soonfactory / app10.py
AlekseyCalvin's picture
Rename app.py to app10.py
685128a verified
import os
import gradio as gr
import numpy as np
import json
import logging
import subprocess
import torch
import transformers
import diffusers
from PIL import Image
from os import path
from torchvision import transforms
from dataclasses import dataclass
import math
from typing import Callable
import spaces
import bitsandbytes
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
from diffusers.models.transformers import FluxTransformer2DModel
import copy
import random
import time
import safetensors.torch
from tqdm import tqdm
from safetensors.torch import load_file
from huggingface_hub import HfFileSystem, ModelCard
from huggingface_hub import login, hf_hub_download
from huggingface_hub.utils._runtime import dump_environment_info
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
dump_environment_info()
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"},
components_to_quantize=["transformer"]
)
try:
# Set max memory usage for ZeroGPU
torch.cuda.set_per_process_memory_fraction(1.0)
torch.set_float32_matmul_precision("medium")
except Exception as e:
print(f"Error setting memory usage: {e}")
dtype = torch.bfloat16
base_model = "AlekseyCalvin/Flux-Krea-Blaze_byMintLab_fp8_Diffusers"
pipe = DiffusionPipeline.from_pretrained(
base_model,
quantization_config=quant_config,
torch_dtype=dtype
).to("cuda")
torch.cuda.empty_cache()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
config = CLIPConfig.from_pretrained(model_id)
config.text_config.max_position_embeddings = 248
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True)
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = 248
pipe.text_encoder.dtype = torch.bfloat16
#pipe.text_encoder_2 = t5.text_model
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! "
lora_repo = selected_lora["repo"]
lora_trigger = selected_lora['trigger_word']
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=80)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora['trigger_word']
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""",
elem_id="title",
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> Img. Manufactory Running On: Flux Krea Blaze (a fast modification of Flux Krea). Nearly all of the LoRA adapters accessible via this space were trained by us in an extensive progression of inspired experiments and conceptual mini-projects. Check out our poetry translations at WWW.SILVERagePOETS.com Find our music on SoundCloud @ AlekseyCalvin & YouTube @ SilverAgePoets / AlekseyCalvin! </div>"""
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> To reinforce/focus in selected fine-tuned LoRAs (Low-Rank Adapters), add special “trigger" words/phrases to your prompts. </div>"""
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Inventory",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=2.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=9)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.5, step=0.01, value=1.0)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue(default_concurrency_limit=2).launch(show_error=True)
app.launch()