File size: 16,701 Bytes
e1cb4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
from functools import cached_property
from typing import Iterable, Literal, Mapping, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.nn as nn
from transformers.models.qwen2_vl import Qwen2VLImageProcessor, Qwen2VLProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from vllm import ModelRegistry
from vllm.config import VllmConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
from vllm.model_executor.models.qwen2_5_vl import (
Qwen2_5_VLMultiModalProcessor,
Qwen2_5_VLProcessingInfo,
)
from vllm.model_executor.models.qwen2_vl import Qwen2VLDummyInputsBuilder
from vllm.model_executor.models.utils import (
AutoWeightsLoader,
WeightsMapper,
init_vllm_registered_model,
maybe_prefix,
merge_multimodal_embeddings,
)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalDataDict
from vllm.multimodal.parse import ImageSize
from vllm.sequence import IntermediateTensors
from .configuration_dots import DotsVisionConfig
from .configuration_dots import DotsOCRConfig
from .modeling_dots_vision import DotsVisionTransformer
class DotsOCRImagePixelInputs(TypedDict):
type: Literal["pixel_values", "image_grid_thw"]
pixel_values: torch.Tensor
image_grid_thw: torch.Tensor
class DotsOCRImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds", "image_grid_thw"]
image_embeds: torch.Tensor
"""Supported types:
- List[`torch.Tensor`]: A list of tensors holding all images' features.
Each tensor holds an image's features.
- `torch.Tensor`: A tensor holding all images' features
(concatenation of all images' feature tensors).
Tensor shape: `(num_image_features, hidden_size)`
- `num_image_features` varies based on
the number and resolution of the images.
- `hidden_size` must match the hidden size of language model backbone.
"""
image_grid_thw: torch.Tensor
DotsOCRImageInputs = Union[DotsOCRImagePixelInputs, DotsOCRImageEmbeddingInputs]
class DotsOCRMultiModalProcessor(Qwen2_5_VLMultiModalProcessor):
pass
class DotsOCRDummyInputsBuilder(Qwen2VLDummyInputsBuilder):
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = self.info.get_image_size_with_most_features()
return {
"image": self._get_dummy_images(width=target_width, height=target_height, num_images=num_images),
}
class DotsOCRProcessingInfo(Qwen2_5_VLProcessingInfo):
def get_hf_config(self) -> DotsOCRConfig:
config = self.ctx.get_hf_config()
if not config.__class__.__name__ == 'DotsOCRConfig':
raise TypeError(f"Expected DotsOCRConfig, got {type(config)}")
if hasattr(config, "vision_config") and isinstance(config.vision_config, dict):
config.vision_config = DotsVisionConfig(**config.vision_config)
return config
def get_hf_processor(
self,
*,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None,
size: Optional[dict[str, int]] = None,
**kwargs: object,
) -> Qwen2VLProcessor:
processor = self.ctx.get_hf_processor(
Qwen2VLProcessor,
image_processor=self.get_image_processor(min_pixels=min_pixels, max_pixels=max_pixels, size=size),
**kwargs,
)
processor.image_token = "<|imgpad|>"
processor.video_token = "<|video_pad|>"
return processor
def _get_vision_info(
self,
*,
image_width: int,
image_height: int,
num_frames: int = 1,
do_resize: bool = True,
image_processor: Optional[Qwen2VLImageProcessor],
) -> tuple[ImageSize, int]:
if image_processor is None:
image_processor = self.get_image_processor()
hf_config: DotsOCRConfig = self.get_hf_config()
vision_config = hf_config.vision_config
patch_size = vision_config.patch_size
merge_size = vision_config.spatial_merge_size
temporal_patch_size = vision_config.temporal_patch_size
if do_resize:
resized_height, resized_width = smart_resize(
height=image_height,
width=image_width,
factor=patch_size * merge_size,
min_pixels=image_processor.min_pixels,
max_pixels=image_processor.max_pixels,
)
preprocessed_size = ImageSize(width=resized_width, height=resized_height)
else:
preprocessed_size = ImageSize(width=image_width, height=image_height)
# NOTE: Frames are padded to be divisible by `temporal_patch_size`
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
padded_num_frames = num_frames + num_frames % temporal_patch_size
grid_t = max(padded_num_frames // temporal_patch_size, 1)
grid_h = preprocessed_size.height // patch_size
grid_w = preprocessed_size.width // patch_size
num_patches = grid_t * grid_h * grid_w
num_vision_tokens = num_patches // (merge_size**2)
return preprocessed_size, num_vision_tokens
@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
info=DotsOCRProcessingInfo,
dummy_inputs=DotsOCRDummyInputsBuilder,
)
class DotsOCRForCausalLM(nn.Module, SupportsMultiModal):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
}
)
_tp_plan = {}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config: DotsOCRConfig = vllm_config.model_config.hf_config
self.quant_config = vllm_config.quant_config
self.multimodal_config = vllm_config.model_config.multimodal_config
if isinstance(self.config.vision_config, dict):
vision_config = DotsVisionConfig(**self.config.vision_config)
self.config.vision_config = vision_config
else:
vision_config = self.config.vision_config
self.vision_tower = DotsVisionTransformer(vision_config)
self.language_model: Qwen2ForCausalLM = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def _validate_and_reshape_mm_tensor(self, mm_input: object, name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. " f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
if mm_input.ndim == 2:
return mm_input
if mm_input.ndim != 3:
raise ValueError(
f"{name} should be 2D or batched 3D tensor. "
f"Got ndim: {mm_input.ndim} "
f"(shape={mm_input.shape})"
)
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_image_input(self, **kwargs: object) -> Optional[DotsOCRImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
pixel_values = self._validate_and_reshape_mm_tensor(pixel_values, "image pixel values")
image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of image pixel values. " f"Got type: {type(pixel_values)}")
return DotsOCRImagePixelInputs(
type="pixel_values", pixel_values=pixel_values, image_grid_thw=image_grid_thw
)
if image_embeds is not None:
image_embeds = self._validate_and_reshape_mm_tensor(image_embeds, "image embeds")
image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeddings. " f"Got type: {type(image_embeds)}")
return DotsOCRImageEmbeddingInputs(
type="image_embeds", image_embeds=image_embeds, image_grid_thw=image_grid_thw
)
def vision_forward(self, pixel_values: torch.Tensor, image_grid_thw: torch.Tensor):
from vllm.distributed import (
get_tensor_model_parallel_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
assert self.vision_tower is not None
tp_rank = get_tensor_model_parallel_rank()
tp = get_tensor_model_parallel_world_size()
image_grid_thw_chunk = image_grid_thw.chunk(tp)
image_sizes_consum = torch.tensor([i.prod(-1).sum() for i in image_grid_thw_chunk]).cumsum(dim=0)
merge_size_square = self.vision_tower.config.spatial_merge_size**2
image_embedding = torch.zeros(
(
pixel_values.shape[0] // merge_size_square,
self.vision_tower.config.hidden_size,
),
device=pixel_values.device,
dtype=pixel_values.dtype,
)
if tp_rank < len(image_sizes_consum):
idx_start = 0 if tp_rank == 0 else image_sizes_consum[tp_rank - 1].item()
idx_end = image_sizes_consum[tp_rank].item()
pixel_values_part = pixel_values[idx_start:idx_end]
image_grid_thw_part = image_grid_thw_chunk[tp_rank]
image_embedding_part = self.vision_tower(pixel_values_part, image_grid_thw_part)
image_embedding[idx_start // merge_size_square : idx_end // merge_size_square] = image_embedding_part
group = get_tensor_model_parallel_group().device_group
torch.distributed.all_reduce(image_embedding, group=group)
return image_embedding
def _process_image_input(self, image_input: DotsOCRImageInputs) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.vision_tower.dtype)
else:
pixel_values = image_input["pixel_values"].type(self.vision_tower.dtype)
image_embeds = self.vision_forward(pixel_values, grid_thw)[
:, : self.config.hidden_size
]
# Split concatenated embeddings for each image item.
merge_size = self.vision_tower.config.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return image_embeds.split(sizes.tolist())
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key in ("pixel_values", "image_embeds") and "images" not in modalities:
modalities["images"] = self._parse_and_validate_image_input(**kwargs)
return modalities
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return None
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
vision_embeddings = self._process_image_input(image_input)
multimodal_embeddings += vision_embeddings
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
multimodal_embeddings,
[self.config.image_token_id, self.config.video_token_id],
)
return inputs_embeds
def get_input_embeddings_v0(
self,
input_ids: torch.Tensor,
image_input: Optional[DotsOCRImagePixelInputs] = None,
) -> torch.Tensor:
inputs_embeds = self.get_input_embeddings(input_ids)
if image_input is not None:
image_embeds = self._process_image_input(image_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
image_embeds,
placeholder_token_id=self.config.image_token_id,
)
return inputs_embeds
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
inputs_embeds = None
elif inputs_embeds is None and kwargs.get("pixel_values") is not None:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
inputs_embeds = None
else:
assert input_ids is not None
inputs_embeds = self.get_input_embeddings_v0(
input_ids,
image_input=image_input,
)
input_ids = None
hidden_states = self.language_model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states, sampling_metadata)
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def patch_vllm_chat_placeholder():
from vllm.entrypoints.chat_utils import BaseMultiModalItemTracker
ori = BaseMultiModalItemTracker._placeholder_str
def _placeholder_str(self, modality, current_count: int) -> Optional[str]:
hf_config = self._model_config.hf_config
model_type = hf_config.model_type
if modality in ("image",) and model_type in ["dots_ocr"]:
return "<|img|><|imgpad|><|endofimg|>"
return ori(self, modality, current_count)
BaseMultiModalItemTracker._placeholder_str = _placeholder_str
ModelRegistry.register_model(
"DotsOCRForCausalLM", DotsOCRForCausalLM,
)
patch_vllm_chat_placeholder() |