AveMujica commited on
Commit
3924e13
·
verified ·
1 Parent(s): a9fb15e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +295 -0
app.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import torch
5
+ import gradio as gr
6
+ import segmentation_models_pytorch as smp
7
+ from PIL import Image
8
+ from glob import glob
9
+ from pipeline.ImgOutlier import detect_outliers
10
+ from pipeline.normalization import align_images
11
+
12
+ # 检测是否在Hugging Face环境中运行
13
+ HF_SPACE = os.environ.get('SPACE_ID') is not None
14
+
15
+ # 尝试导入上传模块,如果不在HF环境中才需要
16
+ if not HF_SPACE:
17
+ try:
18
+ from uploader.do_spaces import upload_mask
19
+ except ImportError:
20
+ def upload_mask(image, prefix=""):
21
+ return "上传模块未加载"
22
+
23
+ # Global Configuration
24
+ MODEL_PATHS = {
25
+ "Metal Marcy": "models/MM_best_model.pth",
26
+ "Silhouette Jaenette": "models/SJ_best_model.pth"
27
+ }
28
+
29
+ REFERENCE_VECTOR_PATHS = {
30
+ "Metal Marcy": "models/MM_mean.npy",
31
+ "Silhouette Jaenette": "models/SJ_mean.npy"
32
+ }
33
+
34
+ REFERENCE_IMAGE_DIRS = {
35
+ "Metal Marcy": "reference_images/MM",
36
+ "Silhouette Jaenette": "reference_images/SJ"
37
+ }
38
+
39
+ # Category names and color mapping
40
+ CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
41
+ COLORS = [
42
+ [0, 0, 0], # background - black
43
+ [139, 137, 137], # cobbles - dark gray
44
+ [255, 228, 181], # drysand - light yellow
45
+ [0, 128, 0], # plant - green
46
+ [135, 206, 235], # sky - sky blue
47
+ [0, 0, 255], # water - blue
48
+ [194, 178, 128] # wetsand - sand brown
49
+ ]
50
+
51
+ # Load model function
52
+ def load_model(model_path, device="cuda"):
53
+ try:
54
+ # 如果在HF环境中,默认使用CPU
55
+ if HF_SPACE:
56
+ device = "cpu" # HF Space可能没有GPU
57
+
58
+ model = smp.create_model(
59
+ "DeepLabV3Plus",
60
+ encoder_name="efficientnet-b6",
61
+ in_channels=3,
62
+ classes=len(CLASSES),
63
+ encoder_weights=None
64
+ )
65
+ state_dict = torch.load(model_path, map_location=device)
66
+ if all(k.startswith('model.') for k in state_dict.keys()):
67
+ state_dict = {k[6:]: v for k, v in state_dict.items()}
68
+ model.load_state_dict(state_dict)
69
+ model.to(device)
70
+ model.eval()
71
+ print(f"Model load success: {model_path}")
72
+ return model
73
+ except Exception as e:
74
+ print(f"Model load fail: {e}")
75
+ return None
76
+
77
+ # Load reference vector
78
+ def load_reference_vector(vector_path):
79
+ try:
80
+ ref_vector = np.load(vector_path)
81
+ print(f"reference vector load success: {vector_path}")
82
+ return ref_vector
83
+ except Exception as e:
84
+ print(f"reference vector load {vector_path}: {e}")
85
+ return []
86
+
87
+ # Load reference image
88
+ def load_reference_images(ref_dir):
89
+ try:
90
+ image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
91
+ image_files = []
92
+ for ext in image_extensions:
93
+ image_files.extend(glob(os.path.join(ref_dir, ext)))
94
+ image_files.sort()
95
+ reference_images = []
96
+ for file in image_files[:4]:
97
+ img = cv2.imread(file)
98
+ if img is not None:
99
+ reference_images.append(img)
100
+ print(f"from {ref_dir} load {len(reference_images)} images")
101
+ return reference_images
102
+ except Exception as e:
103
+ print(f"load image failed {ref_dir}: {e}")
104
+ return []
105
+
106
+ # Preprocess the image
107
+ def preprocess_image(image):
108
+ if image.shape[2] == 4:
109
+ image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
110
+ orig_h, orig_w = image.shape[:2]
111
+ image_resized = cv2.resize(image, (1024, 1024))
112
+ image_norm = image_resized.astype(np.float32) / 255.0
113
+ mean = np.array([0.485, 0.456, 0.406])
114
+ std = np.array([0.229, 0.224, 0.225])
115
+ image_norm = (image_norm - mean) / std
116
+ image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
117
+ return image_tensor, orig_h, orig_w
118
+
119
+ # Generate segmentation map and visualization
120
+ def generate_segmentation_map(prediction, orig_h, orig_w):
121
+ mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
122
+ mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
123
+ kernel = np.ones((5, 5), np.uint8)
124
+ processed_mask = mask_resized.copy()
125
+ for idx in range(1, len(CLASSES)):
126
+ class_mask = (mask_resized == idx).astype(np.uint8)
127
+ dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
128
+ dilated_effect = dilated_mask & (mask_resized == 0)
129
+ processed_mask[dilated_effect > 0] = idx
130
+ segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
131
+ for idx, color in enumerate(COLORS):
132
+ segmentation_map[processed_mask == idx] = color
133
+ return segmentation_map
134
+
135
+ # Analysis result HTML
136
+ def create_analysis_result(mask):
137
+ total_pixels = mask.size
138
+ percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
139
+ for i, cls in enumerate(CLASSES)}
140
+ ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
141
+ result = "<div style='font-size:18px;font-weight:bold;'>"
142
+ result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
143
+ result += "</div>"
144
+ return result
145
+
146
+ # Merge and overlay
147
+ def create_overlay(image, segmentation_map, alpha=0.5):
148
+ if image.shape[:2] != segmentation_map.shape[:2]:
149
+ segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
150
+ return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
151
+
152
+ # Perform segmentation
153
+ def perform_segmentation(model, image_bgr):
154
+ device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
155
+ image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
156
+ image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
157
+ with torch.no_grad():
158
+ prediction = model(image_tensor.to(device))
159
+ seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB
160
+ overlay = create_overlay(image_rgb, seg_map)
161
+ mask = prediction.argmax(1).squeeze().cpu().numpy()
162
+ analysis = create_analysis_result(mask)
163
+ return seg_map, overlay, analysis
164
+
165
+ # Single image processing
166
+ def process_coastal_image(location, input_image):
167
+ if input_image is None:
168
+ return None, None, "请上传一张图片", "未检测", None
169
+
170
+ device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
171
+ model = load_model(MODEL_PATHS[location], device)
172
+
173
+ if model is None:
174
+ return None, None, f"错误:无法加载模型", "未检测", None
175
+
176
+ ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location]) if os.path.exists(REFERENCE_VECTOR_PATHS[location]) else []
177
+ ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
178
+
179
+ outlier_status = "未检测"
180
+ is_outlier = False
181
+ image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
182
+
183
+ if len(ref_vector) > 0:
184
+ filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
185
+ is_outlier = len(filtered) == 0
186
+ else:
187
+ filtered, _ = detect_outliers(ref_images, [image_bgr])
188
+ is_outlier = len(filtered) == 0
189
+
190
+ outlier_status = "异常检测: <span style='color:red;font-weight:bold'>未通过</span>" if is_outlier else "异常检测: <span style='color:green;font-weight:bold'>通过</span>"
191
+ seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
192
+
193
+ # 在HF环境中不上传,只返回本地结果
194
+ url = "本地存储"
195
+ if not HF_SPACE:
196
+ try:
197
+ url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
198
+ except Exception as e:
199
+ print(f"Upload failed: {e}")
200
+ url = "上传错误"
201
+
202
+ if is_outlier:
203
+ analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>警告:图像未通过异常检测,结果可能不准确!</div>" + analysis
204
+
205
+ return seg_map, overlay, analysis, outlier_status, url
206
+
207
+ # Spacial Alignment
208
+ def process_with_alignment(location, reference_image, input_image):
209
+ if reference_image is None or input_image is None:
210
+ return None, None, None, None, "请上传参考图像和需要分析的图像", "未处理", None
211
+
212
+ device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
213
+ model = load_model(MODEL_PATHS[location], device)
214
+
215
+ if model is None:
216
+ return None, None, None, None, "错误:无法加载模型", "未处理", None
217
+
218
+ ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
219
+ tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
220
+
221
+ aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
222
+ aligned_tgt_bgr = aligned[1]
223
+
224
+ seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
225
+
226
+ # 在HF环境中不上传,只返回本地结果
227
+ url = "本地存储"
228
+ if not HF_SPACE:
229
+ try:
230
+ url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
231
+ except Exception as e:
232
+ print(f"Upload failed: {e}")
233
+ url = "上传错误"
234
+
235
+ status = "空间对齐: <span style='color:green;font-weight:bold'>完成</span>"
236
+ ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
237
+ aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
238
+
239
+ return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url
240
+
241
+ # Create the Gradio interface
242
+ def create_interface():
243
+ scale = 0.5
244
+ disp_w, disp_h = int(1365*scale), int(1024*scale)
245
+ with gr.Blocks(title="海岸侵蚀分析系统") as demo:
246
+ gr.Markdown("""# 海岸侵蚀分析系统
247
+
248
+ 上传海岸照片进行分析,包括分割和空间对齐功能。""")
249
+ with gr.Tabs():
250
+ with gr.TabItem("单张图像分割"):
251
+ with gr.Row():
252
+ loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
253
+ with gr.Row():
254
+ inp = gr.Image(label="输入图像", type="numpy", image_mode="RGB")
255
+ seg = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
256
+ ovl = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
257
+ with gr.Row():
258
+ btn1 = gr.Button("执行分割")
259
+ url1 = gr.Text(label="分割图URL")
260
+ status1 = gr.HTML(label="异常检测状态")
261
+ res1 = gr.HTML(label="分析结果")
262
+ btn1.click(fn=process_coastal_image,inputs=[loc1, inp],outputs=[seg, ovl, res1, status1, url1])
263
+
264
+ with gr.TabItem("空间对齐分割"):
265
+ with gr.Row():
266
+ loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
267
+ with gr.Row():
268
+ ref_img = gr.Image(label="参考图像", type="numpy", image_mode="RGB")
269
+ tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB")
270
+ with gr.Row():
271
+ btn2 = gr.Button("执行空间对齐分割")
272
+ with gr.Row():
273
+ orig = gr.Image(label="原始图像", type="numpy", width=disp_w, height=disp_h)
274
+ aligned = gr.Image(label="对齐后图像", type="numpy", width=disp_w, height=disp_h)
275
+ with gr.Row():
276
+ seg2 = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
277
+ ovl2 = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
278
+ url2 = gr.Text(label="分割图URL")
279
+ status2 = gr.HTML(label="空间对齐状态")
280
+ res2 = gr.HTML(label="分析结果")
281
+ btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
282
+ return demo
283
+
284
+ if __name__ == "__main__":
285
+ for path in ["models", "reference_images/MM", "reference_images/SJ"]:
286
+ os.makedirs(path, exist_ok=True)
287
+ for p in MODEL_PATHS.values():
288
+ if not os.path.exists(p):
289
+ print(f"警告:模型文件 {p} 不存在!")
290
+ demo = create_interface()
291
+ # 在HF环境中使用适当的启动配置
292
+ if HF_SPACE:
293
+ demo.launch()
294
+ else:
295
+ demo.launch(share=True)