File size: 11,242 Bytes
4585e62 61cdead 1af018c 61cdead 1af018c 61cdead 1af018c 61cdead a0941ae ada15f5 61cdead 1af018c 61cdead a0941ae 61cdead a0941ae 61cdead ada15f5 61cdead 1af018c a0941ae 10b5b70 5e3b290 db79ccb 5e3b290 44f6895 5e3b290 1af018c 61cdead a0941ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import pdfplumber
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer import AnonymizerEngine
from presidio_image_redactor import ImageRedactorEngine
import numpy as np
import re
from docx import Document
from PIL import Image
import pytesseract
import fitz # pymupdf
import io
analyzer = AnalyzerEngine()
anonymizer = AnonymizerEngine()
image_redactor = ImageRedactorEngine()
COMPLIANCE_ENTITIES = {
"HIPAA": ["PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER", "MEDICAL_RECORD_NUMBER", "SSN"],
"GDPR": ["PERSON", "EMAIL_ADDRESS", "LOCATION"],
"CCPA": ["PERSON", "EMAIL_ADDRESS", "IP_ADDRESS", "SSN", "CREDIT_CARD"]
}
SUPPORTED_FILE_TYPES = [".pdf", ".docx", ".txt", ".png", ".jpg", ".jpeg"]
def extract_text(doc):
if not hasattr(doc, "name"):
return "ERROR: No file uploaded."
try:
fname = doc.name.lower()
if fname.endswith(".pdf"):
with pdfplumber.open(doc.name) as pdf:
pages = [page.extract_text() or "" for page in pdf.pages]
text = "\n".join(pages)
elif fname.endswith(".docx"):
document = Document(doc.name)
text = "\n".join([p.text for p in document.paragraphs])
elif fname.endswith(".txt"):
with open(doc.name, "r", encoding="utf-8") as f:
text = f.read()
elif fname.endswith((".png", ".jpg", ".jpeg")):
img = Image.open(doc.name)
text = pytesseract.image_to_string(img)
else:
return "ERROR: Unsupported file type."
if not text.strip():
return "ERROR: Document contains no extractable text."
return text
except Exception as e:
return f"ERROR: {e}"
def detect_pii(text):
try:
entities = [
"PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER", "MEDICAL_RECORD_NUMBER",
"SSN", "CREDIT_CARD", "LOCATION", "IP_ADDRESS"
]
presidio_results = analyzer.analyze(text=text, entities=entities, language="en")
findings = [
{
"entity": r.entity_type,
"score": r.score,
"start": r.start,
"end": r.end,
"text": text[r.start:r.end].strip()
}
for r in presidio_results
]
findings += find_ssns(text)
findings += find_ip_addresses(text)
return findings, presidio_results
except Exception as e:
return [{"entity": "ERROR", "text": str(e)}], []
def find_ip_addresses(text):
pattern = r'\b(?:[0-9]{1,3}\.){3}[0-9]{1,3}\b'
return [
{
"entity": "IP_ADDRESS",
"score": 1.0,
"start": m.start(),
"end": m.end(),
"text": m.group()
}
for m in re.finditer(pattern, text)
]
def find_ssns(text):
pattern = r'(?i)(ssn|social security number)[\s:]*([0-9]{3}-[0-9]{2}-[0-9]{4})'
findings = []
for m in re.finditer(pattern, text):
findings.append({
"entity": "SSN",
"score": 1.0,
"start": m.start(2),
"end": m.end(2),
"text": m.group(2)
})
for m in re.finditer(r'\b[0-9]{3}-[0-9]{2}-[0-9]{4}\b', text):
findings.append({
"entity": "SSN",
"score": 0.95,
"start": m.start(),
"end": m.end(),
"text": m.group()
})
return findings
def clean_person_entities(findings):
cleaned = []
for f in findings:
if f["entity"] == "PERSON":
name = " ".join(f["text"].split()[:2])
if name.lower() not in ["date", "department"]:
f = f.copy()
f["text"] = name
cleaned.append(f)
else:
cleaned.append(f)
return cleaned
def dedupe_findings(findings):
seen = set()
deduped = []
for f in findings:
key = (f["entity"], f["text"], f["start"], f["end"])
if key not in seen:
seen.add(key)
deduped.append(f)
return deduped
def risk_score(findings):
weights = {
"PERSON": 1, "EMAIL_ADDRESS": 2, "CREDIT_CARD": 4, "SSN": 5,
"IP_ADDRESS": 2, "PHONE_NUMBER": 2, "MEDICAL_RECORD_NUMBER": 3
}
return sum(weights.get(f["entity"], 1) for f in findings)
def suggest_fixes(findings):
fixes = []
for f in findings:
ent = f["entity"]
if ent == "PERSON":
fixes.append("Remove or mask full names.")
if ent == "EMAIL_ADDRESS":
fixes.append("Anonymize email addresses.")
if ent == "CREDIT_CARD":
fixes.append("Remove or mask credit card numbers.")
if ent == "SSN":
fixes.append("Remove or mask social security numbers.")
if ent == "PHONE_NUMBER":
fixes.append("Mask phone numbers.")
if ent == "LOCATION":
fixes.append("Remove or generalize location data.")
if ent == "IP_ADDRESS":
fixes.append("Remove or anonymize IP addresses.")
if ent == "MEDICAL_RECORD_NUMBER":
fixes.append("Anonymize medical record numbers.")
return list(set(fixes))
def summarize_narrative(findings, regime):
if not findings:
return "No sensitive or regulated information was found in this document."
entity_types = [f["entity"] for f in findings]
summary_lines = [f"Under **{regime}**, the document contains:"]
for entity in sorted(set(entity_types)):
count = entity_types.count(entity)
summary_lines.append(f"- **{entity.replace('_', ' ').title()}**: {count} instance(s)")
summary_lines.append("These must be anonymized or removed to ensure compliance.")
return "\n".join(summary_lines)
def score_legend():
return (
"**Risk Score Legend:**\n"
"- 0–3: Low risk (little or no PII detected)\n"
"- 4–7: Moderate risk (some PII detected, take caution)\n"
"- 8+: High risk (multiple/high-value PII found—document needs urgent attention)\n"
"\n"
"Score is calculated based on entity sensitivity. For example, SSN and credit cards are higher risk than names."
)
def redact_text(text, all_findings):
all_findings = sorted(all_findings, key=lambda f: f["start"], reverse=True)
redacted_text = text
for f in all_findings:
if not f["text"] or len(f["text"]) < 3:
continue
redacted_text = redacted_text[:f["start"]] + "[REDACTED]" + redacted_text[f["end"]:]
return redacted_text
def save_redacted_file(redacted_text):
path = "/tmp/redacted_output.txt"
with open(path, "w", encoding="utf-8") as f:
f.write(redacted_text)
return path
def redact_image_with_presidio(image_path):
img = Image.open(image_path)
redacted_img = image_redactor.redact(img)
out_path = "/tmp/redacted_image.png"
redacted_img.save(out_path)
return out_path
def redact_pdf_with_presidio(pdf_path):
doc = fitz.open(pdf_path)
output_pdf = fitz.open()
for page in doc:
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
redacted_img = image_redactor.redact(img)
img_byte_arr = io.BytesIO()
redacted_img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
rect = fitz.Rect(0, 0, pix.width, pix.height)
out_page = output_pdf.new_page(width=pix.width, height=pix.height)
out_page.insert_image(rect, stream=img_byte_arr.getvalue())
out_path = "/tmp/redacted_output.pdf"
output_pdf.save(out_path)
output_pdf.close()
return out_path
def executive_summary_template(findings, score, regime):
if not findings:
return (
f"No sensitive information detected under {regime}. Document is considered low risk."
)
risk_level = (
"High Risk" if score >= 8 else
"Moderate Risk" if score >= 4 else "Low Risk"
)
entity_counts = {}
for f in findings:
entity_counts[f["entity"]] = entity_counts.get(f["entity"], 0) + 1
summary_lines = [
f"This document falls under {regime} with a risk score of {score} ({risk_level})."
]
if entity_counts:
summary_lines.append(
"Sensitive information detected: " +
", ".join([f"{k} ({v})" for k, v in entity_counts.items()]) + "."
)
summary_lines.append(
"Recommendation: Anonymize or redact all sensitive entities to ensure compliance."
)
return " ".join(summary_lines)
def agentic_compliance(doc, regime):
text = extract_text(doc)
if text.startswith("ERROR"):
return text, None, None, None
findings, presidio_results = detect_pii(text)
findings = clean_person_entities(findings)
findings = dedupe_findings(findings)
entities_needed = COMPLIANCE_ENTITIES.get(regime, [])
relevant = [f for f in findings if f["entity"] in entities_needed]
score = risk_score(relevant)
fixes = suggest_fixes(relevant)
summary = summarize_narrative(relevant, regime)
exec_summary = executive_summary_template(relevant, score, regime)
findings_md = "\n".join([
f"- **{f['entity']}** (`{f['text']}`), score: {f.get('score', 0):.2f}"
for f in relevant
]) if relevant else "No relevant PII found for this regime."
fixes_md = "\n".join([f"- {fix}" for fix in fixes]) if fixes else "No action needed."
legend_md = score_legend()
redacted = redact_text(text, findings)
redacted_path = save_redacted_file(redacted)
redacted_file_path = None
redacted_image = None
if hasattr(doc, "name"):
fname = doc.name.lower()
if fname.endswith((".png", ".jpg", ".jpeg")):
redacted_file_path = redact_image_with_presidio(doc.name)
redacted_image = redacted_file_path
elif fname.endswith(".pdf"):
redacted_file_path = redact_pdf_with_presidio(doc.name)
redacted_image = None
md = f"""### Compliance Regime: **{regime}**
**Executive Summary:**
{exec_summary}
**Findings:**
{findings_md}
**Risk Score:** {score}
**Actionable Recommendations:**
{fixes_md}
**Summary:**
{summary}
---
{legend_md}
"""
return md.strip(), redacted_path, redacted_file_path, redacted_image
# ---- Gradio App UI: No previews ----
with gr.Blocks(title="Agentic Compliance MCP Server") as demo:
gr.Markdown("# Agentic Compliance MCP\nUpload a document to check it for PII then select a compliance regime.")
with gr.Tab("Compliance Agent"):
doc = gr.File(label="Upload Document", file_types=SUPPORTED_FILE_TYPES)
regime = gr.Dropdown(choices=list(COMPLIANCE_ENTITIES.keys()), label="Compliance Regime")
out = gr.Markdown(label="Compliance Output")
redacted_out = gr.File(label="Download Redacted Text")
file_redacted_out = gr.File(label="Download Redacted PDF/Image")
redacted_img = gr.Image(label="Redacted Image Preview")
gr.Button("Run Compliance Agent").click(
agentic_compliance,
inputs=[doc, regime],
outputs=[out, redacted_out, file_redacted_out, redacted_img]
)
demo.launch(mcp_server=True)
|