Spaces:
Running
Running
File size: 34,060 Bytes
f5b45a1 2a10cc6 f47639e 5ba5bcc 2a10cc6 5ba5bcc 2a10cc6 88b0d9f 5ba5bcc 2a10cc6 f47639e cff0d0d 88b0d9f 5ba5bcc 88b0d9f 56765c9 5ba5bcc 88b0d9f f47639e 93f6e06 573dcba 88b0d9f 573dcba 88b0d9f 5ba5bcc 573dcba f47639e 573dcba 88b0d9f 93f6e06 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 5ba5bcc 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 93f6e06 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 5ba5bcc 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 5ba5bcc 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 573dcba f47639e 88b0d9f 573dcba 88b0d9f f47639e 88b0d9f 573dcba 533fd0a 88b0d9f 5ba5bcc 56765c9 5ba5bcc 88b0d9f 5ba5bcc 88b0d9f 5ba5bcc 88b0d9f 56765c9 5ba5bcc 88b0d9f 5ba5bcc 88b0d9f 5ba5bcc 88b0d9f 573dcba 88b0d9f 573dcba 88b0d9f 28c9595 88b0d9f 5ba5bcc 88b0d9f f47639e 88b0d9f f47639e 88b0d9f f47639e 573dcba 88b0d9f 5ba5bcc 88b0d9f 5ba5bcc 88b0d9f 5ba5bcc 28c9595 5ba5bcc 88b0d9f f47639e 5ba5bcc f47639e 88b0d9f 573dcba f47639e 88b0d9f 573dcba 88b0d9f 28c9595 88b0d9f 4f2d24d e94f7f8 4f2d24d 28c9595 e94f7f8 4f2d24d 5ba5bcc f47639e 88b0d9f f47639e 573dcba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
import os
import tempfile
# Fix cache permissions for Hugging Face Spaces - MUST be at the very top
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
os.environ['TORCH_HOME'] = '/tmp/torch_cache'
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/tmp/sentence_transformers'
# Create cache directories
cache_dirs = ['/tmp/transformers_cache', '/tmp/huggingface_cache', '/tmp/torch_cache', '/tmp/sentence_transformers']
for cache_dir in cache_dirs:
os.makedirs(cache_dir, exist_ok=True)
from flask import Flask, render_template, request, jsonify
import json
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import re
from transformers import pipeline
import torch
import nltk
from collections import Counter
import unicodedata
# Download required NLTK data
try:
nltk.download('punkt', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('stopwords', quiet=True)
except:
print("Warning: Could not download NLTK data")
app = Flask(__name__)
class EvaluationMetrics:
"""Class to calculate F1, BLEU, and ROUGE-L scores"""
@staticmethod
def normalize_text(text):
"""Normalize text for comparison"""
# Remove extra whitespace and normalize unicode
text = unicodedata.normalize('NFKD', text)
text = ' '.join(text.split())
return text.lower()
@staticmethod
def tokenize_text(text):
"""Simple tokenization for Hindi/English mixed text"""
# Simple tokenization that works for both Hindi and English
text = re.sub(r'[^\w\s]', ' ', text)
return text.split()
@staticmethod
def calculate_f1_score(predicted, reference):
"""Calculate F1 score between predicted and reference text"""
try:
pred_tokens = set(EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(predicted)))
ref_tokens = set(EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(reference)))
if len(pred_tokens) == 0 and len(ref_tokens) == 0:
return 1.0
if len(pred_tokens) == 0 or len(ref_tokens) == 0:
return 0.0
# Calculate intersection
common_tokens = pred_tokens.intersection(ref_tokens)
if len(common_tokens) == 0:
return 0.0
precision = len(common_tokens) / len(pred_tokens)
recall = len(common_tokens) / len(ref_tokens)
f1 = 2 * (precision * recall) / (precision + recall)
return float(f1) # Convert to Python float
except:
return 0.0
@staticmethod
def calculate_bleu_score(predicted, reference):
"""Calculate BLEU score"""
try:
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
pred_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(predicted))
ref_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(reference))
if len(pred_tokens) == 0 or len(ref_tokens) == 0:
return 0.0
# Use smoothing function to handle zero n-grams
smoothing = SmoothingFunction()
bleu_score = sentence_bleu(
[ref_tokens],
pred_tokens,
smoothing_function=smoothing.method1
)
return float(bleu_score) # Convert to Python float
except:
# Fallback BLEU calculation if NLTK fails
return EvaluationMetrics.simple_bleu(predicted, reference)
@staticmethod
def simple_bleu(predicted, reference):
"""Simple BLEU calculation fallback"""
try:
pred_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(predicted))
ref_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(reference))
if len(pred_tokens) == 0 or len(ref_tokens) == 0:
return 0.0
# Calculate 1-gram precision (simplified BLEU)
pred_counts = Counter(pred_tokens)
ref_counts = Counter(ref_tokens)
overlap = sum(min(pred_counts[token], ref_counts[token]) for token in pred_counts)
precision = overlap / len(pred_tokens) if len(pred_tokens) > 0 else 0
return float(precision) # Convert to Python float
except:
return 0.0
@staticmethod
def lcs_length(x, y):
"""Calculate Longest Common Subsequence length"""
m, n = len(x), len(y)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if x[i-1] == y[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[m][n]
@staticmethod
def calculate_rouge_l(predicted, reference):
"""Calculate ROUGE-L score"""
try:
pred_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(predicted))
ref_tokens = EvaluationMetrics.tokenize_text(EvaluationMetrics.normalize_text(reference))
if len(pred_tokens) == 0 and len(ref_tokens) == 0:
return 1.0
if len(pred_tokens) == 0 or len(ref_tokens) == 0:
return 0.0
lcs_len = EvaluationMetrics.lcs_length(pred_tokens, ref_tokens)
if lcs_len == 0:
return 0.0
precision = lcs_len / len(pred_tokens)
recall = lcs_len / len(ref_tokens)
if precision + recall == 0:
return 0.0
rouge_l = 2 * precision * recall / (precision + recall)
return float(rouge_l) # Convert to Python float
except:
return 0.0
@staticmethod
def calculate_all_scores(predicted, reference):
"""Calculate all evaluation metrics"""
if not predicted or not reference:
return {
'f1_score': 0.0,
'bleu_score': 0.0,
'rouge_l_score': 0.0
}
return {
'f1_score': round(EvaluationMetrics.calculate_f1_score(predicted, reference), 4),
'bleu_score': round(EvaluationMetrics.calculate_bleu_score(predicted, reference), 4),
'rouge_l_score': round(EvaluationMetrics.calculate_rouge_l(predicted, reference), 4)
}
class ImprovedVATIKAChatbot:
def __init__(self):
print("🚀 Initializing KashiVani Chatbot...")
# Load multilingual embedding model
self.embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
print("✅ Embedding model loaded")
# Load QA model with better error handling
self.qa_pipeline = self.load_qa_model()
# Initialize data structures
self.contexts = []
self.context_embeddings = None
self.qa_pairs = [] # Store all Q&A pairs separately
self.qa_embeddings = None
# Initialize evaluation metrics
self.evaluation_metrics = EvaluationMetrics()
# Load and process data
self.load_data()
print(f"✅ Loaded {len(self.contexts)} contexts and {len(self.qa_pairs)} Q&A pairs")
def load_qa_model(self):
"""Load QA model with fallback options"""
models_to_try = [
"deepset/xlm-roberta-base-squad2",
"distilbert-base-multilingual-cased",
"deepset/minilm-uncased-squad2"
]
for model_name in models_to_try:
try:
print(f"🔄 Trying to load QA model: {model_name}")
qa_pipeline = pipeline(
"question-answering",
model=model_name,
tokenizer=model_name,
device=-1 # Use CPU
)
print(f"✅ Successfully loaded: {model_name}")
return qa_pipeline
except Exception as e:
print(f"❌ Failed to load {model_name}: {e}")
continue
print("⚠️ Could not load any QA model, using fallback")
return None
def load_data(self):
"""Load and preprocess VATIKA dataset with better error handling"""
try:
# Check if data files exist
train_file = 'data/train.json'
val_file = 'data/validation.json'
if not os.path.exists(train_file):
print("❌ Train file not found, creating sample data...")
self.create_sample_data()
# Load training data
with open(train_file, 'r', encoding='utf-8') as f:
train_data = json.load(f)
all_data = train_data.get('domains', [])
# Try to load validation data
if os.path.exists(val_file):
try:
with open(val_file, 'r', encoding='utf-8') as f:
val_data = json.load(f)
all_data.extend(val_data.get('domains', []))
print("✅ Validation data loaded")
except Exception as e:
print(f"⚠️-- Could not load validation data: {e}")
# Process data
self.process_data(all_data)
except Exception as e:
print(f"❌ Error loading data: {e}")
self.create_fallback_data()
def process_data(self, domains_data):
"""Process loaded data and create embeddings"""
all_contexts = []
all_qas = []
for domain_data in domains_data:
domain = domain_data.get('domain', 'unknown')
for context_data in domain_data.get('contexts', []):
context_text = context_data.get('context', '')
qas = context_data.get('qas', [])
if context_text.strip(): # Only add non-empty contexts
context_info = {
'domain': domain,
'context': context_text,
'qas': qas
}
all_contexts.append(context_info)
# Extract Q&A pairs
for qa in qas:
question = qa.get('question', '').strip()
answer = qa.get('answer', '').strip()
if question and answer:
qa_info = {
'question': question,
'answer': answer,
'domain': domain,
'context': context_text
}
all_qas.append(qa_info)
self.contexts = all_contexts
self.qa_pairs = all_qas
# Create embeddings
if self.contexts:
print("🔄 Creating context embeddings...")
context_texts = [ctx['context'] for ctx in self.contexts]
self.context_embeddings = self.embedding_model.encode(context_texts, show_progress_bar=True)
if self.qa_pairs:
print("🔄 Creating Q&A embeddings...")
qa_questions = [qa['question'] for qa in self.qa_pairs]
self.qa_embeddings = self.embedding_model.encode(qa_questions, show_progress_bar=True)
def create_sample_data(self):
"""Create sample data if original data is not available"""
sample_data = {
"domains": [
{
"domain": "varanasi_temples",
"contexts": [
{
"context": "काशी विश्वनाथ मंदिर वाराणसी का सबसे प्रसिद्ध और पवित्र मंदिर है। यह भगवान शिव को समर्पित है और गंगा नदी के पश्चिमी तट पर स्थित है। यह 12 ज्योतिर्लिंगों में से एक है और हिंदू धर्म में अत्यंत महत्वपूर्ण माना जाता है।",
"qas": [
{
"question": "काशी विश्वनाथ मंदिर कहाँ स्थित है?",
"answer": "काशी विश्वनाथ मंदिर वाराणसी में गंगा नदी के पश्चिमी तट पर स्थित है।"
},
{
"question": "काशी विश्वनाथ मंदिर किसे समर्पित है?",
"answer": "काशी विश्वनाथ मंदिर भगवान शिव को समर्पित है।"
},
{
"question": "क्या काशी विश्वनाथ ज्योतिर्लिंग है?",
"answer": "हाँ, काशी विश्वनाथ मंदिर 12 ज्योतिर्लिंगों में से एक है।"
}
]
}
]
},
{
"domain": "varanasi_ghats",
"contexts": [
{
"context": "दशाश्वमेध घाट वाराणसी का सबसे प्रसिद्ध और मुख्य घाट है। यहाँ प्रतिदिन शाम को भव्य गंगा आरती का आयोजन होता है। यह घाट अत्यंत पवित्र माना जाता है और हजारों श्रद्धालु और पर्यटक यहाँ आते हैं।",
"qas": [
{
"question": "दशाश्वमेध घाट पर आरती कब होती है?",
"answer": "दशाश्वमेध घाट पर प्रतिदिन शाम को गंगा आरती होती है।"
},
{
"question": "वाराणसी का सबसे प्रसिद्ध घाट कौन सा है?",
"answer": "दशाश्वमेध घाट वाराणसी का सबसे प्रसिद्ध घाट है।"
}
]
}
]
}
]
}
os.makedirs('data', exist_ok=True)
with open('data/train.json', 'w', encoding='utf-8') as f:
json.dump(sample_data, f, ensure_ascii=False, indent=2)
print("✅ Sample data created")
def create_fallback_data(self):
"""Create minimal fallback data"""
self.contexts = [{
'domain': 'general',
'context': 'वाराणसी भारत का एक प्राचीन और पवित्र शहर है।',
'qas': [{'question': 'वाराणसी क्या है?', 'answer': 'वाराणसी भारत का एक प्राचीन और पवित्र शहर है।'}]
}]
self.qa_pairs = [{'question': 'वाराणसी क्या है?', 'answer': 'वाराणसी भारत का एक प्राचीन और पवित्र शहर है।',
'domain': 'general'}]
context_texts = [ctx['context'] for ctx in self.contexts]
self.context_embeddings = self.embedding_model.encode(context_texts)
qa_questions = [qa['question'] for qa in self.qa_pairs]
self.qa_embeddings = self.embedding_model.encode(qa_questions)
def find_best_qa_match(self, query, threshold=0.6):
"""Find best matching Q&A pair"""
if not self.qa_pairs or self.qa_embeddings is None:
return None
query_embedding = self.embedding_model.encode([query])
similarities = cosine_similarity(query_embedding, self.qa_embeddings)[0]
best_idx = np.argmax(similarities)
best_score = similarities[best_idx]
if best_score > threshold:
return {
'qa': self.qa_pairs[best_idx],
'score': float(best_score) # Convert to Python float
}
return None
def find_relevant_context(self, query, top_k=3, threshold=0.3):
"""Find most relevant contexts"""
if not self.contexts or self.context_embeddings is None:
return []
query_embedding = self.embedding_model.encode([query])
similarities = cosine_similarity(query_embedding, self.context_embeddings)[0]
top_indices = np.argsort(similarities)[-top_k:][::-1]
relevant_contexts = []
for idx in top_indices:
if similarities[idx] > threshold:
relevant_contexts.append({
'context': self.contexts[idx],
'similarity': float(similarities[idx]) # Convert to Python float
})
return relevant_contexts
def generate_qa_answer(self, question, context):
"""Generate answer using QA model"""
if not self.qa_pipeline:
return None
try:
# Truncate context if too long
max_context_length = 500
if len(context) > max_context_length:
context = context[:max_context_length] + "..."
result = self.qa_pipeline(question=question, context=context)
if result['score'] > 0.15: # Confidence threshold
return result['answer']
except Exception as e:
print(f"QA Pipeline error: {e}")
return None
def get_smart_fallback(self, query):
"""Generate smart fallback responses"""
query_lower = query.lower()
# Keywords-based responses
responses = {
('मंदिर',
'temple'): "वाराणसी में काशी विश्वनाथ मंदिर, संकट मोचन हनुमान मंदिर, दुर्गा मंदिर जैसे प्रसिद्ध मंदिर हैं। किसी विशिष्ट मंदिर के बारे में पूछें।",
('घाट',
'ghat'): "वाराणसी में दशाश्वमेध घाट, मणिकर्णिका घाट, अस्सी घाट जैसे प्रसिद्ध घाट हैं। किसी विशिष्ट घाट के बारे में जानना चाहते हैं?",
('आरती', 'aarti'): "गंगा आरती दशाश्वमेध घाट पर प्रतिदिन शाम को होती है। यह बहुत ही मनोहर और भव्य होती है।",
('गंगा', 'ganga'): "गंगा नदी वाराणसी की जीवनधारा है। यहाँ लोग स्नान करते हैं और आरती देखते हैं।",
('यात्रा', 'travel',
'घूमना'): "वाराणसी में आप मंदिर, घाट, गलियाँ, और सांस्कृतिक स्थल देख सकते हैं। क्या विशिष्ट जानकारी चाहिए?"
}
for keywords, response in responses.items():
if any(keyword in query_lower for keyword in keywords):
return response
return "मुझे वाराणसी के बारे में आपका प्रश्न समझ नहीं आया। कृपया मंदिर, घाट, आरती, या यात्रा के बारे में पूछें।"
def process_query(self, query):
"""Main query processing function with evaluation metrics"""
if not query.strip():
return {
'answer': "कृपया अपना प्रश्न पूछें।",
'reference_answer': None,
'evaluation_scores': None,
'response_type': 'empty_query'
}
print(f"🔍 Processing query: {query}")
# Step 1: Try to find direct Q&A match
qa_match = self.find_best_qa_match(query)
if qa_match:
print(f"✅ Found Q&A match with score: {qa_match['score']:.3f}")
# For direct Q&A matches, we have the reference answer
predicted_answer = qa_match['qa']['answer']
reference_answer = qa_match['qa']['answer'] # Same as predicted for exact matches
# Calculate evaluation scores
evaluation_scores = self.evaluation_metrics.calculate_all_scores(
predicted_answer, reference_answer
)
return {
'answer': predicted_answer,
'reference_answer': reference_answer,
'evaluation_scores': evaluation_scores,
'response_type': 'direct_qa_match',
'similarity_score': qa_match['score']
}
# Step 2: Find relevant contexts
relevant_contexts = self.find_relevant_context(query)
reference_answer = None
if relevant_contexts:
print(f"✅ Found {len(relevant_contexts)} relevant contexts")
# Step 3: Try QA model on best context
best_context = relevant_contexts[0]['context']
qa_answer = self.generate_qa_answer(query, best_context['context'])
if qa_answer:
# Try to find a reference answer from the context's QAs
reference_answer = self.find_reference_answer(query, best_context['qas'])
evaluation_scores = self.evaluation_metrics.calculate_all_scores(
qa_answer, reference_answer
) if reference_answer else None
return {
'answer': qa_answer,
'reference_answer': reference_answer,
'evaluation_scores': evaluation_scores,
'response_type': 'qa_model_generated',
'context_similarity': relevant_contexts[0]['similarity']
}
# Step 4: Check for direct Q&As in the context
for qa in best_context['qas']:
if self.is_similar_question(query, qa['question']):
predicted_answer = qa['answer']
reference_answer = qa['answer']
evaluation_scores = self.evaluation_metrics.calculate_all_scores(
predicted_answer, reference_answer
)
return {
'answer': predicted_answer,
'reference_answer': reference_answer,
'evaluation_scores': evaluation_scores,
'response_type': 'context_qa_match',
'context_similarity': relevant_contexts[0]['similarity']
}
# Step 5: Smart fallback
fallback_answer = self.get_smart_fallback(query)
return {
'answer': fallback_answer,
'reference_answer': None,
'evaluation_scores': None,
'response_type': 'fallback'
}
def find_reference_answer(self, query, qas):
"""Find the most similar question's answer as reference"""
if not qas:
return None
best_similarity = 0
best_answer = None
for qa in qas:
if self.is_similar_question(query, qa['question'], threshold=0.5):
# Calculate similarity score
try:
embeddings = self.embedding_model.encode([query, qa['question']])
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
if similarity > best_similarity:
best_similarity = similarity
best_answer = qa['answer']
except:
continue
return best_answer
def is_similar_question(self, q1, q2, threshold=0.7):
"""Check if two questions are similar"""
try:
embeddings = self.embedding_model.encode([q1, q2])
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
return similarity > threshold
except:
return False
# Initialize improved chatbot
chatbot = ImprovedVATIKAChatbot()
def convert_to_serializable(obj):
"""Convert numpy types to Python native types for JSON serialization"""
if isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {key: convert_to_serializable(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_to_serializable(item) for item in obj]
else:
return obj
@app.route('/')
def home():
return render_template('index.html')
@app.route('/chat', methods=['POST'])
def chat():
try:
data = request.get_json()
user_message = data.get('message', '').strip()
if not user_message:
return jsonify({'error': 'कृपया कोई संदेश भेजें'}), 400
# Process the query
result = chatbot.process_query(user_message)
# Convert all values to JSON serializable format
result = convert_to_serializable(result)
# Prepare response
response_data = {
'response': result['answer'],
'status': 'success',
'response_type': result['response_type'],
'evaluation_scores': result['evaluation_scores'],
'reference_answer': result['reference_answer'],
}
# Add additional info based on response type
if result['response_type'] == 'direct_qa_match':
response_data['similarity_score'] = result['similarity_score']
elif result['response_type'] in ['qa_model_generated', 'context_qa_match']:
response_data['context_similarity'] = result['context_similarity']
# Add debug info in development
if app.debug:
response_data['debug'] = {
'total_contexts': len(chatbot.contexts),
'total_qas': len(chatbot.qa_pairs),
'model_loaded': chatbot.qa_pipeline is not None
}
# Final conversion to ensure everything is serializable
response_data = convert_to_serializable(response_data)
return jsonify(response_data)
except Exception as e:
print(f"❌ Chat error: {e}")
import traceback
traceback.print_exc()
return jsonify({
'error': f'कुछ गलती हुई है: {str(e)}',
'status': 'error'
}), 500
@app.route('/health')
def health():
return jsonify({
'status': 'healthy',
'contexts_loaded': len(chatbot.contexts),
'qas_loaded': len(chatbot.qa_pairs),
'embeddings_ready': chatbot.context_embeddings is not None,
'qa_model_loaded': chatbot.qa_pipeline is not None
})
@app.route('/debug')
def debug():
"""Debug endpoint to check data"""
return jsonify({
'contexts': len(chatbot.contexts),
'qa_pairs': len(chatbot.qa_pairs),
'sample_context': chatbot.contexts[0] if chatbot.contexts else None,
'sample_qa': chatbot.qa_pairs[0] if chatbot.qa_pairs else None
})
# Add this route AFTER your existing /chat route and BEFORE if __name__ == "__main__":
@app.route('/api2/predict', methods=['POST'])
def api_predict():
"""
API endpoint for external applications
Expected JSON: {"question": "your question", "context": "optional context"}
Returns: {"answer": "response", "success": true, "evaluation_scores": {...}}
"""
try:
# Handle both JSON and form data
if request.is_json:
data = request.get_json()
else:
data = request.form.to_dict()
# Get question from different possible keys
question = data.get('question') or data.get('message') or data.get('query', '').strip()
provided_context = data.get('context', '').strip()
if not question:
return jsonify({
'success': False,
'error': 'कृपया प्रश्न भेजें',
'answer': ''
}), 400
# If context is provided, use it directly for QA
if provided_context:
# Use the provided context for QA
if chatbot.qa_pipeline:
try:
# Truncate context if too long
max_context_length = 500
if len(provided_context) > max_context_length:
provided_context = provided_context[:max_context_length] + "..."
result = chatbot.qa_pipeline(question=question, context=provided_context)
if result['score'] > 0.15: # Confidence threshold
response_data = {
'success': True,
'answer': result['answer'],
'confidence': float(result['score']),
'response_type': 'context_based_qa',
'evaluation_scores': None,
'reference_answer': None
}
return jsonify(convert_to_serializable(response_data))
except Exception as e:
print(f"Context QA error: {e}")
# Use existing chatbot logic
result = chatbot.process_query(question)
# Convert to serializable format
result = convert_to_serializable(result)
# Prepare API response
response_data = {
'success': True,
'answer': result['answer'],
'response_type': result['response_type'],
'evaluation_scores': result['evaluation_scores'],
'reference_answer': result['reference_answer']
}
# Add additional info based on response type
if result['response_type'] == 'direct_qa_match':
response_data['similarity_score'] = result['similarity_score']
elif result['response_type'] in ['qa_model_generated', 'context_qa_match']:
response_data['context_similarity'] = result['context_similarity']
return jsonify(response_data)
except Exception as e:
print(f"❌ API error: {e}")
import traceback
traceback.print_exc()
return jsonify({
'success': False,
'error': f'कुछ गलती हुई है: {str(e)}',
'answer': ''
}), 500
@app.route('/api2/simple', methods=['POST', 'GET'])
def api_simple():
"""
Simple API endpoint for basic question-answering
POST: JSON {"question": "your question"}
GET: ?question=your+question
Returns: {"answer": "response"}
"""
try:
if request.method == 'POST':
if request.is_json:
data = request.get_json()
question = data.get('question', '').strip()
else:
question = request.form.get('question', '').strip()
else: # GET
question = request.args.get('question', '').strip()
if not question:
return jsonify({
'answer': 'कृपया प्रश्न भेजें'
}), 400
# Process the query
result = chatbot.process_query(question)
# Simple response
return jsonify({
'answer': result['answer']
})
except Exception as e:
print(f"❌ Simple API error: {e}")
return jsonify({
'answer': f'कुछ गलती हुई है: {str(e)}'
}), 500
if __name__ == "__main__":
# HF Spaces requirement: port 7860
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=False) |