o f @s*ddlZddlmZGdddejZdS)N)nncs>eZdZd fdd ZddZddZd d Zd d ZZS)LitEmaH.?Tcst|dks |dkrtdi|_|dtj|tjd|d|r-tjdtjdntjdtjd| D] \}}|j rZ| d d }|j ||i||| jq:g|_dS) Ng?zDecay must be between 0 and 1decay)dtype num_updatesr.)super__init__ ValueError m_name2s_nameregister_buffertorchtensorfloat32intnamed_parameters requires_gradreplaceupdateclonedetachdatacollected_params)selfmodelrZuse_num_upatesnamepZs_name __class__;/Users/hung/Desktop/tango2/audioldm/latent_diffusion/ema.pyr s$   zLitEma.__init__cCs|j}|jdkr|jd7_t|jd|jd|j}d|}tFt|}t|}|D].}||jr[|j |}|| ||||<|| |||||q4||j vsbJq4WddS1snwYdS)Nr r) rrminrno_graddictr named_buffersrrtype_assub_)rrrZone_minus_decaym_param shadow_paramskeysnamer#r#r$forwards$      "zLitEma.forwardcCs\t|}t|}|D]}||jr$||j||j|jq||jvs+JqdS)N)r)rr*rrcopy_r)rrr-r.r/r#r#r$copy_to4s   zLitEma.copy_tocCsdd|D|_dS)z Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. cSsg|]}|qSr#)r).0paramr#r#r$ Dsz LitEma.store..N)r)r parametersr#r#r$store=sz LitEma.storecCs(t|j|D] \}}|j|jqdS)a Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. N)ziprrr2)rr7Zc_paramr5r#r#r$restoreFs zLitEma.restore)rT) __name__ __module__ __qualname__r r1r3r8r: __classcell__r#r#r!r$rs   r)rrModulerr#r#r#r$s