new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.

Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products

Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.

Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON

Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications

The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in Equivariant Tensor Products

E(3)-equivariant neural networks have demonstrated success across a wide range of 3D modelling tasks. A fundamental operation in these networks is the tensor product, which interacts two geometric features in an equivariant manner to create new features. Due to the high computational complexity of the tensor product, significant effort has been invested to optimize the runtime of this operation. For example, Luo et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a significant speedup. In this work, we provide a careful, systematic analysis of a number of tensor product operations. In particular, we emphasize that different tensor products are not performing the same operation. The reported speedups typically come at the cost of expressivity. We introduce measures of expressivity and interactability to characterize these differences. In addition, we realized the original implementation of GTP can be greatly simplified by directly using a spherical grid at no cost in asymptotic runtime. This spherical grid approach is faster on our benchmarks and in actual training of the MACE interatomic potential by 30%. Finally, we provide the first systematic microbenchmarks of the various tensor product operations. We find that the theoretical runtime guarantees can differ wildly from empirical performance, demonstrating the need for careful application-specific benchmarking. Code is available at https://github.com/atomicarchitects/PriceofFreedom.

Lie Group Decompositions for Equivariant Neural Networks

Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.

SMASH: Sparse Matrix Atomic Scratchpad Hashing

Sparse matrices, more specifically SpGEMM kernels, are commonly found in a wide range of applications, spanning graph-based path-finding to machine learning algorithms (e.g., neural networks). A particular challenge in implementing SpGEMM kernels has been the pressure placed on DRAM memory. One approach to tackle this problem is to use an inner product method for the SpGEMM kernel implementation. While the inner product produces fewer intermediate results, it can end up saturating the memory bandwidth, given the high number of redundant fetches of the input matrix elements. Using an outer product-based SpGEMM kernel can reduce redundant fetches, but at the cost of increased overhead due to extra computation and memory accesses for producing/managing partial products. In this thesis, we introduce a novel SpGEMM kernel implementation based on the row-wise product approach. We leverage atomic instructions to merge intermediate partial products as they are generated. The use of atomic instructions eliminates the need to create partial product matrices. To evaluate our row-wise product approach, we map an optimized SpGEMM kernel to a custom accelerator designed to accelerate graph-based applications. The targeted accelerator is an experimental system named PIUMA, being developed by Intel. PIUMA provides several attractive features, including fast context switching, user-configurable caches, globally addressable memory, non-coherent caches, and asynchronous pipelines. We tailor our SpGEMM kernel to exploit many of the features of the PIUMA fabric. This thesis compares our SpGEMM implementation against prior solutions, all mapped to the PIUMA framework. We briefly describe some of the PIUMA architecture features and then delve into the details of our optimized SpGEMM kernel. Our SpGEMM kernel can achieve 9.4x speedup as compared to competing approaches.

Sheaf Neural Networks for Graph-based Recommender Systems

Recent progress in Graph Neural Networks has resulted in wide adoption by many applications, including recommendation systems. The reason for Graph Neural Networks' superiority over other approaches is that many problems in recommendation systems can be naturally modeled as graphs, where nodes can be either users or items and edges represent preference relationships. In current Graph Neural Network approaches, nodes are represented with a static vector learned at training time. This static vector might only be suitable to capture some of the nuances of users or items they define. To overcome this limitation, we propose using a recently proposed model inspired by category theory: Sheaf Neural Networks. Sheaf Neural Networks, and its connected Laplacian, can address the previous problem by associating every node (and edge) with a vector space instead than a single vector. The vector space representation is richer and allows picking the proper representation at inference time. This approach can be generalized for different related tasks on graphs and achieves state-of-the-art performance in terms of F1-Score@N in collaborative filtering and Hits@20 in link prediction. For collaborative filtering, the approach is evaluated on the MovieLens 100K with a 5.1% improvement, on MovieLens 1M with a 5.4% improvement and on Book-Crossing with a 2.8% improvement, while for link prediction on the ogbl-ddi dataset with a 1.6% refinement with respect to the respective baselines.

Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning

A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs

Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry

Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.

Spherical convolutions on molecular graphs for protein model quality assessment

Processing information on 3D objects requires methods stable to rigid-body transformations, in particular rotations, of the input data. In image processing tasks, convolutional neural networks achieve this property using rotation-equivariant operations. However, contrary to images, graphs generally have irregular topology. This makes it challenging to define a rotation-equivariant convolution operation on these structures. In this work, we propose Spherical Graph Convolutional Network (S-GCN) that processes 3D models of proteins represented as molecular graphs. In a protein molecule, individual amino acids have common topological elements. This allows us to unambiguously associate each amino acid with a local coordinate system and construct rotation-equivariant spherical filters that operate on angular information between graph nodes. Within the framework of the protein model quality assessment problem, we demonstrate that the proposed spherical convolution method significantly improves the quality of model assessment compared to the standard message-passing approach. It is also comparable to state-of-the-art methods, as we demonstrate on Critical Assessment of Structure Prediction (CASP) benchmarks. The proposed technique operates only on geometric features of protein 3D models. This makes it universal and applicable to any other geometric-learning task where the graph structure allows constructing local coordinate systems.

De novo protein design using geometric vector field networks

Innovations like protein diffusion have enabled significant progress in de novo protein design, which is a vital topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not exist. Most prior encoders rely on atom-wise features, such as angles and distances between atoms, which are not available in this context. Thus far, only several simple encoders, such as IPA, have been proposed for this scenario, exposing the frame modeling as a bottleneck. In this work, we proffer the Vector Field Network (VFN), which enables network layers to perform learnable vector computations between coordinates of frame-anchored virtual atoms, thus achieving a higher capability for modeling frames. The vector computation operates in a manner similar to a linear layer, with each input channel receiving 3D virtual atom coordinates instead of scalar values. The multiple feature vectors output by the vector computation are then used to update the residue representations and virtual atom coordinates via attention aggregation. Remarkably, VFN also excels in modeling both frames and atoms, as the real atoms can be treated as the virtual atoms for modeling, positioning VFN as a potential universal encoder. In protein diffusion (frame modeling), VFN exhibits an impressive performance advantage over IPA, excelling in terms of both designability (67.04% vs. 53.58%) and diversity (66.54% vs. 51.98%). In inverse folding (frame and atom modeling), VFN outperforms the previous SoTA model, PiFold (54.7% vs. 51.66%), on sequence recovery rate. We also propose a method of equipping VFN with the ESM model, which significantly surpasses the previous ESM-based SoTA (62.67% vs. 55.65%), LM-Design, by a substantial margin.

M-FAC: Efficient Matrix-Free Approximations of Second-Order Information

Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

Evolving Normalization-Activation Layers

Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.

Equiangular Basis Vectors

We propose Equiangular Basis Vectors (EBVs) for classification tasks. In deep neural networks, models usually end with a k-way fully connected layer with softmax to handle different classification tasks. The learning objective of these methods can be summarized as mapping the learned feature representations to the samples' label space. While in metric learning approaches, the main objective is to learn a transformation function that maps training data points from the original space to a new space where similar points are closer while dissimilar points become farther apart. Different from previous methods, our EBVs generate normalized vector embeddings as "predefined classifiers" which are required to not only be with the equal status between each other, but also be as orthogonal as possible. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. Various experiments on the ImageNet-1K dataset and other downstream tasks demonstrate that our method outperforms the general fully connected classifier while it does not introduce huge additional computation compared with classical metric learning methods. Our EBVs won the first place in the 2022 DIGIX Global AI Challenge, and our code is open-source and available at https://github.com/NJUST-VIPGroup/Equiangular-Basis-Vectors.

Text-to-Vector Generation with Neural Path Representation

Vector graphics are widely used in digital art and highly favored by designers due to their scalability and layer-wise properties. However, the process of creating and editing vector graphics requires creativity and design expertise, making it a time-consuming task. Recent advancements in text-to-vector (T2V) generation have aimed to make this process more accessible. However, existing T2V methods directly optimize control points of vector graphics paths, often resulting in intersecting or jagged paths due to the lack of geometry constraints. To overcome these limitations, we propose a novel neural path representation by designing a dual-branch Variational Autoencoder (VAE) that learns the path latent space from both sequence and image modalities. By optimizing the combination of neural paths, we can incorporate geometric constraints while preserving expressivity in generated SVGs. Furthermore, we introduce a two-stage path optimization method to improve the visual and topological quality of generated SVGs. In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics through the Variational Score Distillation (VSD) process. In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure. We demonstrate the effectiveness of our method through extensive experiments and showcase various applications. The project page is https://intchous.github.io/T2V-NPR.

Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?

Geometric deep learning, i.e., designing neural networks to handle the ubiquitous geometric data such as point clouds and graphs, have achieved great successes in the last decade. One critical inductive bias is that the model can maintain invariance towards various transformations such as translation, rotation, and scaling. The existing graph neural network (GNN) approaches can only maintain permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. To solve this problem, we revisit why the existing neural networks cannot maintain transformation invariance when handling geometric data. Our findings show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance rather than needing sophisticated neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNN), a straightforward and general framework for geometric data. Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling before feeding the representations into neural networks. We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and general applicability of our proposed method. Based on the experimental results, we advocate that TinvNN should be considered a new starting point and an essential baseline for further studies of transformation-invariant geometric deep learning.