|
548 |
+
"bee"
|
549 |
+
]
|
550 |
+
],
|
551 |
+
inputs=[
|
552 |
+
real_source_image, real_prompt_source, real_prompt_target, real_subject_token
|
553 |
+
],
|
554 |
+
label="Example Images & Prompts"
|
555 |
+
)
|
556 |
+
|
557 |
+
# Tips
|
558 |
+
with gr.Accordion("💡 Tips for Better Results", open=False):
|
559 |
+
gr.Markdown("""
|
560 |
+
- **Prompt Design**: The Target Prompt should be similar to the Source Prompt, but include a description of the new object to insert
|
561 |
+
- **Seed Variation**: Try different values for Object Seed - some prompts may require a few attempts to get satisfying results
|
562 |
+
- **Localization Models**: The most effective options are `attention_points_sam` and `attention`. Use Show Attention to visualize localization performance
|
563 |
+
- **Object Placement Issues**: If the object is not added to the image:
|
564 |
+
- Try **decreasing** Structure Transfer Step
|
565 |
+
- Try **increasing** Extended Scale
|
566 |
+
- **Flexibility**: To allow more flexibility in modifying the source image, leave Blend Steps empty to send an empty list
|
567 |
+
""")
|
568 |
+
|
569 |
+
return demo
|
570 |
+
|
571 |
+
demo = create_interface()
|
572 |
+
# demo.launch(
|
573 |
+
# server_name="0.0.0.0",
|
574 |
+
# server_port=7860,
|
575 |
+
# share=True,
|
576 |
+
# mcp_server=False
|
577 |
+
# )
|
578 |
+
demo.launch(mcp_server=True)
|