File size: 18,257 Bytes
459f9d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Any, Tuple
import re
import json
from collections import defaultdict
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class VATIKARetriever:
    """

    Advanced retrieval system for VATIKA dataset

    Implements multiple retrieval strategies for better context matching

    """

    def __init__(self, embedding_model_name: str = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
        self.embedding_model = SentenceTransformer(embedding_model_name)
        self.contexts = []
        self.context_embeddings = None
        self.domain_embeddings = {}
        self.keyword_index = defaultdict(set)
        self.question_embeddings = []
        self.qa_pairs = []

    def load_and_index_data(self, contexts_data: List[Dict[str, Any]]):
        """

        Load data and create multiple indexes for efficient retrieval

        """
        logger.info("Loading and indexing VATIKA data...")

        self.contexts = contexts_data
        self._create_context_embeddings()
        self._create_domain_embeddings()
        self._create_keyword_index()
        self._create_qa_embeddings()

        logger.info(f"Indexed {len(self.contexts)} contexts successfully")

    def _create_context_embeddings(self):
        """Create embeddings for all contexts"""
        context_texts = [ctx['context'] for ctx in self.contexts]
        self.context_embeddings = self.embedding_model.encode(
            context_texts,
            show_progress_bar=True,
            batch_size=32
        )
        logger.info(f"Created embeddings for {len(context_texts)} contexts")

    def _create_domain_embeddings(self):
        """Create domain-specific embeddings"""
        domain_contexts = defaultdict(list)

        for ctx in self.contexts:
            domain_contexts[ctx['domain']].append(ctx['context'])

        for domain, contexts in domain_contexts.items():
            # Combine all contexts for a domain
            combined_context = " ".join(contexts)
            domain_embedding = self.embedding_model.encode([combined_context])
            self.domain_embeddings[domain] = domain_embedding[0]

        logger.info(f"Created domain embeddings for {len(self.domain_embeddings)} domains")

    def _create_keyword_index(self):
        """Create keyword-based index for fast lookups"""
        hindi_keywords = {
            'घाट': ['ghat', 'घाट', 'तट'],
            'मंदिर': ['temple', 'मंदिर', 'देवालय'],
            'आरती': ['aarti', 'आरती', 'पूजा'],
            'भोजन': ['food', 'भोजन', 'खाना'],
            'होटल': ['hotel', 'होटल', 'आवास'],
            'यात्रा': ['travel', 'यात्रा', 'सफर'],
            'समय': ['time', 'समय', 'टाइम'],
            'दूरी': ['distance', 'दूरी', 'फासला'],
            'कैसे': ['how', 'कैसे', 'कैसे'],
            'कहां': ['where', 'कहां', 'कहाँ'],
            'क्या': ['what', 'क्या'],
            'कब': ['when', 'कब'],
            'कितना': ['how much', 'कितना', 'कितनी'],
        }

        for idx, ctx in enumerate(self.contexts):
            context_text = ctx['context'].lower()
            domain = ctx['domain']

            # Index by keywords
            for keyword, variants in hindi_keywords.items():
                for variant in variants:
                    if variant in context_text:
                        self.keyword_index[keyword].add(idx)

            # Index by domain
            self.keyword_index[domain].add(idx)

            # Index QA pairs
            for qa in ctx['qas']:
                question_text = qa['question'].lower()
                for keyword, variants in hindi_keywords.items():
                    for variant in variants:
                        if variant in question_text:
                            self.keyword_index[keyword].add(idx)

    def _create_qa_embeddings(self):
        """Create embeddings for all Q&A pairs for direct matching"""
        for ctx_idx, ctx in enumerate(self.contexts):
            for qa in ctx['qas']:
                qa_text = qa['question'] + " " + qa['answer']
                self.qa_pairs.append({
                    'context_idx': ctx_idx,
                    'qa': qa,
                    'combined_text': qa_text,
                    'domain': ctx['domain']
                })

        if self.qa_pairs:
            qa_texts = [qa['combined_text'] for qa in self.qa_pairs]
            self.question_embeddings = self.embedding_model.encode(
                qa_texts,
                show_progress_bar=True,
                batch_size=32
            )
            logger.info(f"Created embeddings for {len(self.qa_pairs)} Q&A pairs")

    def retrieve_contexts(self, query: str, top_k: int = 5, strategy: str = 'hybrid') -> List[Dict[str, Any]]:
        """

        Retrieve relevant contexts using different strategies



        Args:

            query: User query

            top_k: Number of contexts to retrieve

            strategy: 'semantic', 'keyword', 'hybrid', 'domain_aware'

        """
        if strategy == 'semantic':
            return self._semantic_retrieval(query, top_k)
        elif strategy == 'keyword':
            return self._keyword_retrieval(query, top_k)
        elif strategy == 'domain_aware':
            return self._domain_aware_retrieval(query, top_k)
        else:  # hybrid
            return self._hybrid_retrieval(query, top_k)

    def _semantic_retrieval(self, query: str, top_k: int) -> List[Dict[str, Any]]:
        """Pure semantic similarity retrieval"""
        if self.context_embeddings is None:
            return []

        query_embedding = self.embedding_model.encode([query])
        similarities = cosine_similarity(query_embedding, self.context_embeddings)[0]

        top_indices = np.argsort(similarities)[-top_k:][::-1]

        results = []
        for idx in top_indices:
            if similarities[idx] > 0.2:  # Minimum similarity threshold
                results.append({
                    'context': self.contexts[idx],
                    'similarity': float(similarities[idx]),
                    'method': 'semantic'
                })

        return results

    def _keyword_retrieval(self, query: str, top_k: int) -> List[Dict[str, Any]]:
        """Keyword-based retrieval"""
        query_lower = query.lower()
        candidate_indices = set()

        # Find contexts containing query keywords
        for keyword, indices in self.keyword_index.items():
            if keyword in query_lower:
                candidate_indices.update(indices)

        # Score candidates based on keyword frequency
        scored_candidates = []
        for idx in candidate_indices:
            score = self._calculate_keyword_score(query_lower, self.contexts[idx])
            scored_candidates.append((idx, score))

        # Sort by score and return top_k
        scored_candidates.sort(key=lambda x: x[1], reverse=True)

        results = []
        for idx, score in scored_candidates[:top_k]:
            results.append({
                'context': self.contexts[idx],
                'similarity': score,
                'method': 'keyword'
            })

        return results

    def _domain_aware_retrieval(self, query: str, top_k: int) -> List[Dict[str, Any]]:
        """Domain-aware retrieval"""
        # First, identify the most relevant domain
        query_embedding = self.embedding_model.encode([query])

        domain_similarities = {}
        for domain, domain_embedding in self.domain_embeddings.items():
            similarity = cosine_similarity(
                query_embedding.reshape(1, -1),
                domain_embedding.reshape(1, -1)
            )[0][0]
            domain_similarities[domain] = similarity

        # Get top 2 domains
        top_domains = sorted(domain_similarities.items(), key=lambda x: x[1], reverse=True)[:2]

        # Filter contexts by top domains
        domain_filtered_contexts = []
        for i, ctx in enumerate(self.contexts):
            if ctx['domain'] in [d[0] for d in top_domains]:
                domain_filtered_contexts.append((i, ctx))

        if not domain_filtered_contexts:
            return self._semantic_retrieval(query, top_k)

        # Perform semantic retrieval within filtered contexts
        filtered_indices = [i for i, _ in domain_filtered_contexts]
        filtered_embeddings = self.context_embeddings[filtered_indices]

        similarities = cosine_similarity(query_embedding, filtered_embeddings)[0]

        # Get top results
        top_local_indices = np.argsort(similarities)[-top_k:][::-1]

        results = []
        for local_idx in top_local_indices:
            global_idx = filtered_indices[local_idx]
            if similarities[local_idx] > 0.2:
                results.append({
                    'context': self.contexts[global_idx],
                    'similarity': float(similarities[local_idx]),
                    'method': 'domain_aware',
                    'domain': self.contexts[global_idx]['domain']
                })

        return results

    def _hybrid_retrieval(self, query: str, top_k: int) -> List[Dict[str, Any]]:
        """Combine semantic and keyword retrieval"""
        # Get results from both methods
        semantic_results = self._semantic_retrieval(query, top_k)
        keyword_results = self._keyword_retrieval(query, top_k)

        # Combine and re-rank
        combined_results = {}

        # Add semantic results with weight
        for result in semantic_results:
            ctx_id = id(result['context'])
            combined_results[ctx_id] = {
                'context': result['context'],
                'semantic_score': result['similarity'],
                'keyword_score': 0.0,
                'method': 'hybrid'
            }

        # Add keyword results
        for result in keyword_results:
            ctx_id = id(result['context'])
            if ctx_id in combined_results:
                combined_results[ctx_id]['keyword_score'] = result['similarity']
            else:
                combined_results[ctx_id] = {
                    'context': result['context'],
                    'semantic_score': 0.0,
                    'keyword_score': result['similarity'],
                    'method': 'hybrid'
                }

        # Calculate combined score
        final_results = []
        for ctx_id, result in combined_results.items():
            # Weighted combination: 70% semantic, 30% keyword
            combined_score = (0.7 * result['semantic_score'] +
                              0.3 * result['keyword_score'])

            final_results.append({
                'context': result['context'],
                'similarity': combined_score,
                'method': result['method'],
                'semantic_score': result['semantic_score'],
                'keyword_score': result['keyword_score']
            })

        # Sort by combined score
        final_results.sort(key=lambda x: x['similarity'], reverse=True)

        return final_results[:top_k]

    def _calculate_keyword_score(self, query: str, context: Dict[str, Any]) -> float:
        """Calculate keyword-based similarity score"""
        context_text = (context['context'] + " " +
                        " ".join([qa['question'] + " " + qa['answer']
                                  for qa in context['qas']])).lower()

        query_words = set(query.split())
        context_words = set(context_text.split())

        # Jaccard similarity
        intersection = len(query_words.intersection(context_words))
        union = len(query_words.union(context_words))

        if union == 0:
            return 0.0

        return intersection / union

    def find_exact_qa_match(self, query: str, threshold: float = 0.8) -> Dict[str, Any]:
        """Find exact Q&A matches for the query"""
        if not self.question_embeddings.size:
            return None

        query_embedding = self.embedding_model.encode([query])
        similarities = cosine_similarity(query_embedding, self.question_embeddings)[0]

        best_match_idx = np.argmax(similarities)
        best_similarity = similarities[best_match_idx]

        if best_similarity > threshold:
            return {
                'qa': self.qa_pairs[best_match_idx]['qa'],
                'context': self.contexts[self.qa_pairs[best_match_idx]['context_idx']],
                'similarity': float(best_similarity),
                'method': 'exact_qa_match'
            }

        return None

    def get_domain_statistics(self) -> Dict[str, int]:
        """Get statistics about domains in the dataset"""
        domain_counts = defaultdict(int)
        for ctx in self.contexts:
            domain_counts[ctx['domain']] += 1
        return dict(domain_counts)


class AdvancedVATIKARetriever(VATIKARetriever):
    """

    Extended retriever with additional features for better performance

    """

    def __init__(self, embedding_model_name: str = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
        super().__init__(embedding_model_name)
        self.query_cache = {}
        self.max_cache_size = 1000

    def retrieve_with_caching(self, query: str, top_k: int = 5, strategy: str = 'hybrid') -> List[Dict[str, Any]]:
        """Retrieve with caching for better performance"""
        cache_key = f"{query}_{top_k}_{strategy}"

        if cache_key in self.query_cache:
            logger.info(f"Cache hit for query: {query[:50]}...")
            return self.query_cache[cache_key]

        results = self.retrieve_contexts(query, top_k, strategy)

        # Cache management
        if len(self.query_cache) >= self.max_cache_size:
            # Remove oldest entry
            oldest_key = next(iter(self.query_cache))
            del self.query_cache[oldest_key]

        self.query_cache[cache_key] = results
        return results

    def retrieve_with_reranking(self, query: str, top_k: int = 5, rerank_top_k: int = 10) -> List[Dict[str, Any]]:
        """

        Two-stage retrieval: first retrieve more candidates, then rerank

        """
        # First stage: retrieve more candidates
        candidates = self.retrieve_contexts(query, rerank_top_k, 'hybrid')

        if len(candidates) <= top_k:
            return candidates

        # Second stage: rerank using more sophisticated scoring
        reranked_candidates = []

        for candidate in candidates:
            # Calculate additional features
            domain_relevance = self._calculate_domain_relevance(query, candidate['context']['domain'])
            qa_relevance = self._calculate_qa_relevance(query, candidate['context']['qas'])

            # Combined score
            final_score = (0.5 * candidate['similarity'] +
                           0.3 * domain_relevance +
                           0.2 * qa_relevance)

            reranked_candidates.append({
                **candidate,
                'final_score': final_score,
                'domain_relevance': domain_relevance,
                'qa_relevance': qa_relevance
            })

        # Sort by final score
        reranked_candidates.sort(key=lambda x: x['final_score'], reverse=True)

        return reranked_candidates[:top_k]

    def _calculate_domain_relevance(self, query: str, domain: str) -> float:
        """Calculate domain relevance score"""
        domain_keywords = {
            'temple': ['मंदिर', 'देवालय', 'temple', 'पूजा', 'दर्शन'],
            'ghat': ['घाट', 'ghat', 'तट', 'गंगा'],
            'aarti': ['आरती', 'aarti', 'पूजा', 'गंगा'],
            'food': ['भोजन', 'खाना', 'food', 'खाने'],
            'travel': ['यात्रा', 'travel', 'जाना', 'पहुंचना'],
            'museum': ['संग्रहालय', 'museum', 'म्यूजियम'],
            'ashram': ['आश्रम', 'ashram'],
            'kund': ['कुंड', 'kund', 'तालाब'],
            'cruise': ['क्रूज़', 'cruise', 'नाव'],
            'toilet': ['शौचालय', 'toilet', 'टॉयलेट']
        }

        query_lower = query.lower()
        domain_lower = domain.lower()

        # Direct domain match
        if domain_lower in query_lower:
            return 1.0

        # Keyword match
        if domain_lower in domain_keywords:
            keywords = domain_keywords[domain_lower]
            for keyword in keywords:
                if keyword in query_lower:
                    return 0.8

        return 0.1

    def _calculate_qa_relevance(self, query: str, qas: List[Dict[str, Any]]) -> float:
        """Calculate Q&A relevance score"""
        if not qas:
            return 0.0

        max_relevance = 0.0

        for qa in qas:
            question_similarity = self._text_similarity(query, qa['question'])
            max_relevance = max(max_relevance, question_similarity)

        return max_relevance

    def _text_similarity(self, text1: str, text2: str) -> float:
        """Calculate text similarity using embeddings"""
        try:
            embeddings = self.embedding_model.encode([text1, text2])
            similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
            return float(similarity)
        except:
            return 0.0