import gradio as gr from transformers import ( PaliGemmaProcessor, PaliGemmaForConditionalGeneration, ) import torch from PIL import Image import numpy as np # Device device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load model and processor model_id = "google/paligemma2-3b-mix-448" model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float32, device_map="auto", low_cpu_mem_usage=True ).eval() processor = PaliGemmaProcessor.from_pretrained(model_id) print("Model and processor loaded successfully") # Process image def process_image(image, task_type, question="", objects=""): try: if task_type == "Describe Image": prompt = "describe en" elif task_type == "OCR Text Recognition": prompt = "ocr" elif task_type == "Answer Question": prompt = f"answer en {question}" elif task_type == "Detect Objects": prompt = f"detect {objects}" else: return "Please select a valid task." if isinstance(image, np.ndarray): image = Image.fromarray(image) model_inputs = processor(text=prompt, images=image, return_tensors="pt") model_inputs = {k: v.to(device) for k, v in model_inputs.items()} input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate( **model_inputs, max_new_tokens=100, do_sample=False ) generation = generation[0][input_len:] result = processor.decode(generation, skip_special_tokens=True) return result except Exception as e: return f"Error during processing: {str(e)}" # Elegant website-style CSS custom_css = """ """ # Gradio app with gr.Blocks(css=custom_css) as demo: gr.Markdown("""