Spaces:
Running
Running
Commit
Β·
e0deddf
1
Parent(s):
2d9d8bd
fix agent meory stuff
Browse files- app.py +49 -49
- config.py +10 -0
- geo_bot.py +130 -67
app.py
CHANGED
@@ -60,16 +60,33 @@ st.markdown("### *The all-knowing AI that sees everything, knows everything*")
|
|
60 |
with st.sidebar:
|
61 |
st.header("Configuration")
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
model_choice = st.selectbox("Model", list(MODELS_CONFIG.keys()))
|
65 |
steps_per_sample = st.slider("Max Steps", 3, 20, 10)
|
66 |
|
67 |
-
# Load dataset
|
68 |
data_paths = get_data_paths(dataset_choice)
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
st.info(f"Dataset has {len(golden_labels)} samples")
|
73 |
num_samples = st.slider(
|
74 |
"Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
|
75 |
)
|
@@ -102,7 +119,7 @@ if start_button:
|
|
102 |
|
103 |
with sample_container:
|
104 |
# Initialize step tracking
|
105 |
-
history =
|
106 |
final_guess = None
|
107 |
|
108 |
for step in range(steps_per_sample):
|
@@ -126,35 +143,19 @@ if start_button:
|
|
126 |
)
|
127 |
|
128 |
with col2:
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
Image.open(BytesIO(screenshot_bytes))
|
133 |
-
),
|
134 |
-
"action": "N/A",
|
135 |
-
}
|
136 |
-
history.append(current_step)
|
137 |
-
|
138 |
-
available_actions = bot.controller.get_available_actions()
|
139 |
-
history_text = "\n".join(
|
140 |
-
[
|
141 |
-
f"Step {j + 1}: {h['action']}"
|
142 |
-
for j, h in enumerate(history[:-1])
|
143 |
-
]
|
144 |
-
)
|
145 |
-
if not history_text:
|
146 |
-
history_text = "First step."
|
147 |
-
|
148 |
-
prompt = AGENT_PROMPT_TEMPLATE.format(
|
149 |
-
remaining_steps=steps_per_sample - step,
|
150 |
-
history_text=history_text,
|
151 |
-
available_actions=json.dumps(available_actions),
|
152 |
)
|
|
|
|
|
153 |
|
154 |
# Show AI context
|
155 |
st.write("**Available Actions:**")
|
156 |
st.code(json.dumps(available_actions, indent=2))
|
157 |
|
|
|
|
|
158 |
st.write("**AI Context:**")
|
159 |
st.text_area(
|
160 |
"History",
|
@@ -168,21 +169,22 @@ if start_button:
|
|
168 |
if step_num == steps_per_sample:
|
169 |
action = "GUESS"
|
170 |
st.warning("Max steps reached. Forcing GUESS.")
|
|
|
|
|
|
|
|
|
|
|
171 |
else:
|
172 |
-
#
|
173 |
-
|
174 |
-
|
|
|
175 |
)
|
176 |
-
response = bot.model.invoke(message)
|
177 |
-
decision = bot._parse_agent_response(response)
|
178 |
|
179 |
if decision is None:
|
180 |
-
raise ValueError(
|
181 |
-
f"Failed to parse AI response: {response.content}"
|
182 |
-
)
|
183 |
|
184 |
action = decision["action_details"]["action"]
|
185 |
-
history[-1]["action"] = action
|
186 |
|
187 |
# Show AI decision
|
188 |
st.write("**AI Reasoning:**")
|
@@ -191,9 +193,12 @@ if start_button:
|
|
191 |
st.write("**AI Action:**")
|
192 |
st.success(f"`{action}`")
|
193 |
|
194 |
-
# Show raw response
|
195 |
-
with st.expander("
|
196 |
-
st.
|
|
|
|
|
|
|
197 |
|
198 |
# Execute action
|
199 |
if action == "GUESS":
|
@@ -209,14 +214,9 @@ if start_button:
|
|
209 |
final_guess = (lat, lon)
|
210 |
st.success(f"Final Guess: {lat:.4f}, {lon:.4f}")
|
211 |
break
|
212 |
-
|
213 |
-
bot
|
214 |
-
|
215 |
-
bot.controller.move("backward")
|
216 |
-
elif action == "PAN_LEFT":
|
217 |
-
bot.controller.pan_view("left")
|
218 |
-
elif action == "PAN_RIGHT":
|
219 |
-
bot.controller.pan_view("right")
|
220 |
|
221 |
# Auto scroll to bottom
|
222 |
st.empty() # Force refresh to show latest content
|
|
|
60 |
with st.sidebar:
|
61 |
st.header("Configuration")
|
62 |
|
63 |
+
# Get available datasets and ensure we have a valid default
|
64 |
+
available_datasets = get_available_datasets()
|
65 |
+
default_dataset = available_datasets[0] if available_datasets else "default"
|
66 |
+
|
67 |
+
dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
|
68 |
model_choice = st.selectbox("Model", list(MODELS_CONFIG.keys()))
|
69 |
steps_per_sample = st.slider("Max Steps", 3, 20, 10)
|
70 |
|
71 |
+
# Load dataset with error handling
|
72 |
data_paths = get_data_paths(dataset_choice)
|
73 |
+
try:
|
74 |
+
with open(data_paths["golden_labels"], "r") as f:
|
75 |
+
golden_labels = json.load(f).get("samples", [])
|
76 |
+
|
77 |
+
st.info(f"Dataset '{dataset_choice}' has {len(golden_labels)} samples")
|
78 |
+
if len(golden_labels) == 0:
|
79 |
+
st.error(f"Dataset '{dataset_choice}' contains no samples!")
|
80 |
+
st.stop()
|
81 |
+
|
82 |
+
except FileNotFoundError:
|
83 |
+
st.error(f"β Dataset '{dataset_choice}' not found at {data_paths['golden_labels']}")
|
84 |
+
st.info("π‘ Available datasets: " + ", ".join(available_datasets))
|
85 |
+
st.stop()
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"β Error loading dataset '{dataset_choice}': {str(e)}")
|
88 |
+
st.stop()
|
89 |
|
|
|
90 |
num_samples = st.slider(
|
91 |
"Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
|
92 |
)
|
|
|
119 |
|
120 |
with sample_container:
|
121 |
# Initialize step tracking
|
122 |
+
history = bot.init_history()
|
123 |
final_guess = None
|
124 |
|
125 |
for step in range(steps_per_sample):
|
|
|
143 |
)
|
144 |
|
145 |
with col2:
|
146 |
+
# Get current screenshot as base64
|
147 |
+
current_screenshot_b64 = bot.pil_to_base64(
|
148 |
+
Image.open(BytesIO(screenshot_bytes))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
)
|
150 |
+
|
151 |
+
available_actions = bot.controller.get_available_actions()
|
152 |
|
153 |
# Show AI context
|
154 |
st.write("**Available Actions:**")
|
155 |
st.code(json.dumps(available_actions, indent=2))
|
156 |
|
157 |
+
# Generate and display history
|
158 |
+
history_text = bot.generate_history_text(history)
|
159 |
st.write("**AI Context:**")
|
160 |
st.text_area(
|
161 |
"History",
|
|
|
169 |
if step_num == steps_per_sample:
|
170 |
action = "GUESS"
|
171 |
st.warning("Max steps reached. Forcing GUESS.")
|
172 |
+
# Create a forced decision for consistency
|
173 |
+
decision = {
|
174 |
+
"reasoning": "Maximum steps reached, forcing final guess with fallback coordinates.",
|
175 |
+
"action_details": {"action": "GUESS", "lat": 0.0, "lon": 0.0}
|
176 |
+
}
|
177 |
else:
|
178 |
+
# Use the bot's agent step execution
|
179 |
+
remaining_steps = steps_per_sample - step
|
180 |
+
decision = bot.execute_agent_step(
|
181 |
+
history, remaining_steps, current_screenshot_b64, available_actions
|
182 |
)
|
|
|
|
|
183 |
|
184 |
if decision is None:
|
185 |
+
raise ValueError("Failed to get AI decision")
|
|
|
|
|
186 |
|
187 |
action = decision["action_details"]["action"]
|
|
|
188 |
|
189 |
# Show AI decision
|
190 |
st.write("**AI Reasoning:**")
|
|
|
193 |
st.write("**AI Action:**")
|
194 |
st.success(f"`{action}`")
|
195 |
|
196 |
+
# Show raw response for debugging
|
197 |
+
with st.expander("Decision Details"):
|
198 |
+
st.json(decision)
|
199 |
+
|
200 |
+
# Add step to history using the bot's method
|
201 |
+
bot.add_step_to_history(history, current_screenshot_b64, decision)
|
202 |
|
203 |
# Execute action
|
204 |
if action == "GUESS":
|
|
|
214 |
final_guess = (lat, lon)
|
215 |
st.success(f"Final Guess: {lat:.4f}, {lon:.4f}")
|
216 |
break
|
217 |
+
else:
|
218 |
+
# Use bot's execute_action method
|
219 |
+
bot.execute_action(action)
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
# Auto scroll to bottom
|
222 |
st.empty() # Force refresh to show latest content
|
config.py
CHANGED
@@ -48,6 +48,16 @@ MODELS_CONFIG = {
|
|
48 |
"model_name": "gemini-1.5-pro-latest",
|
49 |
"description": "Google Gemini 1.5 Pro",
|
50 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"qwen2-vl-7b": {
|
52 |
"class": "HuggingFaceChat",
|
53 |
"model_name": "Qwen/Qwen2-VL-7B-Instruct",
|
|
|
48 |
"model_name": "gemini-1.5-pro-latest",
|
49 |
"description": "Google Gemini 1.5 Pro",
|
50 |
},
|
51 |
+
"gemini-2.0-flash-exp": {
|
52 |
+
"class": "ChatGoogleGenerativeAI",
|
53 |
+
"model_name": "gemini-2.0-flash-exp",
|
54 |
+
"description": "Google Gemini 2.0 Flash Exp",
|
55 |
+
},
|
56 |
+
"gemini-2.5-pro": {
|
57 |
+
"class": "ChatGoogleGenerativeAI",
|
58 |
+
"model_name": "gemini-2.5-pro-preview-06-05",
|
59 |
+
"description": "Google Gemini 2.5 Pro",
|
60 |
+
},
|
61 |
"qwen2-vl-7b": {
|
62 |
"class": "HuggingFaceChat",
|
63 |
"model_name": "Qwen/Qwen2-VL-7B-Instruct",
|
geo_bot.py
CHANGED
@@ -15,38 +15,48 @@ from hf_chat import HuggingFaceChat
|
|
15 |
|
16 |
from mapcrunch_controller import MapCrunchController
|
17 |
|
18 |
-
# The "Golden" Prompt (
|
19 |
AGENT_PROMPT_TEMPLATE = """
|
20 |
-
**Mission:** You are an expert geo-location agent. Your goal is to
|
21 |
|
22 |
-
**Current Status
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
**Core Principles
|
28 |
|
29 |
-
1. **
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
2. **
|
32 |
-
-
|
33 |
-
-
|
|
|
34 |
|
35 |
-
3. **
|
|
|
|
|
36 |
|
37 |
-
4. **
|
38 |
|
39 |
-
|
40 |
-
**Context & Task:**
|
41 |
-
Analyze your full journey history and current view, apply the Core Principles, and decide your next action in the required JSON format.
|
42 |
|
43 |
-
|
|
|
44 |
{history_text}
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
**JSON Output Format:**
|
47 |
-
Your response MUST be a valid JSON object wrapped in
|
48 |
-
|
49 |
-
- For the final guess: `{{"reasoning": "...", "action_details": {{"action": "GUESS", "lat": <float>, "lon": <float>}} }}`
|
50 |
"""
|
51 |
|
52 |
BENCHMARK_PROMPT = """
|
@@ -149,8 +159,100 @@ class GeoBot:
|
|
149 |
print(f"Invalid JSON from LLM: {e}\nFull response was:\n{response.content}")
|
150 |
return None
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
def run_agent_loop(self, max_steps: int = 10) -> Optional[Tuple[float, float]]:
|
153 |
-
history
|
154 |
|
155 |
for step in range(max_steps, 0, -1):
|
156 |
print(f"\n--- Step {max_steps - step + 1}/{max_steps} ---")
|
@@ -169,46 +271,13 @@ class GeoBot:
|
|
169 |
available_actions = self.controller.get_available_actions()
|
170 |
print(f"Available actions: {available_actions}")
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
history_text = "No history yet. This is the first step."
|
176 |
-
else:
|
177 |
-
for i, h in enumerate(history):
|
178 |
-
history_text += f"--- History Step {i + 1} ---\n"
|
179 |
-
history_text += f"Reasoning: {h.get('reasoning', 'N/A')}\n"
|
180 |
-
history_text += f"Action: {h.get('action_details', {}).get('action', 'N/A')}\n\n"
|
181 |
-
image_b64_for_prompt.append(h["screenshot_b64"])
|
182 |
-
|
183 |
-
image_b64_for_prompt.append(current_screenshot_b64)
|
184 |
-
|
185 |
-
prompt = AGENT_PROMPT_TEMPLATE.format(
|
186 |
-
remaining_steps=step,
|
187 |
-
history_text=history_text,
|
188 |
-
available_actions=json.dumps(available_actions),
|
189 |
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
prompt, image_b64_for_prompt
|
194 |
-
)
|
195 |
-
response = self.model.invoke(message)
|
196 |
-
decision = self._parse_agent_response(response)
|
197 |
-
except Exception as e:
|
198 |
-
print(f"Error during model invocation: {e}")
|
199 |
-
decision = None
|
200 |
-
|
201 |
-
if not decision:
|
202 |
-
print(
|
203 |
-
"Response parsing failed or model error. Using default recovery action: PAN_RIGHT."
|
204 |
-
)
|
205 |
-
decision = {
|
206 |
-
"reasoning": "Recovery due to parsing failure or model error.",
|
207 |
-
"action_details": {"action": "PAN_RIGHT"},
|
208 |
-
}
|
209 |
-
|
210 |
-
decision["screenshot_b64"] = current_screenshot_b64
|
211 |
-
history.append(decision)
|
212 |
|
213 |
action_details = decision.get("action_details", {})
|
214 |
action = action_details.get("action")
|
@@ -219,14 +288,8 @@ class GeoBot:
|
|
219 |
lat, lon = action_details.get("lat"), action_details.get("lon")
|
220 |
if lat is not None and lon is not None:
|
221 |
return lat, lon
|
222 |
-
|
223 |
-
self.
|
224 |
-
elif action == "MOVE_BACKWARD":
|
225 |
-
self.controller.move("backward")
|
226 |
-
elif action == "PAN_LEFT":
|
227 |
-
self.controller.pan_view("left")
|
228 |
-
elif action == "PAN_RIGHT":
|
229 |
-
self.controller.pan_view("right")
|
230 |
|
231 |
print("Max steps reached. Agent did not make a final guess.")
|
232 |
return None
|
|
|
15 |
|
16 |
from mapcrunch_controller import MapCrunchController
|
17 |
|
18 |
+
# The "Golden" Prompt (v7): add more descprtions in context and task
|
19 |
AGENT_PROMPT_TEMPLATE = """
|
20 |
+
**Mission:** You are an expert geo-location agent. Your goal is to pinpoint our position in as few moves as possible.
|
21 |
|
22 |
+
**Current Status**
|
23 |
+
β’ Remaining Steps: {remaining_steps}
|
24 |
+
β’ Actions You Can Take *this* turn: {available_actions}
|
25 |
|
26 |
+
ββββββββββββββββββββββββββββββββ
|
27 |
+
**Core Principles**
|
28 |
|
29 |
+
1. **Observe β Orient β Act**
|
30 |
+
Start each turn with a structured three-part reasoning block:
|
31 |
+
**(1) Visual Clues β** plainly describe what you see (signs, text language, road lines, vegetation, building styles, vehicles, terrain, weather, etc.).
|
32 |
+
**(2) Potential Regions β** list the most plausible regions/countries those clues suggest.
|
33 |
+
**(3) Most Probable + Plan β** pick the single likeliest region and explain the next action (move/pan or guess).
|
34 |
|
35 |
+
2. **Navigate with Labels:**
|
36 |
+
- `MOVE_FORWARD` follows the green **UP** arrow.
|
37 |
+
- `MOVE_BACKWARD` follows the red **DOWN** arrow.
|
38 |
+
- No arrow β you cannot move that way.
|
39 |
|
40 |
+
3. **Efficient Exploration:**
|
41 |
+
- **Pan Before You Move:** At fresh spots/intersections, use `PAN_LEFT` / `PAN_RIGHT` first.
|
42 |
+
- After ~2 or 3 fruitless moves in repetitive scenery, turn around.
|
43 |
|
44 |
+
4. **Be Decisive:** A unique, definitive clue (full address, rare town name, etc.) β `GUESS` immediately.
|
45 |
|
46 |
+
5. **Final-Step Rule:** If **Remaining Steps = 1**, you **MUST** `GUESS`.
|
|
|
|
|
47 |
|
48 |
+
ββββββββββββββββββββββββββββββββ
|
49 |
+
**Action History**
|
50 |
{history_text}
|
51 |
|
52 |
+
ββββββββββββββββββββββββββββββββ
|
53 |
+
**OUTPUT FORMAT**
|
54 |
+
|
55 |
+
Return **one** JSON object wrapped in ```json β¦ ```:
|
56 |
+
|
57 |
**JSON Output Format:**
|
58 |
+
Your response MUST be a valid JSON object wrapped in json ... .
|
59 |
+
{{"reasoning": "...", "action_details": {{"action": "GUESS", "lat": <float>, "lon": <float>}} }}
|
|
|
60 |
"""
|
61 |
|
62 |
BENCHMARK_PROMPT = """
|
|
|
159 |
print(f"Invalid JSON from LLM: {e}\nFull response was:\n{response.content}")
|
160 |
return None
|
161 |
|
162 |
+
def init_history(self) -> List[Dict[str, Any]]:
|
163 |
+
"""Initialize an empty history list for agent steps."""
|
164 |
+
return []
|
165 |
+
|
166 |
+
def add_step_to_history(
|
167 |
+
self,
|
168 |
+
history: List[Dict[str, Any]],
|
169 |
+
screenshot_b64: str,
|
170 |
+
decision: Optional[Dict[str, Any]] = None
|
171 |
+
) -> Dict[str, Any]:
|
172 |
+
"""
|
173 |
+
Add a step to the history with proper structure.
|
174 |
+
Returns the step dictionary that was added.
|
175 |
+
"""
|
176 |
+
step = {
|
177 |
+
"screenshot_b64": screenshot_b64,
|
178 |
+
"reasoning": decision.get("reasoning", "N/A") if decision else "N/A",
|
179 |
+
"action_details": decision.get("action_details", {"action": "N/A"}) if decision else {"action": "N/A"}
|
180 |
+
}
|
181 |
+
history.append(step)
|
182 |
+
return step
|
183 |
+
|
184 |
+
def generate_history_text(self, history: List[Dict[str, Any]]) -> str:
|
185 |
+
"""Generate formatted history text for prompt."""
|
186 |
+
if not history:
|
187 |
+
return "No history yet. This is the first step."
|
188 |
+
|
189 |
+
history_text = ""
|
190 |
+
for i, h in enumerate(history):
|
191 |
+
history_text += f"--- History Step {i + 1} ---\n"
|
192 |
+
history_text += f"Reasoning: {h.get('reasoning', 'N/A')}\n"
|
193 |
+
history_text += f"Action: {h.get('action_details', {}).get('action', 'N/A')}\n\n"
|
194 |
+
return history_text
|
195 |
+
|
196 |
+
def get_history_images(self, history: List[Dict[str, Any]]) -> List[str]:
|
197 |
+
"""Extract image base64 strings from history."""
|
198 |
+
return [h["screenshot_b64"] for h in history]
|
199 |
+
|
200 |
+
def execute_agent_step(
|
201 |
+
self,
|
202 |
+
history: List[Dict[str, Any]],
|
203 |
+
remaining_steps: int,
|
204 |
+
current_screenshot_b64: str,
|
205 |
+
available_actions: Dict[str, Any]
|
206 |
+
) -> Optional[Dict[str, Any]]:
|
207 |
+
"""
|
208 |
+
Execute a single agent step: generate prompt, get AI decision, return decision.
|
209 |
+
This is the core step logic extracted for reuse.
|
210 |
+
"""
|
211 |
+
history_text = self.generate_history_text(history)
|
212 |
+
image_b64_for_prompt = self.get_history_images(history) + [current_screenshot_b64]
|
213 |
+
|
214 |
+
prompt = AGENT_PROMPT_TEMPLATE.format(
|
215 |
+
remaining_steps=remaining_steps,
|
216 |
+
history_text=history_text,
|
217 |
+
available_actions=json.dumps(available_actions),
|
218 |
+
)
|
219 |
+
|
220 |
+
try:
|
221 |
+
message = self._create_message_with_history(prompt, image_b64_for_prompt[-1:])
|
222 |
+
response = self.model.invoke(message)
|
223 |
+
decision = self._parse_agent_response(response)
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Error during model invocation: {e}")
|
226 |
+
decision = None
|
227 |
+
|
228 |
+
if not decision:
|
229 |
+
print("Response parsing failed or model error. Using default recovery action: PAN_RIGHT.")
|
230 |
+
decision = {
|
231 |
+
"reasoning": "Recovery due to parsing failure or model error.",
|
232 |
+
"action_details": {"action": "PAN_RIGHT"},
|
233 |
+
}
|
234 |
+
|
235 |
+
return decision
|
236 |
+
|
237 |
+
def execute_action(self, action: str) -> bool:
|
238 |
+
"""
|
239 |
+
Execute the given action using the controller.
|
240 |
+
Returns True if action was executed, False if it was GUESS.
|
241 |
+
"""
|
242 |
+
if action == "GUESS":
|
243 |
+
return False
|
244 |
+
elif action == "MOVE_FORWARD":
|
245 |
+
self.controller.move("forward")
|
246 |
+
elif action == "MOVE_BACKWARD":
|
247 |
+
self.controller.move("backward")
|
248 |
+
elif action == "PAN_LEFT":
|
249 |
+
self.controller.pan_view("left")
|
250 |
+
elif action == "PAN_RIGHT":
|
251 |
+
self.controller.pan_view("right")
|
252 |
+
return True
|
253 |
+
|
254 |
def run_agent_loop(self, max_steps: int = 10) -> Optional[Tuple[float, float]]:
|
255 |
+
history = self.init_history()
|
256 |
|
257 |
for step in range(max_steps, 0, -1):
|
258 |
print(f"\n--- Step {max_steps - step + 1}/{max_steps} ---")
|
|
|
271 |
available_actions = self.controller.get_available_actions()
|
272 |
print(f"Available actions: {available_actions}")
|
273 |
|
274 |
+
# Use the extracted step execution method
|
275 |
+
decision = self.execute_agent_step(
|
276 |
+
history, step, current_screenshot_b64, available_actions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
)
|
278 |
|
279 |
+
# Add step to history
|
280 |
+
self.add_step_to_history(history, current_screenshot_b64, decision)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
action_details = decision.get("action_details", {})
|
283 |
action = action_details.get("action")
|
|
|
288 |
lat, lon = action_details.get("lat"), action_details.get("lon")
|
289 |
if lat is not None and lon is not None:
|
290 |
return lat, lon
|
291 |
+
else:
|
292 |
+
self.execute_action(action)
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
print("Max steps reached. Agent did not make a final guess.")
|
295 |
return None
|