Spaces:
Running
Running
push
Browse files- .gitignore +146 -0
- asr.py +200 -0
- main.py +360 -0
- processing.py +123 -0
- pyproject.toml +14 -0
.gitignore
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# uv stuff
|
86 |
+
.python-version
|
87 |
+
uv.lock
|
88 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
89 |
+
__pypackages__/
|
90 |
+
|
91 |
+
# Celery stuff
|
92 |
+
celerybeat-schedule
|
93 |
+
celerybeat.pid
|
94 |
+
|
95 |
+
# SageMan stuff
|
96 |
+
*.sage.py
|
97 |
+
|
98 |
+
# Environments
|
99 |
+
.env
|
100 |
+
.venv
|
101 |
+
env/
|
102 |
+
venv/
|
103 |
+
ENV/
|
104 |
+
env.bak/
|
105 |
+
venv.bak/
|
106 |
+
|
107 |
+
# Spyder project settings
|
108 |
+
.spyderproject
|
109 |
+
.spyproject
|
110 |
+
|
111 |
+
# Rope project settings
|
112 |
+
.ropeproject
|
113 |
+
|
114 |
+
# mkdocs documentation
|
115 |
+
/site
|
116 |
+
|
117 |
+
# mypy
|
118 |
+
.mypy_cache/
|
119 |
+
.dmypy.json
|
120 |
+
dmypy.json
|
121 |
+
|
122 |
+
# Pyre type checker
|
123 |
+
.pyre/
|
124 |
+
|
125 |
+
# pytype static type analyzer
|
126 |
+
.pytype/
|
127 |
+
|
128 |
+
# Cython debug symbols
|
129 |
+
cython_debug/
|
130 |
+
|
131 |
+
|
132 |
+
# Project-specific ignores
|
133 |
+
# Modal deployment files
|
134 |
+
.modal/
|
135 |
+
modal_volumes/
|
136 |
+
|
137 |
+
# Gradio temporary files
|
138 |
+
gradio_cached_examples/
|
139 |
+
flagged/
|
140 |
+
|
141 |
+
# AI/ML artifacts
|
142 |
+
models/
|
143 |
+
data/
|
144 |
+
experiments/
|
145 |
+
wandb/
|
146 |
+
mlruns/
|
asr.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modal
|
2 |
+
import uuid
|
3 |
+
|
4 |
+
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
5 |
+
|
6 |
+
def download_model():
|
7 |
+
try:
|
8 |
+
import nemo.collections.asr as nemo_asr # type: ignore
|
9 |
+
nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
|
10 |
+
except ImportError:
|
11 |
+
pass
|
12 |
+
|
13 |
+
asr_image = (
|
14 |
+
modal.Image.debian_slim(python_version="3.12")
|
15 |
+
.apt_install("git", "ffmpeg")
|
16 |
+
.pip_install(
|
17 |
+
"torch",
|
18 |
+
"librosa",
|
19 |
+
"omegaconf",
|
20 |
+
"lightning",
|
21 |
+
"cuda-python>=12.3",
|
22 |
+
"git+https://github.com/NVIDIA/multi-storage-client.git",
|
23 |
+
"nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo@main",
|
24 |
+
extra_options="-U",
|
25 |
+
gpu="A10G",
|
26 |
+
)
|
27 |
+
.run_function(
|
28 |
+
download_model,
|
29 |
+
gpu="A10G",
|
30 |
+
)
|
31 |
+
)
|
32 |
+
|
33 |
+
with asr_image.imports():
|
34 |
+
import nemo.collections.asr as nemo_asr # type: ignore
|
35 |
+
from nemo.collections.asr.parts.submodules.rnnt_decoding import RNNTDecodingConfig # type: ignore
|
36 |
+
from nemo.collections.asr.parts.utils.streaming_utils import BatchedFrameASRTDT # type: ignore
|
37 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_rnnt # type: ignore
|
38 |
+
import math
|
39 |
+
import torch # type: ignore
|
40 |
+
from omegaconf import OmegaConf # type: ignore
|
41 |
+
import librosa # type: ignore
|
42 |
+
import os
|
43 |
+
|
44 |
+
app = modal.App(name="clipscript-asr-service")
|
45 |
+
|
46 |
+
# This must be the same volume object used in processing.py
|
47 |
+
upload_volume = modal.Volume.from_name(
|
48 |
+
"clipscript-uploads", create_if_missing=True
|
49 |
+
)
|
50 |
+
|
51 |
+
@app.cls(
|
52 |
+
image=asr_image,
|
53 |
+
gpu="A10G",
|
54 |
+
scaledown_window=600,
|
55 |
+
volumes={"/data": upload_volume}, # Mount the shared volume
|
56 |
+
)
|
57 |
+
class ASR:
|
58 |
+
@modal.enter()
|
59 |
+
def startup(self):
|
60 |
+
print("loading model...")
|
61 |
+
self.model = nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
|
62 |
+
print("model loaded.")
|
63 |
+
|
64 |
+
self.model.freeze()
|
65 |
+
torch.set_grad_enabled(False)
|
66 |
+
|
67 |
+
# Configure for buffered inference
|
68 |
+
model_cfg = self.model._cfg
|
69 |
+
OmegaConf.set_struct(model_cfg.preprocessor, False)
|
70 |
+
model_cfg.preprocessor.dither = 0.0
|
71 |
+
model_cfg.preprocessor.pad_to = 0
|
72 |
+
OmegaConf.set_struct(model_cfg.preprocessor, True)
|
73 |
+
|
74 |
+
# Setup decoding for TDT model
|
75 |
+
decoding_cfg = RNNTDecodingConfig()
|
76 |
+
decoding_cfg.strategy = "greedy" # TDT requires greedy
|
77 |
+
decoding_cfg.preserve_alignments = True
|
78 |
+
decoding_cfg.fused_batch_size = -1
|
79 |
+
|
80 |
+
if hasattr(self.model, 'change_decoding_strategy'):
|
81 |
+
self.model.change_decoding_strategy(decoding_cfg)
|
82 |
+
|
83 |
+
# Calculate timing parameters
|
84 |
+
self.feature_stride = model_cfg.preprocessor['window_stride']
|
85 |
+
self.model_stride = 4 # TDT model stride
|
86 |
+
self.model_stride_in_secs = self.feature_stride * self.model_stride
|
87 |
+
|
88 |
+
# Buffered inference parameters
|
89 |
+
self.chunk_len_in_secs = 15.0
|
90 |
+
self.total_buffer_in_secs = 20.0
|
91 |
+
self.batch_size = 64
|
92 |
+
self.max_steps_per_timestep = 15
|
93 |
+
|
94 |
+
# Calculate chunk parameters
|
95 |
+
self.tokens_per_chunk = math.ceil(self.chunk_len_in_secs / self.model_stride_in_secs)
|
96 |
+
|
97 |
+
print("ASR setup complete with buffered inference support.")
|
98 |
+
|
99 |
+
def _get_audio_duration(self, audio_path: str) -> float:
|
100 |
+
try:
|
101 |
+
duration = librosa.get_duration(path=audio_path)
|
102 |
+
return duration
|
103 |
+
except Exception:
|
104 |
+
# Fallback: estimate from file size (rough approximation)
|
105 |
+
file_size = os.path.getsize(audio_path)
|
106 |
+
# Rough estimate: 16kHz, 16-bit mono = ~32KB per second
|
107 |
+
return file_size / 32000
|
108 |
+
|
109 |
+
def _simple_transcribe(self, audio_path: str) -> str:
|
110 |
+
print("Using simple transcription...")
|
111 |
+
output = self.model.transcribe([audio_path])
|
112 |
+
|
113 |
+
if not output or not hasattr(output[0], "text"):
|
114 |
+
return ""
|
115 |
+
|
116 |
+
return output[0].text
|
117 |
+
|
118 |
+
def _buffered_transcribe(self, audio_path: str) -> str:
|
119 |
+
print("Using buffered transcription...")
|
120 |
+
|
121 |
+
# Setup TDT frame processor
|
122 |
+
frame_asr = BatchedFrameASRTDT(
|
123 |
+
asr_model=self.model,
|
124 |
+
frame_len=self.chunk_len_in_secs,
|
125 |
+
total_buffer=self.total_buffer_in_secs,
|
126 |
+
batch_size=self.batch_size,
|
127 |
+
max_steps_per_timestep=self.max_steps_per_timestep,
|
128 |
+
stateful_decoding=False,
|
129 |
+
)
|
130 |
+
|
131 |
+
# Calculate delay for TDT
|
132 |
+
mid_delay = math.ceil((self.chunk_len_in_secs + (self.total_buffer_in_secs - self.chunk_len_in_secs) / 2) / self.model_stride_in_secs)
|
133 |
+
|
134 |
+
# Process with buffered inference
|
135 |
+
hyps = get_buffered_pred_feat_rnnt(
|
136 |
+
asr=frame_asr,
|
137 |
+
tokens_per_chunk=self.tokens_per_chunk,
|
138 |
+
delay=mid_delay,
|
139 |
+
model_stride_in_secs=self.model_stride_in_secs,
|
140 |
+
batch_size=self.batch_size,
|
141 |
+
manifest=None,
|
142 |
+
filepaths=[audio_path],
|
143 |
+
accelerator='gpu',
|
144 |
+
)
|
145 |
+
|
146 |
+
# Extract transcription
|
147 |
+
if hyps and len(hyps) > 0:
|
148 |
+
return hyps[0].text
|
149 |
+
|
150 |
+
return ""
|
151 |
+
|
152 |
+
@modal.method()
|
153 |
+
def transcribe(self, audio_filename: str = None, audio_bytes: bytes = None, use_buffered: bool | None = None) -> dict[str, str]:
|
154 |
+
audio_path = None
|
155 |
+
temp_audio_path = None
|
156 |
+
try:
|
157 |
+
if audio_filename:
|
158 |
+
audio_path = f"/data/{audio_filename}"
|
159 |
+
elif audio_bytes:
|
160 |
+
# When bytes are passed, they must be written to a file for librosa/nemo to read.
|
161 |
+
temp_audio_path = f"/tmp/input_{uuid.uuid4()}.wav"
|
162 |
+
with open(temp_audio_path, "wb") as f:
|
163 |
+
f.write(audio_bytes)
|
164 |
+
audio_path = temp_audio_path
|
165 |
+
else:
|
166 |
+
raise ValueError("Either 'audio_filename' or 'audio_bytes' must be provided.")
|
167 |
+
|
168 |
+
if not os.path.exists(audio_path):
|
169 |
+
return {"text": "", "error": f"Audio file not found at path: {audio_path}"}
|
170 |
+
|
171 |
+
# Determine transcription method
|
172 |
+
if use_buffered is None:
|
173 |
+
duration = self._get_audio_duration(audio_path)
|
174 |
+
use_buffered = duration > 1800.0 # 30 minutes
|
175 |
+
print(f"Audio duration: {duration:.1f}s, using {'buffered' if use_buffered else 'simple'} transcription")
|
176 |
+
|
177 |
+
if use_buffered:
|
178 |
+
text = self._buffered_transcribe(audio_path)
|
179 |
+
else:
|
180 |
+
text = self._simple_transcribe(audio_path)
|
181 |
+
|
182 |
+
print("transcription complete.")
|
183 |
+
return {"text": text, "error": ""}
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Transcription error: {e}")
|
187 |
+
return {"text": "", "error": str(e)}
|
188 |
+
finally:
|
189 |
+
if temp_audio_path and os.path.exists(temp_audio_path):
|
190 |
+
os.remove(temp_audio_path)
|
191 |
+
|
192 |
+
@modal.method()
|
193 |
+
def transcribe_simple(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
|
194 |
+
"""Force simple transcription (for compatibility)"""
|
195 |
+
return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=False)
|
196 |
+
|
197 |
+
@modal.method()
|
198 |
+
def transcribe_buffered(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
|
199 |
+
"""Force buffered transcription"""
|
200 |
+
return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=True)
|
main.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import wraps
|
2 |
+
import logging
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
import modal
|
6 |
+
from openai import OpenAI
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
import uuid
|
11 |
+
import yt_dlp
|
12 |
+
import tempfile
|
13 |
+
import shutil
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
|
19 |
+
process_media_remotely = modal.Function.from_name("clipscript-processing-service", "process_media")
|
20 |
+
asr_handle = modal.Cls.from_name("clipscript-asr-service", "ASR")
|
21 |
+
upload_volume = modal.Volume.from_name("clipscript-uploads", create_if_missing=True)
|
22 |
+
|
23 |
+
|
24 |
+
llm = "deepseek/deepseek-r1-0528:free"
|
25 |
+
api_key = os.environ.get("OPENROUTER_API_KEY")
|
26 |
+
|
27 |
+
|
28 |
+
def retry_on_rate_limit(max_retries: int = 5, base_delay: float = 2.0):
|
29 |
+
"""Decorator for exponential backoff on rate limits"""
|
30 |
+
def decorator(func):
|
31 |
+
@wraps(func)
|
32 |
+
def wrapper(*args, **kwargs):
|
33 |
+
delay = base_delay
|
34 |
+
for attempt in range(max_retries):
|
35 |
+
try:
|
36 |
+
return func(*args, **kwargs)
|
37 |
+
except Exception as e:
|
38 |
+
# Check for 429 status code in different ways
|
39 |
+
status_code = getattr(getattr(e, 'response', None), 'status_code', None)
|
40 |
+
if status_code == 429 or '429' in str(e) or 'rate limit' in str(e).lower():
|
41 |
+
logging.warning(f"Rate limit hit. Retrying in {delay:.1f} seconds...")
|
42 |
+
time.sleep(delay)
|
43 |
+
delay *= 2
|
44 |
+
else:
|
45 |
+
raise
|
46 |
+
raise Exception("Max retries exceeded due to rate limits or other persistent errors.")
|
47 |
+
return wrapper
|
48 |
+
return decorator
|
49 |
+
|
50 |
+
|
51 |
+
def extract_youtube_video_id(url: str) -> str:
|
52 |
+
"""Extract YouTube video ID from various YouTube URL formats."""
|
53 |
+
patterns = [
|
54 |
+
r'(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/)([^&\n?#]+)',
|
55 |
+
r'youtube\.com\/watch\?.*v=([^&\n?#]+)'
|
56 |
+
]
|
57 |
+
|
58 |
+
for pattern in patterns:
|
59 |
+
match = re.search(pattern, url)
|
60 |
+
if match:
|
61 |
+
return match.group(1)
|
62 |
+
return None
|
63 |
+
|
64 |
+
def get_youtube_thumbnail_url(video_id: str) -> str:
|
65 |
+
"""Get the high quality thumbnail URL for a YouTube video."""
|
66 |
+
return f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg"
|
67 |
+
|
68 |
+
client = OpenAI(
|
69 |
+
base_url="https://openrouter.ai/api/v1",
|
70 |
+
api_key=api_key,
|
71 |
+
)
|
72 |
+
|
73 |
+
def download_and_convert_youtube_audio(url: str) -> str:
|
74 |
+
"""
|
75 |
+
Downloads audio from a YouTube URL and converts it to a 16kHz mono WAV file.
|
76 |
+
Uses a temporary directory for all intermediate files, ensuring cleanup.
|
77 |
+
Returns the path to the final temporary WAV file.
|
78 |
+
"""
|
79 |
+
temp_dir = tempfile.mkdtemp()
|
80 |
+
try:
|
81 |
+
output_tmpl = os.path.join(temp_dir, "audio.%(ext)s")
|
82 |
+
ydl_opts = {
|
83 |
+
"format": "bestaudio/best",
|
84 |
+
"outtmpl": output_tmpl,
|
85 |
+
"postprocessors": [{
|
86 |
+
'key': 'FFmpegExtractAudio',
|
87 |
+
'preferredcodec': 'wav',
|
88 |
+
}],
|
89 |
+
'postprocessor_args': {
|
90 |
+
'extractaudio': ['-ar', '16000', '-ac', '1']
|
91 |
+
},
|
92 |
+
"quiet": True,
|
93 |
+
}
|
94 |
+
|
95 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
96 |
+
ydl.download([url])
|
97 |
+
|
98 |
+
# Find the downloaded .wav file
|
99 |
+
downloaded_files = list(Path(temp_dir).glob("*.wav"))
|
100 |
+
if not downloaded_files:
|
101 |
+
raise FileNotFoundError("yt-dlp failed to create a WAV file. The video might be protected or unavailable.")
|
102 |
+
|
103 |
+
# Move the final file to a new temporary location so we can clean up the directory
|
104 |
+
source_path = downloaded_files[0]
|
105 |
+
fd, dest_path = tempfile.mkstemp(suffix=".wav")
|
106 |
+
os.close(fd)
|
107 |
+
shutil.move(source_path, dest_path)
|
108 |
+
|
109 |
+
return dest_path
|
110 |
+
finally:
|
111 |
+
shutil.rmtree(temp_dir)
|
112 |
+
|
113 |
+
def handle_transcription(file, url):
|
114 |
+
if not file and not (url and url.strip()):
|
115 |
+
gr.Warning("Please upload a file or enter a URL.")
|
116 |
+
return "Error: Please upload a file or enter a URL."
|
117 |
+
|
118 |
+
gr.Info("Starting secure transcription... This might take a moment.")
|
119 |
+
|
120 |
+
try:
|
121 |
+
result = None
|
122 |
+
if url and url.strip():
|
123 |
+
video_id = extract_youtube_video_id(url)
|
124 |
+
if video_id:
|
125 |
+
converted_wav_path = None
|
126 |
+
try:
|
127 |
+
print(f"Detected YouTube URL. Processing locally: {url}")
|
128 |
+
converted_wav_path = download_and_convert_youtube_audio(url)
|
129 |
+
|
130 |
+
# Read audio bytes and call ASR service
|
131 |
+
with open(converted_wav_path, "rb") as f:
|
132 |
+
audio_bytes = f.read()
|
133 |
+
|
134 |
+
print("Sending audio bytes to ASR service.")
|
135 |
+
result = asr_handle().transcribe.remote(audio_bytes=audio_bytes)
|
136 |
+
finally:
|
137 |
+
# Clean up the final temp file
|
138 |
+
if converted_wav_path and os.path.exists(converted_wav_path):
|
139 |
+
os.remove(converted_wav_path)
|
140 |
+
|
141 |
+
else:
|
142 |
+
# Process other URLs remotely and securely.
|
143 |
+
print(f"Sending URL to Modal for processing: {url}")
|
144 |
+
result = process_media_remotely.remote(url=url)
|
145 |
+
elif file is not None:
|
146 |
+
# For file uploads:
|
147 |
+
# 1. Generate a unique ID for the file.
|
148 |
+
upload_id = f"upload-{uuid.uuid4()}"
|
149 |
+
print(f"Uploading file to Modal volume with ID: {upload_id}")
|
150 |
+
|
151 |
+
# 2. Upload the local file to the remote volume
|
152 |
+
with upload_volume.batch_upload() as batch:
|
153 |
+
batch.put_file(file, upload_id)
|
154 |
+
|
155 |
+
# 3. Trigger remote processing by passing the upload ID.
|
156 |
+
print(f"Sending upload ID to Modal for processing: {upload_id}")
|
157 |
+
result = process_media_remotely.remote(upload_id=upload_id)
|
158 |
+
|
159 |
+
if result.get("error"):
|
160 |
+
return f"Error from ASR service: {result['error']}"
|
161 |
+
|
162 |
+
return result["text"]
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
print(f"An error occurred: {e}")
|
166 |
+
# It's good practice to remove the local temp file if it exists
|
167 |
+
if file and os.path.exists(file):
|
168 |
+
os.remove(file)
|
169 |
+
return f"Error: {str(e)}"
|
170 |
+
finally:
|
171 |
+
# Gradio's gr.File widget creates a temporary file. We should clean it up.
|
172 |
+
if file and os.path.exists(file):
|
173 |
+
os.remove(file)
|
174 |
+
|
175 |
+
def add_transcript_to_chat(transcript: str):
|
176 |
+
if transcript.startswith("Error"):
|
177 |
+
gr.Error("Transcription failed. Please check the logs.")
|
178 |
+
return []
|
179 |
+
gr.Info("Transcript ready! Generating blog post...")
|
180 |
+
# Return empty list for display but store transcript for LLM processing
|
181 |
+
return []
|
182 |
+
|
183 |
+
def user_chat(user_message: str, history: list):
|
184 |
+
return "", history + [{"role": "user", "content": user_message}]
|
185 |
+
|
186 |
+
@retry_on_rate_limit(max_retries=3, base_delay=1.0)
|
187 |
+
def _stream_chat_response(history: list, system_prompt: str, transcript: str = None):
|
188 |
+
if not history and not transcript:
|
189 |
+
# Don't do anything if there's no history and no transcript
|
190 |
+
return
|
191 |
+
|
192 |
+
if transcript.startswith("Error"):
|
193 |
+
return
|
194 |
+
# Include transcript as first user message if provided, but don't display it
|
195 |
+
messages = [{"role": "system", "content": system_prompt}]
|
196 |
+
if transcript:
|
197 |
+
messages.append({"role": "user", "content": transcript})
|
198 |
+
messages.extend(history)
|
199 |
+
|
200 |
+
stream = client.chat.completions.create(
|
201 |
+
model=llm,
|
202 |
+
messages=messages,
|
203 |
+
stream=True
|
204 |
+
)
|
205 |
+
|
206 |
+
history.append({"role": "assistant", "content": ""})
|
207 |
+
response_content = ""
|
208 |
+
for chunk in stream:
|
209 |
+
content = chunk.choices[0].delta.content
|
210 |
+
if content:
|
211 |
+
response_content += content
|
212 |
+
history[-1]["content"] = response_content
|
213 |
+
yield history
|
214 |
+
|
215 |
+
def generate_blog_post(history: list, transcript: str, context: str):
|
216 |
+
system_prompt = """You are an expert blog writer and editor. Your task is to transform a raw video transcription into a well-structured, engaging, and publish-ready blog post in Markdown format.
|
217 |
+
Core Mandate: Erase the Video Origin
|
218 |
+
This is a critical function. The reader must not know the content came from a video.
|
219 |
+
Eliminate all video-specific language: Remove phrases like "in this video," "thanks for watching," "as you can see here," "welcome to the channel," etc.
|
220 |
+
Scrub all platform calls-to-action: No "like and subscribe," "hit the bell icon," or "comment below."
|
221 |
+
Remove sponsor messages and ads: Completely omit any sponsor mentions.
|
222 |
+
Rephrase visual references: Convert "look at this screen" to a description of the information itself (e.g., "The data reveals that...").
|
223 |
+
Content & Formatting Rules:
|
224 |
+
Title: Create a compelling, SEO-friendly H1 title.
|
225 |
+
Structure: Use ## for main headings and ### for subheadings to create a logical flow.
|
226 |
+
Readability: Use short paragraphs, bulleted/numbered lists, and bolding for key terms.
|
227 |
+
Refine Prose: Convert conversational speech into clean, professional writing.
|
228 |
+
Remove all filler words (um, uh, like, you know).
|
229 |
+
Fix grammar and consolidate rambling sentences.
|
230 |
+
Flow: Start with a strong introduction and end with a concise summary or conclusion.
|
231 |
+
Your output must be a complete, polished article in Markdown."""
|
232 |
+
|
233 |
+
# Combine transcript with additional context if provided
|
234 |
+
full_transcript = transcript
|
235 |
+
if context and context.strip():
|
236 |
+
full_transcript = f"{transcript}\n\n--- Additional Context ---\n{context.strip()}\n\nThis is some additional context relevant to the transcription above."
|
237 |
+
|
238 |
+
yield from _stream_chat_response(history, system_prompt, full_transcript)
|
239 |
+
|
240 |
+
def bot_chat(history: list):
|
241 |
+
system_prompt = "You are a helpful assistant that helps refine a blog post created from an audio transcript. The user will provide instructions for changes and you will return only the updated blog post."
|
242 |
+
yield from _stream_chat_response(history, system_prompt)
|
243 |
+
|
244 |
+
def update_thumbnail_display(url: str):
|
245 |
+
"""Update the thumbnail display when YouTube URL is entered."""
|
246 |
+
if not url or not url.strip():
|
247 |
+
return gr.update(visible=False, value=None)
|
248 |
+
|
249 |
+
video_id = extract_youtube_video_id(url)
|
250 |
+
if video_id:
|
251 |
+
thumbnail_url = get_youtube_thumbnail_url(video_id)
|
252 |
+
return gr.update(visible=True, value=thumbnail_url)
|
253 |
+
else:
|
254 |
+
return gr.update(visible=False, value=None)
|
255 |
+
|
256 |
+
# Gradio Interface
|
257 |
+
theme = gr.themes.Ocean()
|
258 |
+
with gr.Blocks(title="ClipScript", theme=theme) as demo:
|
259 |
+
gr.Markdown("# 🎬➡️📝 ClipScript: Video-to-Blog Transformer", elem_classes="hero-title")
|
260 |
+
|
261 |
+
gr.Markdown("### Upload an audio file, or provide a YouTube/direct URL *of any size*.")
|
262 |
+
with gr.Row():
|
263 |
+
# Column 1: File input, URL input, and thumbnail
|
264 |
+
with gr.Column(scale=1):
|
265 |
+
file_input = gr.File(label="Upload any audio file", type="filepath", height=200, file_types=["audio", ".webm", ".mp3", ".mp4", ".m4a", ".ogg", ".wav"])
|
266 |
+
|
267 |
+
with gr.Row():
|
268 |
+
with gr.Column():
|
269 |
+
url_input = gr.Textbox(
|
270 |
+
label="YouTube(Recommended) or Direct Audio URL",
|
271 |
+
placeholder="youtube.com/watch?v=... OR xyz.com/audio.mp3",
|
272 |
+
scale=2
|
273 |
+
)
|
274 |
+
|
275 |
+
# YouTube thumbnail display
|
276 |
+
thumbnail_display = gr.Image(
|
277 |
+
label="Thumbnail",
|
278 |
+
visible=False,
|
279 |
+
height=100,
|
280 |
+
show_download_button=False,
|
281 |
+
interactive=False,
|
282 |
+
scale=2
|
283 |
+
)
|
284 |
+
|
285 |
+
# Column 2: Transcript view
|
286 |
+
with gr.Column(scale=2):
|
287 |
+
transcript_output = gr.Textbox(label="Transcription POWERED by Modal Labs", lines=12, interactive=True, show_copy_button=True)
|
288 |
+
|
289 |
+
transcribe_button = gr.Button("Blogify", variant="primary")
|
290 |
+
|
291 |
+
gr.Markdown("---")
|
292 |
+
|
293 |
+
# Add Context section
|
294 |
+
context_input = gr.Textbox(
|
295 |
+
label="Additional Context",
|
296 |
+
placeholder="Enter any additional context, code, articles, or any references that relate to the video content...",
|
297 |
+
lines=5,
|
298 |
+
interactive=True
|
299 |
+
)
|
300 |
+
|
301 |
+
chatbot = gr.Chatbot(
|
302 |
+
label="Blog Post", type="messages", height=500, show_copy_all_button=True, show_copy_button=True, show_share_button=True
|
303 |
+
)
|
304 |
+
chat_input = gr.Textbox(
|
305 |
+
label="Your message",
|
306 |
+
placeholder="Refine the blog post or ask for changes...",
|
307 |
+
container=False,
|
308 |
+
)
|
309 |
+
clear_button = gr.ClearButton([chat_input, chatbot])
|
310 |
+
|
311 |
+
|
312 |
+
# Event handlers to disable/enable inputs based on usage
|
313 |
+
def on_file_upload(file):
|
314 |
+
if file is not None:
|
315 |
+
return gr.update(interactive=False), gr.update(visible=False, value=None)
|
316 |
+
else:
|
317 |
+
return gr.update(interactive=True), gr.update(visible=False, value=None)
|
318 |
+
|
319 |
+
def on_url_change(url):
|
320 |
+
if url and url.strip():
|
321 |
+
thumbnail_update = update_thumbnail_display(url)
|
322 |
+
return gr.update(interactive=False), thumbnail_update
|
323 |
+
else:
|
324 |
+
return gr.update(interactive=True), gr.update(visible=False, value=None)
|
325 |
+
|
326 |
+
file_input.change(fn=on_file_upload, inputs=file_input, outputs=[url_input, thumbnail_display])
|
327 |
+
url_input.change(fn=on_url_change, inputs=url_input, outputs=[file_input, thumbnail_display])
|
328 |
+
|
329 |
+
# Chained events for blog generation
|
330 |
+
(
|
331 |
+
transcribe_button.click(
|
332 |
+
fn=handle_transcription,
|
333 |
+
inputs=[file_input, url_input],
|
334 |
+
outputs=transcript_output,
|
335 |
+
)
|
336 |
+
.then(
|
337 |
+
fn=lambda: gr.update(value=None, interactive=True),
|
338 |
+
outputs=file_input,
|
339 |
+
queue=False,
|
340 |
+
)
|
341 |
+
.then(
|
342 |
+
fn=add_transcript_to_chat,
|
343 |
+
inputs=transcript_output,
|
344 |
+
outputs=chatbot,
|
345 |
+
queue=False,
|
346 |
+
)
|
347 |
+
.then(fn=generate_blog_post, inputs=[chatbot, transcript_output, context_input], outputs=chatbot)
|
348 |
+
)
|
349 |
+
|
350 |
+
# Event handler for follow-up chat
|
351 |
+
chat_input.submit(
|
352 |
+
fn=user_chat,
|
353 |
+
inputs=[chat_input, chatbot],
|
354 |
+
outputs=[chat_input, chatbot],
|
355 |
+
queue=False,
|
356 |
+
).then(fn=bot_chat, inputs=chatbot, outputs=chatbot)
|
357 |
+
|
358 |
+
|
359 |
+
if __name__ == "__main__":
|
360 |
+
demo.launch()
|
processing.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modal
|
2 |
+
import uuid
|
3 |
+
|
4 |
+
sandbox_image = (
|
5 |
+
modal.Image.debian_slim()
|
6 |
+
.apt_install("ffmpeg")
|
7 |
+
)
|
8 |
+
|
9 |
+
app = modal.App(
|
10 |
+
"clipscript-processing-service",
|
11 |
+
)
|
12 |
+
|
13 |
+
asr_handle = modal.Cls.from_name("clipscript-asr-service", "ASR")
|
14 |
+
|
15 |
+
# A persistent, named volume to stage file uploads from the Gradio app.
|
16 |
+
upload_volume = modal.Volume.from_name(
|
17 |
+
"clipscript-uploads", create_if_missing=True
|
18 |
+
)
|
19 |
+
|
20 |
+
@app.function(
|
21 |
+
image=sandbox_image,
|
22 |
+
volumes={"/data": upload_volume},
|
23 |
+
cpu=2.0,
|
24 |
+
memory=4096,
|
25 |
+
timeout=7200,
|
26 |
+
retries=modal.Retries(
|
27 |
+
max_retries=3,
|
28 |
+
backoff_coefficient=2.0,
|
29 |
+
initial_delay=1.0,
|
30 |
+
),
|
31 |
+
)
|
32 |
+
def process_media(url: str = None, upload_id: str = None):
|
33 |
+
"""
|
34 |
+
Securely processes media from a URL or a file from the upload Volume using a Sandbox.
|
35 |
+
|
36 |
+
This function orchestrates a Sandbox to perform the download and conversion,
|
37 |
+
then passes the resulting audio bytes to the ASR service.
|
38 |
+
"""
|
39 |
+
output_filename = f"processed-{uuid.uuid4()}.wav"
|
40 |
+
output_wav_path_in_sandbox = f"/tmp/{output_filename}"
|
41 |
+
audio_bytes = None
|
42 |
+
|
43 |
+
sb = None
|
44 |
+
try:
|
45 |
+
volumes = {"/data": upload_volume} if upload_id else {}
|
46 |
+
|
47 |
+
sb = modal.Sandbox.create(
|
48 |
+
image=sandbox_image,
|
49 |
+
volumes=volumes,
|
50 |
+
)
|
51 |
+
|
52 |
+
cmd = []
|
53 |
+
if url:
|
54 |
+
print(f"Sandbox: Downloading and converting from non-YouTube URL: {url}")
|
55 |
+
cmd = [
|
56 |
+
'ffmpeg', '-i', url,
|
57 |
+
'-ar', '16000', '-ac', '1', '-y', output_wav_path_in_sandbox
|
58 |
+
]
|
59 |
+
elif upload_id:
|
60 |
+
print(f"Sandbox: Converting uploaded file: {upload_id}")
|
61 |
+
# Input path is on the mounted volume
|
62 |
+
uploaded_file_path_in_sandbox = f"/data/{upload_id}"
|
63 |
+
cmd = [
|
64 |
+
'ffmpeg', '-i', uploaded_file_path_in_sandbox,
|
65 |
+
'-ar', '16000', '-ac', '1', '-y', output_wav_path_in_sandbox
|
66 |
+
]
|
67 |
+
else:
|
68 |
+
raise ValueError("Either 'url' or 'upload_id' must be provided.")
|
69 |
+
|
70 |
+
print("Sandbox: Executing FFMPEG...")
|
71 |
+
p = sb.exec(*cmd)
|
72 |
+
p.wait()
|
73 |
+
|
74 |
+
if p.returncode != 0:
|
75 |
+
stderr = p.stderr.read()
|
76 |
+
raise RuntimeError(f"ffmpeg execution failed: {stderr}")
|
77 |
+
|
78 |
+
print("Sandbox: Process complete. Reading WAV data from sandbox's filesystem.")
|
79 |
+
|
80 |
+
# Read the file directly from the sandbox's filesystem.
|
81 |
+
with sb.open(output_wav_path_in_sandbox, "rb") as f:
|
82 |
+
audio_bytes = f.read()
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error during sandbox processing: {e}")
|
86 |
+
raise
|
87 |
+
finally:
|
88 |
+
if sb:
|
89 |
+
print("Terminating sandbox.")
|
90 |
+
sb.terminate()
|
91 |
+
|
92 |
+
if not audio_bytes:
|
93 |
+
raise RuntimeError("Processing failed to produce audio data.")
|
94 |
+
|
95 |
+
# If we processed a user upload, we can now clean up the original file.
|
96 |
+
if upload_id:
|
97 |
+
try:
|
98 |
+
print(f"Cleaning up original upload {upload_id} from volume.")
|
99 |
+
upload_volume.remove_file(upload_id)
|
100 |
+
upload_volume.commit()
|
101 |
+
except Exception as e:
|
102 |
+
# This is not a critical error, so we just warn.
|
103 |
+
print(f"Warning: Failed to clean up {upload_id} from volume: {e}")
|
104 |
+
|
105 |
+
print("Sending audio bytes to ASR service.")
|
106 |
+
|
107 |
+
# Retry ASR service call with exponential backoff
|
108 |
+
max_asr_retries = 3
|
109 |
+
result = None
|
110 |
+
for attempt in range(max_asr_retries):
|
111 |
+
try:
|
112 |
+
# Pass the audio bytes directly to the ASR service
|
113 |
+
result = asr_handle.transcribe.remote(audio_bytes=audio_bytes)
|
114 |
+
break
|
115 |
+
except Exception as e:
|
116 |
+
if attempt == max_asr_retries - 1:
|
117 |
+
raise e
|
118 |
+
wait_time = 2 ** attempt
|
119 |
+
print(f"ASR service attempt {attempt + 1} failed: {e}. Retrying in {wait_time}s...")
|
120 |
+
import time
|
121 |
+
time.sleep(wait_time)
|
122 |
+
|
123 |
+
return result
|
pyproject.toml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "clipscript"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.13"
|
7 |
+
dependencies = [
|
8 |
+
"gradio>=5.33.1",
|
9 |
+
"gradio-client>=1.10.3",
|
10 |
+
"modal>=1.0.3",
|
11 |
+
"openai>=1.86.0",
|
12 |
+
"python-dotenv>=1.1.0",
|
13 |
+
"yt-dlp>=2025.6.9",
|
14 |
+
]
|