Spaces:
Sleeping
Sleeping
Commit
·
338c9b0
1
Parent(s):
1e04613
Add Gradio app and project configuration
Browse filesIntroduces a Gradio-based UFC fight prediction app in app.py, which loads models and predicts fight outcomes based on user input. Adds pyproject.toml with project metadata and dependencies for reproducible builds and packaging.
- app.py +95 -0
- pyproject.toml +29 -0
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
from datetime import datetime
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
|
7 |
+
# --- Path and Module Setup ---
|
8 |
+
# Add the 'src' directory to the system path so we can import our custom modules.
|
9 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
10 |
+
|
11 |
+
# Although these models are not called directly, they MUST be imported here.
|
12 |
+
# joblib.load() needs these class definitions in scope to deserialize the model files correctly.
|
13 |
+
from src.predict.models import (
|
14 |
+
BaseMLModel,
|
15 |
+
EloBaselineModel,
|
16 |
+
LogisticRegressionModel,
|
17 |
+
XGBoostModel,
|
18 |
+
SVCModel,
|
19 |
+
RandomForestModel,
|
20 |
+
BernoulliNBModel,
|
21 |
+
LGBMModel
|
22 |
+
)
|
23 |
+
# Import the configuration variable for the models directory for consistency.
|
24 |
+
from src.config import MODELS_DIR
|
25 |
+
|
26 |
+
# --- Gradio App Setup ---
|
27 |
+
if not os.path.exists(MODELS_DIR):
|
28 |
+
os.makedirs(MODELS_DIR)
|
29 |
+
print(f"Warning: Models directory not found. Created a dummy directory at '{MODELS_DIR}'.")
|
30 |
+
|
31 |
+
# Get a list of available models
|
32 |
+
available_models = [f for f in os.listdir(MODELS_DIR) if f.endswith(".joblib")]
|
33 |
+
if not available_models:
|
34 |
+
print(f"Warning: No models found in '{MODELS_DIR}'. The dropdown will be empty.")
|
35 |
+
available_models.append("No models found")
|
36 |
+
|
37 |
+
# --- Prediction Function ---
|
38 |
+
def predict_fight(model_name, fighter1_name, fighter2_name):
|
39 |
+
"""
|
40 |
+
Loads the selected model and predicts the winner of a fight.
|
41 |
+
"""
|
42 |
+
if model_name == "No models found" or not fighter1_name or not fighter2_name:
|
43 |
+
return "Please select a model and enter both fighter names."
|
44 |
+
|
45 |
+
model_path = os.path.join(MODELS_DIR, model_name)
|
46 |
+
|
47 |
+
try:
|
48 |
+
print(f"Loading model: {model_name}")
|
49 |
+
model = joblib.load(model_path)
|
50 |
+
|
51 |
+
fight = {
|
52 |
+
'fighter_1': fighter1_name,
|
53 |
+
'fighter_2': fighter2_name,
|
54 |
+
'event_date': datetime.now().strftime('%B %d, %Y')
|
55 |
+
}
|
56 |
+
|
57 |
+
predicted_winner = model.predict(fight)
|
58 |
+
|
59 |
+
if predicted_winner:
|
60 |
+
return f"Predicted Winner: {predicted_winner}"
|
61 |
+
else:
|
62 |
+
return "Could not make a prediction. Is one of the fighters new or not in the dataset?"
|
63 |
+
|
64 |
+
except FileNotFoundError:
|
65 |
+
return f"Error: Model file '{model_name}' not found."
|
66 |
+
except Exception as e:
|
67 |
+
print(f"An error occurred during prediction: {e}")
|
68 |
+
return f"An error occurred: {e}"
|
69 |
+
|
70 |
+
# --- Gradio Interface ---
|
71 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
72 |
+
gr.Markdown("# UFC Fight Predictor")
|
73 |
+
gr.Markdown("Select a prediction model and enter two fighter names to predict the outcome.")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
model_dropdown = gr.Dropdown(
|
77 |
+
label="Select Model",
|
78 |
+
choices=available_models,
|
79 |
+
value=available_models[0] if available_models else None
|
80 |
+
)
|
81 |
+
with gr.Row():
|
82 |
+
fighter1_input = gr.Textbox(label="Fighter 1", placeholder="e.g., Jon Jones")
|
83 |
+
fighter2_input = gr.Textbox(label="Fighter 2", placeholder="e.g., Stipe Miocic")
|
84 |
+
|
85 |
+
predict_button = gr.Button("Predict Winner")
|
86 |
+
output_text = gr.Textbox(label="Prediction Result", interactive=False)
|
87 |
+
|
88 |
+
predict_button.click(
|
89 |
+
fn=predict_fight,
|
90 |
+
inputs=[model_dropdown, fighter1_input, fighter2_input],
|
91 |
+
outputs=output_text
|
92 |
+
)
|
93 |
+
|
94 |
+
# --- Launch the App ---
|
95 |
+
demo.launch()
|
pyproject.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools>=61.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "ufc_predictor"
|
7 |
+
version = "0.1.0"
|
8 |
+
authors = [
|
9 |
+
{ name="Álvaro Menéndez Ros", email="alvaro.mrgr@gmail.com" },
|
10 |
+
]
|
11 |
+
description = "A model for predicting UFC fight outcomes."
|
12 |
+
requires-python = ">=3.8"
|
13 |
+
classifiers = [
|
14 |
+
"Programming Language :: Python :: 3",
|
15 |
+
"License :: OSI Approved :: MIT License",
|
16 |
+
"Operating System :: OS Independent",
|
17 |
+
]
|
18 |
+
dependencies = [
|
19 |
+
"gradio==4.28.3",
|
20 |
+
"scikit-learn==1.4.2",
|
21 |
+
"pandas==2.2.2",
|
22 |
+
"xgboost==2.0.3",
|
23 |
+
"lightgbm==4.3.0",
|
24 |
+
"joblib==1.4.2",
|
25 |
+
]
|
26 |
+
|
27 |
+
[tool.setuptools]
|
28 |
+
package-dir = {"" = "src"}
|
29 |
+
packages = ["find:"]
|