import streamlit as st from PyPDF2 import PdfReader from langchain_text_splitters import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain_core.prompts import PromptTemplate from dotenv import load_dotenv load_dotenv() # Initialize session state if 'processed' not in st.session_state: st.session_state.processed = False genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) @st.cache_data def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text @st.cache_data def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500) chunks = text_splitter.split_text(text) return chunks @st.cache_data def get_vector_store(chunks): embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(chunks, embedding=embeddings) vector_store.save_local("faiss_index") @st.cache_resource def get_conversation_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.4) prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain=load_qa_chain(model,chain_type="stuff",prompt=prompt) return chain def process_pdfs(pdf_docs): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.session_state.processed = True return "PDFs processed successfully!" def user_input(user_question): embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001") new_db=FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True) docs=new_db.similarity_search(user_question) chain=get_conversation_chain() response=chain( {"input_documents":docs, "question":user_question}, return_only_outputs=True ) return response["output_text"] def main(): st.title("Chat with multiple PDFs") tab1, tab2 = st.tabs(["Upload PDFs", "Chat"]) with tab1: pdf_docs = st.file_uploader("Upload your PDF files", type=['pdf'], accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing PDFs..."): status = process_pdfs(pdf_docs) st.success(status) with tab2: if not st.session_state.processed: st.warning("Please upload and process PDFs first") else: user_question = st.text_input("Ask a question from the PDF files") if st.button("Submit"): with st.spinner("Generating response..."): response = user_input(user_question) st.write(response) if __name__=="__main__": main()