from typing import List, Optional, Tuple, Union import torch from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.models.qwen2 import Qwen2ForCausalLM from .configuration_dots import DotsVisionConfig, DotsOCRConfig from .modeling_dots_vision import DotsVisionTransformer DOTS_VLM_MAX_IMAGES = 200 class DotsOCRForCausalLM(Qwen2ForCausalLM): config_class = DotsOCRConfig def __init__(self, config: DotsOCRConfig): super().__init__(config) if isinstance(self.config.vision_config, dict): vision_config = DotsVisionConfig(**self.config.vision_config) self.config.vision_config = vision_config else: vision_config = self.config.vision_config self.vision_tower = DotsVisionTransformer(vision_config) def prepare_inputs_embeds( self, input_ids: torch.LongTensor, pixel_values: Optional[torch.FloatTensor] = None, grid_thw: Optional[torch.FloatTensor] = None, img_mask: Optional[torch.BoolTensor] = None, ) -> torch.Tensor: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: assert img_mask is not None if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES: print( f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang" ) vision_embeddings = self.vision_tower(pixel_values, grid_thw) true_indices = torch.nonzero(img_mask).squeeze() if len(true_indices) > vision_embeddings.size(0): print( f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}" ) true_indices = true_indices[: vision_embeddings.size(0)] new_img_mask = torch.zeros_like(img_mask, device=img_mask.device) new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True else: new_img_mask = img_mask assert ( vision_embeddings.size(0) == new_img_mask.sum() ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}" inputs_embeds = inputs_embeds.masked_scatter( new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds), vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype), ) return inputs_embeds def forward( self, input_ids: torch.LongTensor, pixel_values: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, logits_to_keep: int = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan" if inputs_embeds is None: img_mask = input_ids == self.config.image_token_id inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask) outputs = super().forward( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, labels=labels, use_cache=use_cache if use_cache is not None else self.config.use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, # return_dict=return_dict, logits_to_keep=logits_to_keep, **loss_kwargs, ) return outputs def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, cache_position=None, num_logits_to_keep=None, **kwargs, ): model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, **kwargs, ) if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values return model_inputs