File size: 3,162 Bytes
7fbd2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c2712
 
7fbd2a1
 
 
 
 
c54815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fbd2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c2712
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
datasets:
- SilpaCS/Augmented_alzheimer
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Alzheimer
- Stage-Classifier
- SigLIP2
---

![7.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/DbRceG7t09MpZtO8yvc7z.png)

# **Alzheimer-Stage-Classifier**

> **Alzheimer-Stage-Classifier** is a multi-class image classification model based on `google/siglip2-base-patch16-224`, designed to identify stages of Alzheimer’s disease from medical imaging data. This tool can assist in **clinical decision support**, **early diagnosis**, and **disease progression tracking**.

```py
Classification Report:
                  precision    recall  f1-score   support

    MildDemented     0.9634    0.9860    0.9746      8960
ModerateDemented     1.0000    1.0000    1.0000      6464
     NonDemented     0.8920    0.8910    0.8915      9600
VeryMildDemented     0.8904    0.8704    0.8803      8960

        accuracy                         0.9314     33984
       macro avg     0.9364    0.9369    0.9366     33984
    weighted avg     0.9309    0.9314    0.9311     33984
```


![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ld3BJdyeNsZgVp6Hg8aHD.png)

---

## **Label Classes**

The model classifies input images into the following stages of Alzheimer’s disease:

```
0: MildDemented  
1: ModerateDemented  
2: NonDemented  
3: VeryMildDemented
```

---

## **Installation**

```bash
pip install transformers torch pillow gradio
```

---

## **Example Inference Code**

```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/Alzheimer-Stage-Classifier"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# ID to label mapping
id2label = {
    "0": "MildDemented",
    "1": "ModerateDemented",
    "2": "NonDemented",
    "3": "VeryMildDemented"
}

def classify_alzheimer_stage(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_alzheimer_stage,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=4, label="Alzheimer Stage"),
    title="Alzheimer-Stage-Classifier",
    description="Upload a brain scan image to classify the stage of Alzheimer's: NonDemented, VeryMildDemented, MildDemented, or ModerateDemented."
)

if __name__ == "__main__":
    iface.launch()
```

---

## **Applications**

* **Early Alzheimer’s Screening**
* **Clinical Diagnosis Support**
* **Longitudinal Study & Disease Monitoring**
* **Research on Cognitive Decline**