Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
#STEP 1 FROM SEMATIC SEARCH | |
from sentence_transformers import SentenceTransformer | |
import torch | |
#STEP 2 FROM SEMATIC SEARCH | |
# Open the water_cycle.txt file in read mode with UTF-8 encoding | |
with open("water_cycle.txt", "r", encoding="utf-8") as file: | |
# Read the entire contents of the file and store it in a variable | |
water_cycle_text = file.read() | |
print(water_cycle_text) | |
#STEP 3 FROM SEMATIC SEARCH | |
def preprocess_text(text): | |
# Strip extra whitespace from the beginning and the end of the text | |
cleaned_text = text.strip() | |
# Split the cleaned_text by every newline character (\n) | |
chunks = cleaned_text.split("\n") | |
# Create an empty list to store cleaned chunks | |
cleaned_chunks = [] | |
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list | |
for chunk in chunks: | |
chunk.strip() | |
if chunk != "": | |
cleaned_chunks.append(chunk) | |
# Print cleaned_chunks | |
print(cleaned_chunks) | |
# Print the length of cleaned_chunks | |
print(len(cleaned_chunks)) | |
# Return the cleaned_chunks | |
return cleaned_chunks | |
# Call the preprocess_text function and store the result in a cleaned_chunks variable | |
cleaned_chunks = preprocess_text(water_cycle_text) # Complete this line | |
#STEP 4 FROM SEMATIC SEARCH | |
# Load the pre-trained embedding model that converts text to vectors | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
def create_embeddings(text_chunks): | |
# Convert each text chunk into a vector embedding and store as a tensor | |
chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list | |
# Print the chunk embeddings | |
print(chunk_embeddings) | |
# Print the shape of chunk_embeddings | |
print(chunk_embeddings.shape) | |
# Return the chunk_embeddings | |
return chunk_embeddings | |
# Call the create_embeddings function and store the result in a new chunk_embeddings variable | |
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line | |
#STEP 5 FROM SEMATIC SEARCH | |
# Define a function to find the most relevant text chunks for a given query, chunk_embeddings, and text_chunks | |
def get_top_chunks(query, chunk_embeddings, text_chunks): | |
# Convert the query text into a vector embedding | |
query_embedding = model.encode(query, convert_to_tensor = True) # Complete this line | |
# Normalize the query embedding to unit length for accurate similarity comparison | |
query_embedding_normalized = query_embedding / query_embedding.norm() | |
# Normalize all chunk embeddings to unit length for consistent comparison | |
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True) | |
# Calculate cosine similarity between query and all chunks using matrix multiplication | |
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line | |
# Print the similarities | |
print(similarities) | |
# Find the indices of the 3 chunks with highest similarity scores | |
top_indices = torch.topk(similarities, k=3).indices | |
# Print the top indices | |
print(top_indices) | |
# Create an empty list to store the most relevant chunks | |
top_chunks = [] | |
# Loop through the top indices and retrieve the corresponding text chunks | |
for top_index in top_indices: | |
top_chunks.append(text_chunks[top_index]) | |
# Return the list of most relevant chunks | |
return top_chunks | |
#STEP 6 FROM SEMATIC SEARCH | |
# Call the get_top_chunks function with the original query | |
top_results = get_top_chunks("How do you make banana bread?", chunk_embeddings, cleaned_chunks) | |
# Print the top results | |
print(top_results) | |
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct") | |
def respond(message, history): | |
top_results = get_top_chunks(message, chunk_embeddings, cleaned_chunks) | |
print(top_results) | |
str_top_results = "\n".join(top_results) | |
messages = [{"role": "system", "content": f"You're a friendly and gen z chatbot. Base your response on the provided context: {top_results}."}] | |
if history: | |
messages.extend(history) | |
messages.append({"role": "user", "content": message}) | |
response = client.chat_completion( | |
messages, | |
max_tokens = 1000, | |
temperature = 1 | |
) | |
return response['choices'][0]['message']['content'].strip() | |
chatbot = gr.ChatInterface(respond, type = 'messages') | |
chatbot.launch(debug = True) | |