CostalSegment / app.py
AveMujica's picture
init
40aaca9
raw
history blame
15 kB
import os
import cv2
import numpy as np
import torch
import gradio as gr
import segmentation_models_pytorch as smp
from PIL import Image
import boto3
import uuid
import io
from glob import glob
from pipeline.ImgOutlier import detect_outliers
from pipeline.normalization import align_images
# 检测是否在Hugging Face环境中运行
HF_SPACE = os.environ.get('SPACE_ID') is not None
# DigitalOcean Spaces上传函数
def upload_mask(image, prefix="mask"):
"""
将分割掩码图像上传到DigitalOcean Spaces
Args:
image: PIL Image对象
prefix: 文件名前缀
Returns:
上传文件的URL
"""
try:
# 从环境变量获取凭据
do_key = os.environ.get('DO_SPACES_KEY')
do_secret = os.environ.get('DO_SPACES_SECRET')
do_region = os.environ.get('DO_SPACES_REGION')
do_bucket = os.environ.get('DO_SPACES_BUCKET')
# 校验凭据是否存在
if not all([do_key, do_secret, do_region, do_bucket]):
return "DigitalOcean凭据未设置"
# 创建S3客户端
session = boto3.session.Session()
client = session.client('s3',
region_name=do_region,
endpoint_url=f'https://{do_region}.digitaloceanspaces.com',
aws_access_key_id=do_key,
aws_secret_access_key=do_secret)
# 生成唯一文件名
filename = f"{prefix}_{uuid.uuid4().hex}.png"
# 将图像转换为字节流
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
# 上传到Spaces
client.upload_fileobj(
img_byte_arr,
do_bucket,
filename,
ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
)
# 返回公共URL
url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
return url
except Exception as e:
print(f"上传失败: {str(e)}")
return f"上传错误: {str(e)}"
# Global Configuration
MODEL_PATHS = {
"Metal Marcy": "models/MM_best_model.pth",
"Silhouette Jaenette": "models/SJ_best_model.pth"
}
REFERENCE_VECTOR_PATHS = {
"Metal Marcy": "models/MM_mean.npy",
"Silhouette Jaenette": "models/SJ_mean.npy"
}
REFERENCE_IMAGE_DIRS = {
"Metal Marcy": "reference_images/MM",
"Silhouette Jaenette": "reference_images/SJ"
}
# Category names and color mapping
CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
COLORS = [
[0, 0, 0], # background - black
[139, 137, 137], # cobbles - dark gray
[255, 228, 181], # drysand - light yellow
[0, 128, 0], # plant - green
[135, 206, 235], # sky - sky blue
[0, 0, 255], # water - blue
[194, 178, 128] # wetsand - sand brown
]
# Load model function
def load_model(model_path, device="cuda"):
try:
# 如果在HF环境中,默认使用CPU
if HF_SPACE:
device = "cpu" # HF Space可能没有GPU
elif not torch.cuda.is_available():
device = "cpu" # 本地环境也可能没有GPU
model = smp.create_model(
"DeepLabV3Plus",
encoder_name="efficientnet-b6",
in_channels=3,
classes=len(CLASSES),
encoder_weights=None
)
state_dict = torch.load(model_path, map_location=device)
if all(k.startswith('model.') for k in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.to(device)
model.eval()
print(f"模型加载成功: {model_path}")
return model
except Exception as e:
print(f"模型加载失败: {e}")
return None
# Load reference vector
def load_reference_vector(vector_path):
try:
if not os.path.exists(vector_path):
print(f"参考向量文件不存在: {vector_path}")
return []
ref_vector = np.load(vector_path)
print(f"参考向量加载成功: {vector_path}")
return ref_vector
except Exception as e:
print(f"参考向量加载失败 {vector_path}: {e}")
return []
# Load reference image
def load_reference_images(ref_dir):
try:
if not os.path.exists(ref_dir):
print(f"参考图像目录不存在: {ref_dir}")
os.makedirs(ref_dir, exist_ok=True)
return []
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
image_files = []
for ext in image_extensions:
image_files.extend(glob(os.path.join(ref_dir, ext)))
image_files.sort()
reference_images = []
for file in image_files[:4]:
img = cv2.imread(file)
if img is not None:
reference_images.append(img)
print(f"从 {ref_dir} 加载了 {len(reference_images)} 张图像")
return reference_images
except Exception as e:
print(f"加载图像失败 {ref_dir}: {e}")
return []
# Preprocess the image
def preprocess_image(image):
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
orig_h, orig_w = image.shape[:2]
image_resized = cv2.resize(image, (1024, 1024))
image_norm = image_resized.astype(np.float32) / 255.0
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_norm = (image_norm - mean) / std
image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
return image_tensor, orig_h, orig_w
# Generate segmentation map and visualization
def generate_segmentation_map(prediction, orig_h, orig_w):
mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
kernel = np.ones((5, 5), np.uint8)
processed_mask = mask_resized.copy()
for idx in range(1, len(CLASSES)):
class_mask = (mask_resized == idx).astype(np.uint8)
dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
dilated_effect = dilated_mask & (mask_resized == 0)
processed_mask[dilated_effect > 0] = idx
segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
for idx, color in enumerate(COLORS):
segmentation_map[processed_mask == idx] = color
return segmentation_map
# Analysis result HTML
def create_analysis_result(mask):
total_pixels = mask.size
percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
for i, cls in enumerate(CLASSES)}
ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
result = "<div style='font-size:18px;font-weight:bold;'>"
result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
result += "</div>"
return result
# Merge and overlay
def create_overlay(image, segmentation_map, alpha=0.5):
if image.shape[:2] != segmentation_map.shape[:2]:
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
# Perform segmentation
def perform_segmentation(model, image_bgr):
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
with torch.no_grad():
prediction = model(image_tensor.to(device))
seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB
overlay = create_overlay(image_rgb, seg_map)
mask = prediction.argmax(1).squeeze().cpu().numpy()
analysis = create_analysis_result(mask)
return seg_map, overlay, analysis
# Single image processing
def process_coastal_image(location, input_image):
if input_image is None:
return None, None, "请上传一张图片", "未检测", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, f"错误:无法加载模型", "未检测", None
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
outlier_status = "未检测"
is_outlier = False
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
if len(ref_vector) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
is_outlier = len(filtered) == 0
elif len(ref_images) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr])
is_outlier = len(filtered) == 0
else:
print("警告:没有参考图像或参考向量可用于异常检测")
is_outlier = False
outlier_status = "异常检测: <span style='color:red;font-weight:bold'>未通过</span>" if is_outlier else "异常检测: <span style='color:green;font-weight:bold'>通过</span>"
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
# 尝试上传到DigitalOcean Spaces
url = "本地存储"
try:
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
except Exception as e:
print(f"上传失败: {e}")
url = f"上传错误: {str(e)}"
if is_outlier:
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>警告:图像未通过异常检测,结果可能不准确!</div>" + analysis
return seg_map, overlay, analysis, outlier_status, url
# Spacial Alignment
def process_with_alignment(location, reference_image, input_image):
if reference_image is None or input_image is None:
return None, None, None, None, "请上传参考图像和需要分析的图像", "未处理", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, None, None, "错误:无法加载模型", "未处理", None
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
try:
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
aligned_tgt_bgr = aligned[1]
except Exception as e:
print(f"空间对齐失败: {e}")
return None, None, None, None, f"空间对齐失败: {str(e)}", "处理失败", None
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
# 尝试上传到DigitalOcean Spaces
url = "本地存储"
try:
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
except Exception as e:
print(f"上传失败: {e}")
url = f"上传错误: {str(e)}"
status = "空间对齐: <span style='color:green;font-weight:bold'>完成</span>"
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url
# Create the Gradio interface
def create_interface():
scale = 0.5
disp_w, disp_h = int(1365*scale), int(1024*scale)
with gr.Blocks(title="海岸侵蚀分析系统") as demo:
gr.Markdown("""# 海岸侵蚀分析系统
上传海岸照片进行分析,包括分割和空间对齐功能。""")
with gr.Tabs():
with gr.TabItem("单张图像分割"):
with gr.Row():
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
inp = gr.Image(label="输入图像", type="numpy", image_mode="RGB")
seg = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
ovl = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
with gr.Row():
btn1 = gr.Button("执行分割")
url1 = gr.Text(label="分割图URL")
status1 = gr.HTML(label="异常检测状态")
res1 = gr.HTML(label="分析结果")
btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
with gr.TabItem("空间对齐分割"):
with gr.Row():
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
ref_img = gr.Image(label="参考图像", type="numpy", image_mode="RGB")
tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB")
with gr.Row():
btn2 = gr.Button("执行空间对齐分割")
with gr.Row():
orig = gr.Image(label="原始图像", type="numpy", width=disp_w, height=disp_h)
aligned = gr.Image(label="对齐后图像", type="numpy", width=disp_w, height=disp_h)
with gr.Row():
seg2 = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
ovl2 = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
url2 = gr.Text(label="分割图URL")
status2 = gr.HTML(label="空间对齐状态")
res2 = gr.HTML(label="分析结果")
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
return demo
if __name__ == "__main__":
# 创建必要的目录
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
os.makedirs(path, exist_ok=True)
# 检查模型文件是否存在
for p in MODEL_PATHS.values():
if not os.path.exists(p):
print(f"警告:模型文件 {p} 不存在!")
# 检查DigitalOcean凭据是否存在
do_creds = [
os.environ.get('DO_SPACES_KEY'),
os.environ.get('DO_SPACES_SECRET'),
os.environ.get('DO_SPACES_REGION'),
os.environ.get('DO_SPACES_BUCKET')
]
if not all(do_creds):
print("警告:DigitalOcean Spaces凭据不完整,上传功能可能不可用")
# 创建并启动界面
demo = create_interface()
# 在HF环境中使用适当的启动配置
if HF_SPACE:
demo.launch()
else:
demo.launch(share=True)