File size: 14,888 Bytes
e1cb4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from flash_attn import flash_attn_varlen_func
from torch.nn import LayerNorm
from transformers.modeling_utils import PreTrainedModel
from .configuration_dots import DotsVisionConfig


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()

    cos = freqs.cos()
    sin = freqs.sin()

    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()

    output = (tensor * cos) + (rotate_half(tensor) * sin)

    output = output.to(orig_dtype)

    return output


class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs


class PatchMerger(nn.Module):
    def __init__(
        self,
        dim: int,
        context_dim: int,
        spatial_merge_size: int = 2,
        pre_norm="layernorm",
        init_merger_std=None,
    ) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        self.pre_norm = pre_norm
        if self.pre_norm == "layernorm":
            self.ln_q = LayerNorm(context_dim, eps=1e-6)
        elif self.pre_norm == "rmsnorm":
            self.ln_q = RMSNorm(context_dim, eps=1e-6)
        else:
            print("no norm in patch merger")

        self.mlp = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, dim),
        )

        if init_merger_std is not None:
            nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
            nn.init.zeros_(self.mlp[0].bias)
            nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
            nn.init.zeros_(self.mlp[2].bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.pre_norm:
            x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
        else:
            x = self.mlp(x.view(-1, self.hidden_size))
        return x


class VisionAttention(nn.Module):
    def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=bias)
        self.proj = nn.Linear(dim, dim, bias=bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]

        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.full(
            [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
        )
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0

        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)
        attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
        attn_weights = attn_weights + attention_mask
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
        attn_output = torch.matmul(attn_weights, v)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output


class VisionFlashAttention2(nn.Module):
    def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=bias)
        self.proj = nn.Linear(dim, dim, bias=bias)
        self.config = config
        self.is_causal = config.is_causal

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = (
            self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        )  # 'shd'
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        attn_output = flash_attn_varlen_func(
            q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
        ).reshape(seq_length, -1)
        attn_output = self.proj(attn_output)

        return attn_output


class VisionSdpaAttention(nn.Module):
    def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=bias)
        self.proj = nn.Linear(dim, dim, bias=bias)
        self.config = config

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)

        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True

        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)

        attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)

        attn_output = self.proj(attn_output)
        return attn_output


DOTS_VISION_ATTENTION_CLASSES = {
    "eager": VisionAttention,
    "flash_attention_2": VisionFlashAttention2,
    "sdpa": VisionSdpaAttention,
}


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(dim))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self) -> str:
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

    def _norm(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)


class DotsSwiGLUFFN(nn.Module):
    def __init__(self, config):
        super().__init__()
        hidden_features = config.intermediate_size
        in_features = config.embed_dim
        bias = config.use_bias

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
        self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.fc1(x)) * self.fc3(x)
        x = self.fc2(x)
        return x



class DotsPatchEmbed(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_channels = config.num_channels
        self.patch_size = config.patch_size
        self.temporal_patch_size = config.temporal_patch_size
        self.embed_dim = config.embed_dim
        self.config = config
        self.proj = nn.Conv2d(
            config.num_channels,
            config.embed_dim,
            kernel_size=(config.patch_size, config.patch_size),
            stride=(config.patch_size, config.patch_size),
        )
        self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)

    def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
        x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0] 
        x = self.proj(x).view(-1, self.embed_dim)
        x = self.norm(x)
        return x


class DotsViTPreprocessor(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.patch_h = config.patch_size
        self.patch_w = config.patch_size
        self.embed_dim = config.embed_dim
        self.config = config
        self.patchifier = DotsPatchEmbed(config)

    def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
        tokens = self.patchifier(x, grid_thw)
        return tokens


class DotsVisionBlock(nn.Module):
    def __init__(self, config, attn_implementation: str = "flash_attention_2"):
        super().__init__()
        self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
            config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
        )
        self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
        self.mlp = DotsSwiGLUFFN(config)
        self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)

    def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
        )
        hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
        return hidden_states


class DotsVisionTransformer(PreTrainedModel):
    def __init__(self, config: DotsVisionConfig) -> None:
        super().__init__(config)
        self.config = config
        self.spatial_merge_size = config.spatial_merge_size

        self.patch_embed = DotsViTPreprocessor(config)
        self._init_weights(self.patch_embed.patchifier.proj)

        head_dim = config.embed_dim // config.num_attention_heads

        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

        _num_hidden_layers = config.num_hidden_layers
        self.blocks = nn.ModuleList(
            [DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
        )

        if self.config.post_norm:
            self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)

        self.merger = PatchMerger(
            dim=config.hidden_size,
            context_dim=config.embed_dim,
            spatial_merge_size=config.spatial_merge_size,
            init_merger_std=self.config.init_merger_std,
        )

        self.gradient_checkpointing = False
        self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv3d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def dtype(self) -> torch.dtype:
        return self.blocks[0].mlp.fc2.weight.dtype

    @property
    def device(self) -> torch.device:
        return self.blocks[0].mlp.fc2.weight.device

    def get_pos_ids_by_grid(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(
                torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
            )

        return pos_ids

    def rot_pos_emb(self, grid_thw):
        pos_ids = self.get_pos_ids_by_grid(grid_thw)
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
        if bf16:
            hidden_states = hidden_states.bfloat16()
        hidden_states = self.patch_embed(hidden_states, grid_thw)

        rotary_pos_emb = self.rot_pos_emb(grid_thw)

        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
            dim=0,
            dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for blk in self.blocks:
            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    blk.__call__,
                    hidden_states,
                    cu_seqlens,
                    rotary_pos_emb,
                )
            else:
                hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)

        if self.config.post_norm:
            hidden_states = self.post_trunk_norm(hidden_states)

        hidden_states = self.merger(hidden_states)
        return hidden_states