Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import json | |
import logging | |
import subprocess | |
import torch | |
import transformers | |
import diffusers | |
from PIL import Image | |
from os import path | |
from torchvision import transforms | |
from dataclasses import dataclass | |
import math | |
from typing import Callable | |
import spaces | |
import bitsandbytes | |
from diffusers.quantizers import PipelineQuantizationConfig | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer | |
from diffusers.models.transformers import FluxTransformer2DModel | |
import copy | |
import random | |
import time | |
import safetensors.torch | |
from tqdm import tqdm | |
from safetensors.torch import load_file | |
from huggingface_hub import HfFileSystem, ModelCard | |
from huggingface_hub import login, hf_hub_download | |
from huggingface_hub.utils._runtime import dump_environment_info | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1') | |
dump_environment_info() | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
quant_config = PipelineQuantizationConfig( | |
quant_backend="bitsandbytes_4bit", | |
quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"}, | |
components_to_quantize=["transformer"] | |
) | |
try: | |
# Set max memory usage for ZeroGPU | |
torch.cuda.set_per_process_memory_fraction(1.0) | |
torch.set_float32_matmul_precision("medium") | |
except Exception as e: | |
print(f"Error setting memory usage: {e}") | |
dtype = torch.bfloat16 | |
base_model = "AlekseyCalvin/Flux-Krea-Blaze_byMintLab_fp8_Diffusers" | |
pipe = DiffusionPipeline.from_pretrained( | |
base_model, | |
quantization_config=quant_config, | |
torch_dtype=dtype | |
).to("cuda") | |
torch.cuda.empty_cache() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14") | |
config = CLIPConfig.from_pretrained(model_id) | |
config.text_config.max_position_embeddings = 248 | |
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True) | |
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248) | |
pipe.tokenizer = clip_processor.tokenizer | |
pipe.text_encoder = clip_model.text_model | |
pipe.tokenizer_max_length = 248 | |
pipe.text_encoder.dtype = torch.bfloat16 | |
#pipe.text_encoder_2 = t5.text_model | |
MAX_SEED = 2**32-1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def update_selection(evt: gr.SelectData, width, height): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! " | |
lora_repo = selected_lora["repo"] | |
lora_trigger = selected_lora['trigger_word'] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
width, | |
height, | |
) | |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
return image | |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = loras[selected_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora['trigger_word'] | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
else: | |
pipe.load_lora_weights(lora_path) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
pipe.to("cpu") | |
pipe.unload_lora_weights() | |
return image, seed | |
run_lora.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: 10vh} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
title = gr.HTML( | |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""", | |
elem_id="title", | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> Img. Manufactory Running On: Flux Krea Blaze (a fast modification of Flux Krea). Nearly all of the LoRA adapters accessible via this space were trained by us in an extensive progression of inspired experiments and conceptual mini-projects. Check out our poetry translations at WWW.SILVERagePOETS.com Find our music on SoundCloud @ AlekseyCalvin & YouTube @ SilverAgePoets / AlekseyCalvin! </div>""" | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> To reinforce/focus in selected fine-tuned LoRAs (Low-Rank Adapters), add special “trigger" words/phrases to your prompts. </div>""" | |
) | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
with gr.Column(scale=1, elem_id="gen_column"): | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
selected_info = gr.Markdown("") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Inventory", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery" | |
) | |
with gr.Column(scale=4): | |
result = gr.Image(label="Generated Image") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=2.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=9) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.5, step=0.01, value=1.0) | |
gallery.select( | |
update_selection, | |
inputs=[width, height], | |
outputs=[prompt, selected_info, selected_index, width, height] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
app.queue(default_concurrency_limit=2).launch(show_error=True) | |
app.launch() | |