model_name = "BidhanAcharya/fine-tuned-sentiment-analyzer" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to("cuda") def prepare_inference_input(review, instruction="You are good at reviewing positive, negative sentiment.\n\n"): # Combine the instruction and input text into one string input_text = f"{instruction}### Input:\n{review}\n### Response:" return input_text def analyze_sentiment(review): # Prepare the input for inference inference_input = prepare_inference_input(review) # Tokenize the input input_tensor = tokenizer([inference_input], return_tensors="pt", padding=True).to("cuda") # Generate the output output = model.generate( **input_tensor, max_new_tokens=128, use_cache=True, temperature=0.7, top_p=0.9 ) # Decode the output , the output is in the form of list decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] # Regular expressions to extract the first Input and Response sections input_pattern = r'### Input:\n(.*?)\n###' response_pattern = r'### Response:\n(.*?)\n###' # Extracting the Input section input_match = re.search(input_pattern, decoded_output, re.DOTALL) # Extracting the Response section response_match = re.search(response_pattern, decoded_output, re.DOTALL) # Combining the extracted input and response into a dictionary, Extract the group(1) only : because of token size the model may generate the same output multiple times extracted_data = { 'Input': input_match.group(1).strip() if input_match else None, 'Response': response_match.group(1).strip() if response_match else None } return extracted_data['Response'] # Create the Gradio interface interface = gr.Interface( fn=analyze_sentiment, inputs=gr.Textbox(lines=2, placeholder="Enter your review/sentiment here"), outputs=gr.Textbox(label="Sentiment Analysis Result"), title="Sentiment Analysis", description="Enter a movie review to analyze its sentiment." ) # Launch the interface interface.launch()