# train_model.py from transformers import AutoModelForCausalLM, TrainingArguments, Trainer from datasets import load_from_disk tokenized_dataset = load_from_disk("tokenized_dataset") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") training_args = TrainingArguments( output_dir="./checkpoints", num_train_epochs=1, per_device_train_batch_size=1, gradient_accumulation_steps=8, evaluation_strategy="no", save_strategy="epoch", fp16=True, # if using GPU logging_steps=50, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset, ) trainer.train() model.save_pretrained("./my_ai_assistant", safe_serialization=True) # saves .safetensors