--- library_name: transformers tags: [] --- # pcuenq/Hunyuan-7B-Instruct-tokenizer This is a transformers fast tokenizer for [mlx-community/Hunyuan-7B-Instruct-3bit](https://huggingface.co/mlx-community/Hunyuan-7B-Instruct-3bit/blob/main/tokenizer_config.json) ## Conversion We used this code to convert the tokenizer from the original `tiktoken` format: ```py from huggingface_hub import snapshot_download from tokenization_hy import * from tokenizers import normalizers from transformers import PreTrainedTokenizerFast from transformers.convert_slow_tokenizer import TikTokenConverter snapshot_download( "mlx-community/Hunyuan-7B-Instruct-3bit", local_dir=".", allow_patterns=["hy.tiktoken", "tokenization_hy.py", "tokenizer_config.json", "special_tokens_map.json"] ) original = HYTokenizer.from_pretrained(".") converter = TikTokenConverter( vocab_file="hy.tiktoken", pattern=PAT_STR, additional_special_tokens=[t[1] for t in SPECIAL_TOKENS], ) converted = converter.converted() converted.normalizer = normalizers.NFC() t_fast = PreTrainedTokenizerFast( tokenizer_object=converted, model_input_names=original.model_input_names, model_max_length=256*1024, clean_up_tokenization_spaces=False, ) t_fast.chat_template = original.chat_template t_fast.push_to_hub("Hunyuan-7B-Instruct-tokenizer") ``` ## Verification ```py from datasets import load_dataset from tqdm import tqdm from tokenization_hy import HYTokenizer from transformers import AutoTokenizer original = HYTokenizer.from_pretrained("mlx-community/Hunyuan-7B-Instruct-3bit") t_fast = AutoTokenizer.from_pretrained("pcuenq/Hunyuan-7B-Instruct-tokenizer") # Testing on XNLI xnli = load_dataset("xnli", "all_languages", split="validation") def verify(lang, text): encoded_original = original.encode(text) encoded_fast = t_fast.encode(text) assert encoded_fast == encoded_original, f"Fast encode error: {lang} - {text}" decoded = original.decode(encoded_original) decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True) assert decoded_fast == decoded, f"Fast decode error: {lang} - {text}" for p in tqdm(xnli["premise"]): for lang, text in p.items(): verify(lang, text) # Testing on codeparrot subset ds = load_dataset("codeparrot/github-code", streaming=True, trust_remote_code=True, split="train") iterator = iter(ds) for _ in tqdm(range(1000)): item = next(iterator) code = item["code"] lang = item["language"] verify(lang, code) ```