Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRethinking Tabular Data Understanding with Large Language Models
Large Language Models (LLMs) have shown to be capable of various tasks, yet their capability in interpreting and reasoning over tabular data remains an underexplored area. In this context, this study investigates from three core perspectives: the robustness of LLMs to structural perturbations in tables, the comparative analysis of textual and symbolic reasoning on tables, and the potential of boosting model performance through the aggregation of multiple reasoning pathways. We discover that structural variance of tables presenting the same content reveals a notable performance decline, particularly in symbolic reasoning tasks. This prompts the proposal of a method for table structure normalization. Moreover, textual reasoning slightly edges out symbolic reasoning, and a detailed error analysis reveals that each exhibits different strengths depending on the specific tasks. Notably, the aggregation of textual and symbolic reasoning pathways, bolstered by a mix self-consistency mechanism, resulted in achieving SOTA performance, with an accuracy of 73.6% on WIKITABLEQUESTIONS, representing a substantial advancement over previous existing table processing paradigms of LLMs.
TableFormer: Table Structure Understanding with Transformers
Tables organize valuable content in a concise and compact representation. This content is extremely valuable for systems such as search engines, Knowledge Graph's, etc, since they enhance their predictive capabilities. Unfortunately, tables come in a large variety of shapes and sizes. Furthermore, they can have complex column/row-header configurations, multiline rows, different variety of separation lines, missing entries, etc. As such, the correct identification of the table-structure from an image is a non-trivial task. In this paper, we present a new table-structure identification model. The latter improves the latest end-to-end deep learning model (i.e. encoder-dual-decoder from PubTabNet) in two significant ways. First, we introduce a new object detection decoder for table-cells. In this way, we can obtain the content of the table-cells from programmatic PDF's directly from the PDF source and avoid the training of the custom OCR decoders. This architectural change leads to more accurate table-content extraction and allows us to tackle non-english tables. Second, we replace the LSTM decoders with transformer based decoders. This upgrade improves significantly the previous state-of-the-art tree-editing-distance-score (TEDS) from 91% to 98.5% on simple tables and from 88.7% to 95% on complex tables.
OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering
The information in tables can be an important complement to text, making table-based question answering (QA) systems of great value. The intrinsic complexity of handling tables often adds an extra burden to both model design and data annotation. In this paper, we aim to develop a simple table-based QA model with minimal annotation effort. Motivated by the fact that table-based QA requires both alignment between questions and tables and the ability to perform complicated reasoning over multiple table elements, we propose an omnivorous pretraining approach that consumes both natural and synthetic data to endow models with these respective abilities. Specifically, given freely available tables, we leverage retrieval to pair them with relevant natural sentences for mask-based pretraining, and synthesize NL questions by converting SQL sampled from tables for pretraining with a QA loss. We perform extensive experiments in both few-shot and full settings, and the results clearly demonstrate the superiority of our model OmniTab, with the best multitasking approach achieving an absolute gain of 16.2% and 2.7% in 128-shot and full settings respectively, also establishing a new state-of-the-art on WikiTableQuestions. Detailed ablations and analyses reveal different characteristics of natural and synthetic data, shedding light on future directions in omnivorous pretraining. Code, pretraining data, and pretrained models are available at https://github.com/jzbjyb/OmniTab.
TransTab: Learning Transferable Tabular Transformers Across Tables
Tabular data (or tables) are the most widely used data format in machine learning (ML). However, ML models often assume the table structure keeps fixed in training and testing. Before ML modeling, heavy data cleaning is required to merge disparate tables with different columns. This preprocessing often incurs significant data waste (e.g., removing unmatched columns and samples). How to learn ML models from multiple tables with partially overlapping columns? How to incrementally update ML models as more columns become available over time? Can we leverage model pretraining on multiple distinct tables? How to train an ML model which can predict on an unseen table? To answer all those questions, we propose to relax fixed table structures by introducing a Transferable Tabular Transformer (TransTab) for tables. The goal of TransTab is to convert each sample (a row in the table) to a generalizable embedding vector, and then apply stacked transformers for feature encoding. One methodology insight is combining column description and table cells as the raw input to a gated transformer model. The other insight is to introduce supervised and self-supervised pretraining to improve model performance. We compare TransTab with multiple baseline methods on diverse benchmark datasets and five oncology clinical trial datasets. Overall, TransTab ranks 1.00, 1.00, 1.78 out of 12 methods in supervised learning, feature incremental learning, and transfer learning scenarios, respectively; and the proposed pretraining leads to 2.3% AUC lift on average over the supervised learning.
TabSim: A Siamese Neural Network for Accurate Estimation of Table Similarity
Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables' semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.
Data augmentation on graphs for table type classification
Tables are widely used in documents because of their compact and structured representation of information. In particular, in scientific papers, tables can sum up novel discoveries and summarize experimental results, making the research comparable and easily understandable by scholars. Since the layout of tables is highly variable, it would be useful to interpret their content and classify them into categories. This could be helpful to directly extract information from scientific papers, for instance comparing performance of some models given their paper result tables. In this work, we address the classification of tables using a Graph Neural Network, exploiting the table structure for the message passing algorithm in use. We evaluate our model on a subset of the Tab2Know dataset. Since it contains few examples manually annotated, we propose data augmentation techniques directly on the table graph structures. We achieve promising preliminary results, proposing a data augmentation method suitable for graph-based table representation.
Testing the Limits of Unified Sequence to Sequence LLM Pretraining on Diverse Table Data Tasks
Tables stored in databases and tables which are present in web pages and articles account for a large part of semi-structured data that is available on the internet. It then becomes pertinent to develop a modeling approach with large language models (LLMs) that can be used to solve diverse table tasks such as semantic parsing, question answering as well as classification problems. Traditionally, there existed separate models specialized for each task individually. It raises the question of how far can we go to build a unified model that works well on some table tasks without significant degradation on others. To that end, we attempt at creating a shared modeling approach in the pretraining stage with encoder-decoder style LLMs that can cater to diverse tasks. We evaluate our approach that continually pretrains and finetunes different model families of T5 with data from tables and surrounding context, on these downstream tasks at different model scales. Through multiple ablation studies, we observe that our pretraining with self-supervised objectives can significantly boost the performance of the models on these tasks. As an example of one improvement, we observe that the instruction finetuned public models which come specialized on text question answering (QA) and have been trained on table data still have room for improvement when it comes to table specific QA. Our work is the first attempt at studying the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models while also comparing the instruction finetuned variants of the models.
TableFormer: Robust Transformer Modeling for Table-Text Encoding
Understanding tables is an important aspect of natural language understanding. Existing models for table understanding require linearization of the table structure, where row or column order is encoded as an unwanted bias. Such spurious biases make the model vulnerable to row and column order perturbations. Additionally, prior work has not thoroughly modeled the table structures or table-text alignments, hindering the table-text understanding ability. In this work, we propose a robust and structurally aware table-text encoding architecture TableFormer, where tabular structural biases are incorporated completely through learnable attention biases. TableFormer is (1) strictly invariant to row and column orders, and, (2) could understand tables better due to its tabular inductive biases. Our evaluations showed that TableFormer outperforms strong baselines in all settings on SQA, WTQ and TabFact table reasoning datasets, and achieves state-of-the-art performance on SQA, especially when facing answer-invariant row and column order perturbations (6% improvement over the best baseline), because previous SOTA models' performance drops by 4% - 6% when facing such perturbations while TableFormer is not affected.
Observatory: Characterizing Embeddings of Relational Tables
Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.
SynFinTabs: A Dataset of Synthetic Financial Tables for Information and Table Extraction
Table extraction from document images is a challenging AI problem, and labelled data for many content domains is difficult to come by. Existing table extraction datasets often focus on scientific tables due to the vast amount of academic articles that are readily available, along with their source code. However, there are significant layout and typographical differences between tables found across scientific, financial, and other domains. Current datasets often lack the words, and their positions, contained within the tables, instead relying on unreliable OCR to extract these features for training modern machine learning models on natural language processing tasks. Therefore, there is a need for a more general method of obtaining labelled data. We present SynFinTabs, a large-scale, labelled dataset of synthetic financial tables. Our hope is that our method of generating these synthetic tables is transferable to other domains. To demonstrate the effectiveness of our dataset in training models to extract information from table images, we create FinTabQA, a layout large language model trained on an extractive question-answering task. We test our model using real-world financial tables and compare it to a state-of-the-art generative model and discuss the results. We make the dataset, model, and dataset generation code publicly available.
STable: Table Generation Framework for Encoder-Decoder Models
The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks. Following this constatation, we propose a framework for text-to-table neural models applicable to problems such as extraction of line items, joint entity and relation extraction, or knowledge base population. The permutation-based decoder of our proposal is a generalized sequential method that comprehends information from all cells in the table. The training maximizes the expected log-likelihood for a table's content across all random permutations of the factorization order. During the content inference, we exploit the model's ability to generate cells in any order by searching over possible orderings to maximize the model's confidence and avoid substantial error accumulation, which other sequential models are prone to. Experiments demonstrate a high practical value of the framework, which establishes state-of-the-art results on several challenging datasets, outperforming previous solutions by up to 15%.
PubTables-1M: Towards comprehensive table extraction from unstructured documents
Recently, significant progress has been made applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, one of the greatest challenges remains the creation of datasets with complete, unambiguous ground truth at scale. To address this, we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches. It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks. Data and code will be released at https://github.com/microsoft/table-transformer.
MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 30K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI o4-mini and DeepSeek R1 score only around 60%, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.
UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science
Recent advancements in NLP have witnessed the groundbreaking impact of pretrained models, yielding impressive outcomes across various tasks. This study seeks to extend the power of pretraining methodologies to facilitating the prediction over tables in data science, a domain traditionally overlooked, yet inherently challenging due to the plethora of table schemas intrinsic to different tasks. The primary research questions underpinning this work revolve around the establishment of a universal pretraining protocol for tables with varied structures, the generalizability and transferability of learned knowledge across tasks, the adaptation to diverse downstream applications, and the incorporation of incremental columns over time. In response to these challenges, we introduce UniTabE, a straightforward yet effective method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures. UniTabE's core concept relies on representing each basic table element with a module, termed TabUnit. This is subsequently followed by a Transformer encoder to refine the representation. Moreover, our model is designed to facilitate pretraining and finetuning through the utilization of free-form prompts. In order to implement the pretraining phase, we curated an expansive tabular dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform. This research primarily centers on classification and regression tasks involving tabular data, and conducts rigorous experimental testing and analyses to validate the effectiveness of our methodology. The experimental results demonstrate UniTabE's superior performance against several baselines across massive benchmarks. This, therefore, underscores UniTabE's potential to significantly enhance the semantic representation of tabular data, thereby marking a significant stride for tabular data analysis.
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
When conducting literature reviews, scientists often create literature review tables - tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs' abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.
Table Understanding and (Multimodal) LLMs: A Cross-Domain Case Study on Scientific vs. Non-Scientific Data
Tables are among the most widely used tools for representing structured data in research, business, medicine, and education. Although LLMs demonstrate strong performance in downstream tasks, their efficiency in processing tabular data remains underexplored. In this paper, we investigate the effectiveness of both text-based and multimodal LLMs on table understanding tasks through a cross-domain and cross-modality evaluation. Specifically, we compare their performance on tables from scientific vs. non-scientific contexts and examine their robustness on tables represented as images vs. text. Additionally, we conduct an interpretability analysis to measure context usage and input relevance. We also introduce the TableEval benchmark, comprising 3017 tables from scholarly publications, Wikipedia, and financial reports, where each table is provided in five different formats: Image, Dictionary, HTML, XML, and LaTeX. Our findings indicate that while LLMs maintain robustness across table modalities, they face significant challenges when processing scientific tables.
Multimodal Table Understanding
Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings. The code and data is available at this https://github.com/SpursGoZmy/Table-LLaVA
Graph Neural Networks and Representation Embedding for Table Extraction in PDF Documents
Tables are widely used in several types of documents since they can bring important information in a structured way. In scientific papers, tables can sum up novel discoveries and summarize experimental results, making the research comparable and easily understandable by scholars. Several methods perform table analysis working on document images, losing useful information during the conversion from the PDF files since OCR tools can be prone to recognition errors, in particular for text inside tables. The main contribution of this work is to tackle the problem of table extraction, exploiting Graph Neural Networks. Node features are enriched with suitably designed representation embeddings. These representations help to better distinguish not only tables from the other parts of the paper, but also table cells from table headers. We experimentally evaluated the proposed approach on a new dataset obtained by merging the information provided in the PubLayNet and PubTables-1M datasets.
Image-based table recognition: data, model, and evaluation
Important information that relates to a specific topic in a document is often organized in tabular format to assist readers with information retrieval and comparison, which may be difficult to provide in natural language. However, tabular data in unstructured digital documents, e.g., Portable Document Format (PDF) and images, are difficult to parse into structured machine-readable format, due to complexity and diversity in their structure and style. To facilitate image-based table recognition with deep learning, we develop the largest publicly available table recognition dataset PubTabNet (https://github.com/ibm-aur-nlp/PubTabNet), containing 568k table images with corresponding structured HTML representation. PubTabNet is automatically generated by matching the XML and PDF representations of the scientific articles in PubMed Central Open Access Subset (PMCOA). We also propose a novel attention-based encoder-dual-decoder (EDD) architecture that converts images of tables into HTML code. The model has a structure decoder which reconstructs the table structure and helps the cell decoder to recognize cell content. In addition, we propose a new Tree-Edit-Distance-based Similarity (TEDS) metric for table recognition, which more appropriately captures multi-hop cell misalignment and OCR errors than the pre-established metric. The experiments demonstrate that the EDD model can accurately recognize complex tables solely relying on the image representation, outperforming the state-of-the-art by 9.7% absolute TEDS score.
GitTables: A Large-Scale Corpus of Relational Tables
The success of deep learning has sparked interest in improving relational table tasks, like data preparation and search, with table representation models trained on large table corpora. Existing table corpora primarily contain tables extracted from HTML pages, limiting the capability to represent offline database tables. To train and evaluate high-capacity models for applications beyond the Web, we need resources with tables that resemble relational database tables. Here we introduce GitTables, a corpus of 1M relational tables extracted from GitHub. Our continuing curation aims at growing the corpus to at least 10M tables. Analyses of GitTables show that its structure, content, and topical coverage differ significantly from existing table corpora. We annotate table columns in GitTables with semantic types, hierarchical relations and descriptions from Schema.org and DBpedia. The evaluation of our annotation pipeline on the T2Dv2 benchmark illustrates that our approach provides results on par with human annotations. We present three applications of GitTables, demonstrating its value for learned semantic type detection models, schema completion methods, and benchmarks for table-to-KG matching, data search, and preparation. We make the corpus and code available at https://gittables.github.io.
WikiTableEdit: A Benchmark for Table Editing by Natural Language Instruction
Tabular data, as a crucial form of data representation, exists in diverse formats on the Web. When confronted with complex and irregular tables, manual modification becomes a laborious task. This paper investigates the performance of Large Language Models (LLMs) in the context of table editing tasks. Existing research mainly focuses on regular-shaped tables, wherein instructions are used to generate code in SQL, Python, or Excel Office-script for manipulating the tables. Nevertheless, editing tables with irregular structures, particularly those containing merged cells spanning multiple rows, poses a challenge when using code. To address this, we introduce the WikiTableEdit dataset. Leveraging 26,531 tables from the WikiSQL dataset, we automatically generate natural language instructions for six distinct basic operations and the corresponding outcomes, resulting in over 200,000 instances. Subsequently, we evaluate several representative large language models on the WikiTableEdit dataset to demonstrate the challenge of this task. The dataset will be released to the community to promote related researches.
Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey
Recent breakthroughs in large language modeling have facilitated rigorous exploration of their application in diverse tasks related to tabular data modeling, such as prediction, tabular data synthesis, question answering, and table understanding. Each task presents unique challenges and opportunities. However, there is currently a lack of comprehensive review that summarizes and compares the key techniques, metrics, datasets, models, and optimization approaches in this research domain. This survey aims to address this gap by consolidating recent progress in these areas, offering a thorough survey and taxonomy of the datasets, metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territories, and gaps in the existing literature, while providing some insights for future research directions in this vital and rapidly evolving field. It also provides relevant code and datasets references. Through this comprehensive review, we hope to provide interested readers with pertinent references and insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and address the prevailing challenges in the field.
Content Enhanced BERT-based Text-to-SQL Generation
We present a simple methods to leverage the table content for the BERT-based model to solve the text-to-SQL problem. Based on the observation that some of the table content match some words in question string and some of the table header also match some words in question string, we encode two addition feature vector for the deep model. Our methods also benefit the model inference in testing time as the tables are almost the same in training and testing time. We test our model on the WikiSQL dataset and outperform the BERT-based baseline by 3.7% in logic form and 3.7% in execution accuracy and achieve state-of-the-art.
Schema-Driven Information Extraction from Heterogeneous Tables
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
Synthesizing Realistic Data for Table Recognition
To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells.
Optimized Table Tokenization for Table Structure Recognition
Extracting tables from documents is a crucial task in any document conversion pipeline. Recently, transformer-based models have demonstrated that table-structure can be recognized with impressive accuracy using Image-to-Markup-Sequence (Im2Seq) approaches. Taking only the image of a table, such models predict a sequence of tokens (e.g. in HTML, LaTeX) which represent the structure of the table. Since the token representation of the table structure has a significant impact on the accuracy and run-time performance of any Im2Seq model, we investigate in this paper how table-structure representation can be optimised. We propose a new, optimised table-structure language (OTSL) with a minimized vocabulary and specific rules. The benefits of OTSL are that it reduces the number of tokens to 5 (HTML needs 28+) and shortens the sequence length to half of HTML on average. Consequently, model accuracy improves significantly, inference time is halved compared to HTML-based models, and the predicted table structures are always syntactically correct. This in turn eliminates most post-processing needs.
TableBench: A Comprehensive and Complex Benchmark for Table Question Answering
Recent advancements in Large Language Models (LLMs) have markedly enhanced the interpretation and processing of tabular data, introducing previously unimaginable capabilities. Despite these achievements, LLMs still encounter significant challenges when applied in industrial scenarios, particularly due to the increased complexity of reasoning required with real-world tabular data, underscoring a notable disparity between academic benchmarks and practical applications. To address this discrepancy, we conduct a detailed investigation into the application of tabular data in industrial scenarios and propose a comprehensive and complex benchmark TableBench, including 18 fields within four major categories of table question answering (TableQA) capabilities. Furthermore, we introduce TableLLM, trained on our meticulously constructed training set TableInstruct, achieving comparable performance with GPT-3.5. Massive experiments conducted on TableBench indicate that both open-source and proprietary LLMs still have significant room for improvement to meet real-world demands, where the most advanced model, GPT-4, achieves only a modest score compared to humans.
Aligning benchmark datasets for table structure recognition
Benchmark datasets for table structure recognition (TSR) must be carefully processed to ensure they are annotated consistently. However, even if a dataset's annotations are self-consistent, there may be significant inconsistency across datasets, which can harm the performance of models trained and evaluated on them. In this work, we show that aligning these benchmarksx2014removing both errors and inconsistency between themx2014improves model performance significantly. We demonstrate this through a data-centric approach where we adopt a single model architecture, the Table Transformer (TATR), that we hold fixed throughout. Baseline exact match accuracy for TATR evaluated on the ICDAR-2013 benchmark is 65% when trained on PubTables-1M, 42% when trained on FinTabNet, and 69% combined. After reducing annotation mistakes and inter-dataset inconsistency, performance of TATR evaluated on ICDAR-2013 increases substantially to 75% when trained on PubTables-1M, 65% when trained on FinTabNet, and 81% combined. We show through ablations over the modification steps that canonicalization of the table annotations has a significantly positive effect on performance, while other choices balance necessary trade-offs that arise when deciding a benchmark dataset's final composition. Overall we believe our work has significant implications for benchmark design for TSR and potentially other tasks as well. All dataset processing and training code will be released.
MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering
Recent advances in tabular question answering (QA) with large language models are constrained in their coverage and only answer questions over a single table. However, real-world queries are complex in nature, often over multiple tables in a relational database or web page. Single table questions do not involve common table operations such as set operations, Cartesian products (joins), or nested queries. Furthermore, multi-table operations often result in a tabular output, which necessitates table generation capabilities of tabular QA models. To fill this gap, we propose a new task of answering questions over multiple tables. Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers. To enable effective training, we build a pre-training dataset comprising of 132,645 SQL queries and tabular answers. Further, we evaluate the generated tables by introducing table-specific metrics of varying strictness assessing various levels of granularity of the table structure. MultiTabQA outperforms state-of-the-art single table QA models adapted to a multi-table QA setting by finetuning on three datasets: Spider, Atis and GeoQuery.
TableBank: A Benchmark Dataset for Table Detection and Recognition
We present TableBank, a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on the internet. Existing research for image-based table detection and recognition usually fine-tunes pre-trained models on out-of-domain data with a few thousand human-labeled examples, which is difficult to generalize on real-world applications. With TableBank that contains 417K high quality labeled tables, we build several strong baselines using state-of-the-art models with deep neural networks. We make TableBank publicly available and hope it will empower more deep learning approaches in the table detection and recognition task. The dataset and models are available at https://github.com/doc-analysis/TableBank.
TableRAG: Million-Token Table Understanding with Language Models
Recent advancements in language models (LMs) have notably enhanced their ability to reason with tabular data, primarily through program-aided mechanisms that manipulate and analyze tables. However, these methods often require the entire table as input, leading to scalability challenges due to the positional bias or context length constraints. In response to these challenges, we introduce TableRAG, a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding. TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs. This enables more efficient data encoding and precise retrieval, significantly reducing prompt lengths and mitigating information loss. We have developed two new million-token benchmarks from the Arcade and BIRD-SQL datasets to thoroughly evaluate TableRAG's effectiveness at scale. Our results demonstrate that TableRAG's retrieval design achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
CABINET: Content Relevance based Noise Reduction for Table Question Answering
Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at https://github.com/Sohanpatnaik106/CABINET_QA.
Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports
With recent advancements in Large Language Models (LLMs) and growing interest in retrieval-augmented generation (RAG), the ability to understand table structures has become increasingly important. This is especially critical in financial domains such as securities reports, where highly accurate question answering (QA) over tables is required. However, tables exist in various formats-including HTML, images, and plain text-making it difficult to preserve and extract structural information. Therefore, multimodal LLMs are essential for robust and general-purpose table understanding. Despite their promise, current Large Vision-Language Models (LVLMs), which are major representatives of multimodal LLMs, still face challenges in accurately understanding characters and their spatial relationships within documents. In this study, we propose a method to enhance LVLM-based table understanding by incorporating in-table textual content and layout features. Experimental results demonstrate that these auxiliary modalities significantly improve performance, enabling robust interpretation of complex document layouts without relying on explicitly structured input formats.
DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models
Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.
DeepJoin: Joinable Table Discovery with Pre-trained Language Models
Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions.
Understanding tables with intermediate pre-training
Table entailment, the binary classification task of finding if a sentence is supported or refuted by the content of a table, requires parsing language and table structure as well as numerical and discrete reasoning. While there is extensive work on textual entailment, table entailment is less well studied. We adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize entailment. Motivated by the benefits of data augmentation, we create a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. This new data is not only useful for table entailment, but also for SQA (Iyyer et al., 2017), a sequential table QA task. To be able to use long examples as input of BERT models, we evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency at a moderate drop in accuracy. The different methods set the new state-of-the-art on the TabFact (Chen et al., 2020) and SQA datasets.
HYTREL: Hypergraph-enhanced Tabular Data Representation Learning
Language models pretrained on large collections of tabular data have demonstrated their effectiveness in several downstream tasks. However, many of these models do not take into account the row/column permutation invariances, hierarchical structure, etc. that exist in tabular data. To alleviate these limitations, we propose HYTREL, a tabular language model, that captures the permutation invariances and three more structural properties of tabular data by using hypergraphs - where the table cells make up the nodes and the cells occurring jointly together in each row, column, and the entire table are used to form three different types of hyperedges. We show that HYTREL is maximally invariant under certain conditions for tabular data, i.e., two tables obtain the same representations via HYTREL iff the two tables are identical up to permutations. Our empirical results demonstrate that HYTREL consistently outperforms other competitive baselines on four downstream tasks with minimal pretraining, illustrating the advantages of incorporating the inductive biases associated with tabular data into the representations. Finally, our qualitative analyses showcase that HYTREL can assimilate the table structures to generate robust representations for the cells, rows, columns, and the entire table.
Structure-Grounded Pretraining for Text-to-SQL
Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a novel weakly supervised Structure-Grounded pretraining framework (StruG) for text-to-SQL that can effectively learn to capture text-table alignment based on a parallel text-table corpus. We identify a set of novel prediction tasks: column grounding, value grounding and column-value mapping, and leverage them to pretrain a text-table encoder. Additionally, to evaluate different methods under more realistic text-table alignment settings, we create a new evaluation set Spider-Realistic based on Spider dev set with explicit mentions of column names removed, and adopt eight existing text-to-SQL datasets for cross-database evaluation. STRUG brings significant improvement over BERT-LARGE in all settings. Compared with existing pretraining methods such as GRAPPA, STRUG achieves similar performance on Spider, and outperforms all baselines on more realistic sets. The Spider-Realistic dataset is available at https://doi.org/10.5281/zenodo.5205322.
Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction
The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called T^3(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our code and data can be found at https://github.com/HKUST-KnowComp/LiveSum-TTT.
Tree-Regularized Tabular Embeddings
Tabular neural network (NN) has attracted remarkable attentions and its recent advances have gradually narrowed the performance gap with respect to tree-based models on many public datasets. While the mainstreams focus on calibrating NN to fit tabular data, we emphasize the importance of homogeneous embeddings and alternately concentrate on regularizing tabular inputs through supervised pretraining. Specifically, we extend a recent work (DeepTLF) and utilize the structure of pretrained tree ensembles to transform raw variables into a single vector (T2V), or an array of tokens (T2T). Without loss of space efficiency, these binarized embeddings can be consumed by canonical tabular NN with fully-connected or attention-based building blocks. Through quantitative experiments on 88 OpenML datasets with binary classification task, we validated that the proposed tree-regularized representation not only tapers the difference with respect to tree-based models, but also achieves on-par and better performance when compared with advanced NN models. Most importantly, it possesses better robustness and can be easily scaled and generalized as standalone encoder for tabular modality. Codes: https://github.com/milanlx/tree-regularized-embedding.
TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy
Tables contain factual and quantitative data accompanied by various structures and contents that pose challenges for machine comprehension. Previous methods generally design task-specific architectures and objectives for individual tasks, resulting in modal isolation and intricate workflows. In this paper, we present a novel large vision-language model, TabPedia, equipped with a concept synergy mechanism. In this mechanism, all the involved diverse visual table understanding (VTU) tasks and multi-source visual embeddings are abstracted as concepts. This unified framework allows TabPedia to seamlessly integrate VTU tasks, such as table detection, table structure recognition, table querying, and table question answering, by leveraging the capabilities of large language models (LLMs). Moreover, the concept synergy mechanism enables table perception-related and comprehension-related tasks to work in harmony, as they can effectively leverage the needed clues from the corresponding source perception embeddings. Furthermore, to better evaluate the VTU task in real-world scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA, featuring approximately 9,000 QA pairs. Extensive quantitative and qualitative experiments on both table perception and comprehension tasks, conducted across various public benchmarks, validate the effectiveness of our TabPedia. The superior performance further confirms the feasibility of using LLMs for understanding visual tables when all concepts work in synergy. The benchmark ComTQA has been open-sourced at https://huggingface.co/datasets/ByteDance/ComTQA. The source code and model will be released later.
TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT
Tables are prevalent in real-world databases, requiring significant time and effort for humans to analyze and manipulate. The advancements in large language models (LLMs) have made it possible to interact with tables using natural language input, bringing this capability closer to reality. In this paper, we present TableGPT, a unified fine-tuned framework that enables LLMs to understand and operate on tables using external functional commands. It introduces the capability to seamlessly interact with tables, enabling a wide range of functionalities such as question answering, data manipulation (e.g., insert, delete, query, and modify operations), data visualization, analysis report generation, and automated prediction. TableGPT aims to provide convenience and accessibility to users by empowering them to effortlessly leverage tabular data. At the core of TableGPT lies the novel concept of global tabular representations, which empowers LLMs to gain a comprehensive understanding of the entire table beyond meta-information. By jointly training LLMs on both table and text modalities, TableGPT achieves a deep understanding of tabular data and the ability to perform complex operations on tables through chain-of-command instructions. Importantly, TableGPT offers the advantage of being a self-contained system rather than relying on external API interfaces. Moreover, it supports efficient data process flow, query rejection (when appropriate) and private deployment, enabling faster domain data fine-tuning and ensuring data privacy, which enhances the framework's adaptability to specific use cases.
Normalization of Lithuanian Text Using Regular Expressions
Text Normalization is an integral part of any text-to-speech synthesis system. In a natural language text, there are elements such as numbers, dates, abbreviations, etc. that belong to other semiotic classes. They are called non-standard words (NSW) and need to be expanded into ordinary words. For this purpose, it is necessary to identify the semiotic class of each NSW. The taxonomy of semiotic classes adapted to the Lithuanian language is presented in the work. Sets of rules are created for detecting and expanding NSWs based on regular expressions. Experiments with three completely different data sets were performed and the accuracy was assessed. Causes of errors are explained and recommendations are given for the development of text normalization rules.
CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents
An automatic table recognition method for interpretation of tabular data in document images majorly involves solving two problems of table detection and table structure recognition. The prior work involved solving both problems independently using two separate approaches. More recent works signify the use of deep learning-based solutions while also attempting to design an end to end solution. In this paper, we present an improved deep learning-based end to end approach for solving both problems of table detection and structure recognition using a single Convolution Neural Network (CNN) model. We propose CascadeTabNet: a Cascade mask Region-based CNN High-Resolution Network (Cascade mask R-CNN HRNet) based model that detects the regions of tables and recognizes the structural body cells from the detected tables at the same time. We evaluate our results on ICDAR 2013, ICDAR 2019 and TableBank public datasets. We achieved 3rd rank in ICDAR 2019 post-competition results for table detection while attaining the best accuracy results for the ICDAR 2013 and TableBank dataset. We also attain the highest accuracy results on the ICDAR 2019 table structure recognition dataset. Additionally, we demonstrate effective transfer learning and image augmentation techniques that enable CNNs to achieve very accurate table detection results. Code and dataset has been made available at: https://github.com/DevashishPrasad/CascadeTabNet
TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering
LLMs have shown impressive progress in natural language processing. However, they still face significant challenges in TableQA, where real-world complexities such as diverse table structures, multilingual data, and domain-specific reasoning are crucial. Existing TableQA benchmarks are often limited by their focus on simple flat tables and suffer from data leakage. Furthermore, most benchmarks are monolingual and fail to capture the cross-lingual and cross-domain variability in practical applications. To address these limitations, we introduce TableEval, a new benchmark designed to evaluate LLMs on realistic TableQA tasks. Specifically, TableEval includes tables with various structures (such as concise, hierarchical, and nested tables) collected from four domains (including government, finance, academia, and industry reports). Besides, TableEval features cross-lingual scenarios with tables in Simplified Chinese, Traditional Chinese, and English. To minimize the risk of data leakage, we collect all data from recent real-world documents. Considering that existing TableQA metrics fail to capture semantic accuracy, we further propose SEAT, a new evaluation framework that assesses the alignment between model responses and reference answers at the sub-question level. Experimental results have shown that SEAT achieves high agreement with human judgment. Extensive experiments on TableEval reveal critical gaps in the ability of state-of-the-art LLMs to handle these complex, real-world TableQA tasks, offering insights for future improvements. We make our dataset available here: https://github.com/wenge-research/TableEval.
TabDPT: Scaling Tabular Foundation Models
The challenges faced by neural networks on tabular data are well-documented and have hampered the progress of tabular foundation models. Techniques leveraging in-context learning (ICL) have shown promise here, allowing for dynamic adaptation to unseen data. ICL can provide predictions for entirely new datasets without further training or hyperparameter tuning, therefore providing very fast inference when encountering a novel task. However, scaling ICL for tabular data remains an issue: approaches based on large language models cannot efficiently process numeric tables, and tabular-specific techniques have not been able to effectively harness the power of real data to improve performance and generalization. We are able to overcome these challenges by training tabular-specific ICL-based architectures on real data with self-supervised learning and retrieval, combining the best of both worlds. Our resulting model -- the Tabular Discriminative Pre-trained Transformer (TabDPT) -- achieves state-of-the-art performance on the CC18 (classification) and CTR23 (regression) benchmarks with no task-specific fine-tuning, demonstrating the adapatability and speed of ICL once the model is pre-trained. TabDPT also demonstrates strong scaling as both model size and amount of available data increase, pointing towards future improvements simply through the curation of larger tabular pre-training datasets and training larger models.
Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction
Integrating structured knowledge from tabular formats poses significant challenges within natural language processing (NLP), mainly when dealing with complex, semi-structured tables like those found in the FeTaQA dataset. These tables require advanced methods to interpret and generate meaningful responses accurately. Traditional approaches, such as SQL and SPARQL, often fail to fully capture the semantics of such data, especially in the presence of irregular table structures like web tables. This paper addresses these challenges by proposing a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model. Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics. It effectively generates contextually accurate and detailed long-form answers from tables, showcasing its strength in complex data interpretation.
MATE: Multi-view Attention for Table Transformer Efficiency
This work presents a sparse-attention Transformer architecture for modeling documents that contain large tables. Tables are ubiquitous on the web, and are rich in information. However, more than 20% of relational tables on the web have 20 or more rows (Cafarella et al., 2008), and these large tables present a challenge for current Transformer models, which are typically limited to 512 tokens. Here we propose MATE, a novel Transformer architecture designed to model the structure of web tables. MATE uses sparse attention in a way that allows heads to efficiently attend to either rows or columns in a table. This architecture scales linearly with respect to speed and memory, and can handle documents containing more than 8000 tokens with current accelerators. MATE also has a more appropriate inductive bias for tabular data, and sets a new state-of-the-art for three table reasoning datasets. For HybridQA (Chen et al., 2020b), a dataset that involves large documents containing tables, we improve the best prior result by 19 points.
TableGPT2: A Large Multimodal Model with Tabular Data Integration
The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.
TableLlama: Towards Open Large Generalist Models for Tables
Semi-structured tables are ubiquitous. There has been a variety of tasks that aim to automatically interpret, augment, and query tables. Current methods often require pretraining on tables or special model architecture design, are restricted to specific table types, or have simplifying assumptions about tables and tasks. This paper makes the first step towards developing open-source large language models (LLMs) as generalists for a diversity of table-based tasks. Towards that end, we construct TableInstruct, a new dataset with a variety of realistic tables and tasks, for instruction tuning and evaluating LLMs. We further develop the first open-source generalist model for tables, TableLlama, by fine-tuning Llama 2 (7B) with LongLoRA to address the long context challenge. We experiment under both in-domain setting and out-of-domain setting. On 7 out of 8 in-domain tasks, TableLlama achieves comparable or better performance than the SOTA for each task, despite the latter often has task-specific design. On 6 out-of-domain datasets, it achieves 6-48 absolute point gains compared with the base model, showing that training on TableInstruct enhances the model's generalizability. We will open-source our dataset and trained model to boost future work on developing open generalist models for tables.
arXiVeri: Automatic table verification with GPT
Without accurate transcription of numerical data in scientific documents, a scientist cannot draw accurate conclusions. Unfortunately, the process of copying numerical data from one paper to another is prone to human error. In this paper, we propose to meet this challenge through the novel task of automatic table verification (AutoTV), in which the objective is to verify the accuracy of numerical data in tables by cross-referencing cited sources. To support this task, we propose a new benchmark, arXiVeri, which comprises tabular data drawn from open-access academic papers on arXiv. We introduce metrics to evaluate the performance of a table verifier in two key areas: (i) table matching, which aims to identify the source table in a cited document that corresponds to a target table, and (ii) cell matching, which aims to locate shared cells between a target and source table and identify their row and column indices accurately. By leveraging the flexible capabilities of modern large language models (LLMs), we propose simple baselines for table verification. Our findings highlight the complexity of this task, even for state-of-the-art LLMs like OpenAI's GPT-4. The code and benchmark will be made publicly available.
TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition
Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.
QTSumm: A New Benchmark for Query-Focused Table Summarization
People primarily consult tables to conduct data analysis or answer specific questions. Text generation systems that can provide accurate table summaries tailored to users' information needs can facilitate more efficient access to relevant data insights. However, existing table-to-text generation studies primarily focus on converting tabular data into coherent statements, rather than addressing information-seeking purposes. In this paper, we define a new query-focused table summarization task, where text generation models have to perform human-like reasoning and analysis over the given table to generate a tailored summary, and we introduce a new benchmark named QTSumm for this task. QTSumm consists of 5,625 human-annotated query-summary pairs over 2,437 tables on diverse topics. Moreover, we investigate state-of-the-art models (i.e., text generation, table-to-text generation, and large language models) on the QTSumm dataset. Experimental results and manual analysis reveal that our benchmark presents significant challenges in table-to-text generation for future research.
TURL: Table Understanding through Representation Learning
Relational tables on the Web store a vast amount of knowledge. Owing to the wealth of such tables, there has been tremendous progress on a variety of tasks in the area of table understanding. However, existing work generally relies on heavily-engineered task-specific features and model architectures. In this paper, we present TURL, a novel framework that introduces the pre-training/fine-tuning paradigm to relational Web tables. During pre-training, our framework learns deep contextualized representations on relational tables in an unsupervised manner. Its universal model design with pre-trained representations can be applied to a wide range of tasks with minimal task-specific fine-tuning. Specifically, we propose a structure-aware Transformer encoder to model the row-column structure of relational tables, and present a new Masked Entity Recovery (MER) objective for pre-training to capture the semantics and knowledge in large-scale unlabeled data. We systematically evaluate TURL with a benchmark consisting of 6 different tasks for table understanding (e.g., relation extraction, cell filling). We show that TURL generalizes well to all tasks and substantially outperforms existing methods in almost all instances.
Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data
Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems. In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.
TARGET: Benchmarking Table Retrieval for Generative Tasks
The data landscape is rich with structured data, often of high value to organizations, driving important applications in data analysis and machine learning. Recent progress in representation learning and generative models for such data has led to the development of natural language interfaces to structured data, including those leveraging text-to-SQL. Contextualizing interactions, either through conversational interfaces or agentic components, in structured data through retrieval-augmented generation can provide substantial benefits in the form of freshness, accuracy, and comprehensiveness of answers. The key question is: how do we retrieve the right table(s) for the analytical query or task at hand? To this end, we introduce TARGET: a benchmark for evaluating TAble Retrieval for GEnerative Tasks. With TARGET we analyze the retrieval performance of different retrievers in isolation, as well as their impact on downstream tasks. We find that dense embedding-based retrievers far outperform a BM25 baseline which is less effective than it is for retrieval over unstructured text. We also surface the sensitivity of retrievers across various metadata (e.g., missing table titles), and demonstrate a stark variation of retrieval performance across datasets and tasks. TARGET is available at https://target-benchmark.github.io.
Language Modeling on Tabular Data: A Survey of Foundations, Techniques and Evolution
Tabular data, a prevalent data type across various domains, presents unique challenges due to its heterogeneous nature and complex structural relationships. Achieving high predictive performance and robustness in tabular data analysis holds significant promise for numerous applications. Influenced by recent advancements in natural language processing, particularly transformer architectures, new methods for tabular data modeling have emerged. Early techniques concentrated on pre-training transformers from scratch, often encountering scalability issues. Subsequently, methods leveraging pre-trained language models like BERT have been developed, which require less data and yield enhanced performance. The recent advent of large language models, such as GPT and LLaMA, has further revolutionized the field, facilitating more advanced and diverse applications with minimal fine-tuning. Despite the growing interest, a comprehensive survey of language modeling techniques for tabular data remains absent. This paper fills this gap by providing a systematic review of the development of language modeling for tabular data, encompassing: (1) a categorization of different tabular data structures and data types; (2) a review of key datasets used in model training and tasks used for evaluation; (3) a summary of modeling techniques including widely-adopted data processing methods, popular architectures, and training objectives; (4) the evolution from adapting traditional Pre-training/Pre-trained language models to the utilization of large language models; (5) an identification of persistent challenges and potential future research directions in language modeling for tabular data analysis. GitHub page associated with this survey is available at: https://github.com/lanxiang1017/Language-Modeling-on-Tabular-Data-Survey.git.
Improving Relational Database Interactions with Large Language Models: Column Descriptions and Their Impact on Text-to-SQL Performance
Relational databases often suffer from uninformative descriptors of table contents, such as ambiguous columns and hard-to-interpret values, impacting both human users and Text-to-SQL models. This paper explores the use of large language models (LLMs) to generate informative column descriptions as a semantic layer for relational databases. Using the BIRD-Bench development set, we created ColSQL, a dataset with gold-standard column descriptions generated and refined by LLMs and human annotators. We evaluated several instruction-tuned models, finding that GPT-4o and Command R+ excelled in generating high-quality descriptions. Additionally, we applied an LLM-as-a-judge to evaluate model performance. Although this method does not align well with human evaluations, we included it to explore its potential and to identify areas for improvement. More work is needed to improve the reliability of automatic evaluations for this task. We also find that detailed column descriptions significantly improve Text-to-SQL execution accuracy, especially when columns are uninformative. This study establishes LLMs as effective tools for generating detailed metadata, enhancing the usability of relational databases.
SPRINT: Script-agnostic Structure Recognition in Tables
Table Structure Recognition (TSR) is vital for various downstream tasks like information retrieval, table reconstruction, and document understanding. While most state-of-the-art (SOTA) research predominantly focuses on TSR in English documents, the need for similar capabilities in other languages is evident, considering the global diversity of data. Moreover, creating substantial labeled data in non-English languages and training these SOTA models from scratch is costly and time-consuming. We propose TSR as a language-agnostic cell arrangement prediction and introduce SPRINT, Script-agnostic Structure Recognition in Tables. SPRINT uses recently introduced Optimized Table Structure Language (OTSL) sequences to predict table structures. We show that when coupled with a pre-trained table grid estimator, SPRINT can improve the overall tree edit distance-based similarity structure scores of tables even for non-English documents. We experimentally evaluate our performance across benchmark TSR datasets including PubTabNet, FinTabNet, and PubTables-1M. Our findings reveal that SPRINT not only matches SOTA models in performance on standard datasets but also demonstrates lower latency. Additionally, SPRINT excels in accurately identifying table structures in non-English documents, surpassing current leading models by showing an absolute average increase of 11.12%. We also present an algorithm for converting valid OTSL predictions into a widely used HTML-based table representation. To encourage further research, we release our code and Multilingual Scanned and Scene Table Structure Recognition Dataset, MUSTARD labeled with OTSL sequences for 1428 tables in thirteen languages encompassing several scripts at https://github.com/IITB-LEAP-OCR/SPRINT
Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science
In the domain of data science, the predictive tasks of classification, regression, and imputation of missing values are commonly encountered challenges associated with tabular data. This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks. Despite their proficiency in comprehending natural language, LLMs fall short in dealing with structured tabular data. This limitation stems from their lacking exposure to the intricacies of tabular data during their foundational training. Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2 on this enriched dataset. Furthermore, we investigate the practical application of applying the trained model to zero-shot prediction, few-shot prediction, and in-context learning scenarios. Through extensive experiments, our methodology has shown significant improvements over existing benchmarks. These advancements highlight the efficacy of tailoring LLM training to solve table-related problems in data science, thereby establishing a new benchmark in the utilization of LLMs for enhancing tabular intelligence.
TableVQA-Bench: A Visual Question Answering Benchmark on Multiple Table Domains
In this paper, we establish a benchmark for table visual question answering, referred to as the TableVQA-Bench, derived from pre-existing table question-answering (QA) and table structure recognition datasets. It is important to note that existing datasets have not incorporated images or QA pairs, which are two crucial components of TableVQA. As such, the primary objective of this paper is to obtain these necessary components. Specifically, images are sourced either through the application of a stylesheet or by employing the proposed table rendering system. QA pairs are generated by exploiting the large language model (LLM) where the input is a text-formatted table. Ultimately, the completed TableVQA-Bench comprises 1,500 QA pairs. We comprehensively compare the performance of various multi-modal large language models (MLLMs) on TableVQA-Bench. GPT-4V achieves the highest accuracy among commercial and open-sourced MLLMs from our experiments. Moreover, we discover that the number of vision queries plays a significant role in TableVQA performance. To further analyze the capabilities of MLLMs in comparison to their LLM backbones, we investigate by presenting image-formatted tables to MLLMs and text-formatted tables to LLMs, respectively. Our findings suggest that processing visual inputs is more challenging than text inputs, as evidenced by the lower performance of MLLMs, despite generally requiring higher computational costs than LLMs. The proposed TableVQA-Bench and evaluation codes are available at https://github.com/naver-ai/tablevqabench{https://github.com/naver-ai/tablevqabench}.
Large Scale Transfer Learning for Tabular Data via Language Modeling
Tabular data -- structured, heterogeneous, spreadsheet-style data with rows and columns -- is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain. In this work, we seek to narrow this gap and present TabuLa-8B, a language model for tabular prediction. We define a process for extracting a large, high-quality training dataset from the TabLib corpus, proposing methods for tabular data filtering and quality control. Using the resulting dataset, which comprises over 1.6B rows from 3.1M unique tables, we fine-tune a Llama 3-8B large language model (LLM) for tabular data prediction (classification and binned regression) using a novel packing and attention scheme for tabular prediction. Through evaluation across a test suite of 329 datasets, we find that TabuLa-8B has zero-shot accuracy on unseen tables that is over 15 percentage points (pp) higher than random guessing, a feat that is not possible with existing state-of-the-art tabular prediction models (e.g. XGBoost, TabPFN). In the few-shot setting (1-32 shots), without any fine-tuning on the target datasets, TabuLa-8B is 5-15 pp more accurate than XGBoost and TabPFN models that are explicitly trained on equal, or even up to 16x more data. We release our model, code, and data along with the publication of this paper.
SALT: Sales Autocompletion Linked Business Tables Dataset
Foundation models, particularly those that incorporate Transformer architectures, have demonstrated exceptional performance in domains such as natural language processing and image processing. Adapting these models to structured data, like tables, however, introduces significant challenges. These difficulties are even more pronounced when addressing multi-table data linked via foreign key, which is prevalent in the enterprise realm and crucial for empowering business use cases. Despite its substantial impact, research focusing on such linked business tables within enterprise settings remains a significantly important yet underexplored domain. To address this, we introduce a curated dataset sourced from an Enterprise Resource Planning (ERP) system, featuring extensive linked tables. This dataset is specifically designed to support research endeavors in table representation learning. By providing access to authentic enterprise data, our goal is to potentially enhance the effectiveness and applicability of models for real-world business contexts.
TableSense: Spreadsheet Table Detection with Convolutional Neural Networks
Spreadsheet table detection is the task of detecting all tables on a given sheet and locating their respective ranges. Automatic table detection is a key enabling technique and an initial step in spreadsheet data intelligence. However, the detection task is challenged by the diversity of table structures and table layouts on the spreadsheet. Considering the analogy between a cell matrix as spreadsheet and a pixel matrix as image, and encouraged by the successful application of Convolutional Neural Networks (CNN) in computer vision, we have developed TableSense, a novel end-to-end framework for spreadsheet table detection. First, we devise an effective cell featurization scheme to better leverage the rich information in each cell; second, we develop an enhanced convolutional neural network model for table detection to meet the domain-specific requirement on precise table boundary detection; third, we propose an effective uncertainty metric to guide an active learning based smart sampling algorithm, which enables the efficient build-up of a training dataset with 22,176 tables on 10,220 sheets with broad coverage of diverse table structures and layouts. Our evaluation shows that TableSense is highly effective with 91.3\% recall and 86.5\% precision in EoB-2 metric, a significant improvement over both the current detection algorithm that are used in commodity spreadsheet tools and state-of-the-art convolutional neural networks in computer vision.
Tabby: Tabular Data Synthesis with Language Models
While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.
GFTE: Graph-based Financial Table Extraction
Tabular data is a crucial form of information expression, which can organize data in a standard structure for easy information retrieval and comparison. However, in financial industry and many other fields tables are often disclosed in unstructured digital files, e.g. Portable Document Format (PDF) and images, which are difficult to be extracted directly. In this paper, to facilitate deep learning based table extraction from unstructured digital files, we publish a standard Chinese dataset named FinTab, which contains more than 1,600 financial tables of diverse kinds and their corresponding structure representation in JSON. In addition, we propose a novel graph-based convolutional neural network model named GFTE as a baseline for future comparison. GFTE integrates image feature, position feature and textual feature together for precise edge prediction and reaches overall good results.
Rethinking Table Instruction Tuning
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices and lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and reveal significant declines in both out-of-domain table understanding and general capabilities compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the existing table instruction-tuning works, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection.
GriTS: Grid table similarity metric for table structure recognition
In this paper, we propose a new class of metric for table structure recognition (TSR) evaluation, called grid table similarity (GriTS). Unlike prior metrics, GriTS evaluates the correctness of a predicted table directly in its natural form as a matrix. To create a similarity measure between matrices, we generalize the two-dimensional largest common substructure (2D-LCS) problem, which is NP-hard, to the 2D most similar substructures (2D-MSS) problem and propose a polynomial-time heuristic for solving it. This algorithm produces both an upper and a lower bound on the true similarity between matrices. We show using evaluation on a large real-world dataset that in practice there is almost no difference between these bounds. We compare GriTS to other metrics and empirically validate that matrix similarity exhibits more desirable behavior than alternatives for TSR performance evaluation. Finally, GriTS unifies all three subtasks of cell topology recognition, cell location recognition, and cell content recognition within the same framework, which simplifies the evaluation and enables more meaningful comparisons across different types of TSR approaches. Code will be released at https://github.com/microsoft/table-transformer.
CORNET: Learning Table Formatting Rules By Example
Spreadsheets are widely used for table manipulation and presentation. Stylistic formatting of these tables is an important property for both presentation and analysis. As a result, popular spreadsheet software, such as Excel, supports automatically formatting tables based on rules. Unfortunately, writing such formatting rules can be challenging for users as it requires knowledge of the underlying rule language and data logic. We present CORNET, a system that tackles the novel problem of automatically learning such formatting rules from user examples in the form of formatted cells. CORNET takes inspiration from advances in inductive programming and combines symbolic rule enumeration with a neural ranker to learn conditional formatting rules. To motivate and evaluate our approach, we extracted tables with over 450K unique formatting rules from a corpus of over 1.8M real worksheets. Since we are the first to introduce conditional formatting, we compare CORNET to a wide range of symbolic and neural baselines adapted from related domains. Our results show that CORNET accurately learns rules across varying evaluation setups. Additionally, we show that CORNET finds shorter rules than those that a user has written and discovers rules in spreadsheets that users have manually formatted.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.
The Kernel Density Integral Transformation
Feature preprocessing continues to play a critical role when applying machine learning and statistical methods to tabular data. In this paper, we propose the use of the kernel density integral transformation as a feature preprocessing step. Our approach subsumes the two leading feature preprocessing methods as limiting cases: linear min-max scaling and quantile transformation. We demonstrate that, without hyperparameter tuning, the kernel density integral transformation can be used as a simple drop-in replacement for either method, offering protection from the weaknesses of each. Alternatively, with tuning of a single continuous hyperparameter, we frequently outperform both of these methods. Finally, we show that the kernel density transformation can be profitably applied to statistical data analysis, particularly in correlation analysis and univariate clustering.
TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning
Deep learning (DL) models for tabular data problems are receiving increasingly more attention, while the algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution. Following the recent trends in other domains, such as natural language processing and computer vision, several retrieval-augmented tabular DL models have been recently proposed. For a given target object, a retrieval-based model retrieves other relevant objects, such as the nearest neighbors, from the available (training) data and uses their features or even labels to make a better prediction. However, we show that the existing retrieval-based tabular DL solutions provide only minor, if any, benefits over the properly tuned simple retrieval-free baselines. Thus, it remains unclear whether the retrieval-based approach is a worthy direction for tabular DL. In this work, we give a strong positive answer to this question. We start by incrementally augmenting a simple feed-forward architecture with an attention-like retrieval component similar to those of many (tabular) retrieval-based models. Then, we highlight several details of the attention mechanism that turn out to have a massive impact on the performance on tabular data problems, but that were not explored in prior work. As a result, we design TabR -- a simple retrieval-based tabular DL model which, on a set of public benchmarks, demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed ``GBDT-friendly'' benchmark (see the first figure).
Table Detection in the Wild: A Novel Diverse Table Detection Dataset and Method
Recent deep learning approaches in table detection achieved outstanding performance and proved to be effective in identifying document layouts. Currently, available table detection benchmarks have many limitations, including the lack of samples diversity, simple table structure, the lack of training cases, and samples quality. In this paper, we introduce a diverse large-scale dataset for table detection with more than seven thousand samples containing a wide variety of table structures collected from many diverse sources. In addition to that, we also present baseline results using a convolutional neural network-based method to detect table structure in documents. Experimental results show the superiority of applying convolutional deep learning methods over classical computer vision-based methods. The introduction of this diverse table detection dataset will enable the community to develop high throughput deep learning methods for understanding document layout and tabular data processing.
Table-GPT: Table-tuned GPT for Diverse Table Tasks
Language models, such as GPT-3.5 and ChatGPT, demonstrate remarkable abilities to follow diverse human instructions and perform a wide range of tasks. However, when probing language models using a range of basic table-understanding tasks, we observe that today's language models are still sub-optimal in many table-related tasks, likely because they are pre-trained predominantly on one-dimensional natural-language texts, whereas relational tables are two-dimensional objects. In this work, we propose a new "table-tuning" paradigm, where we continue to train/fine-tune language models like GPT-3.5 and ChatGPT, using diverse table-tasks synthesized from real tables as training data, with the goal of enhancing language models' ability to understand tables and perform table tasks. We show that our resulting Table-GPT models demonstrate (1) better table-understanding capabilities, by consistently outperforming the vanilla GPT-3.5 and ChatGPT, on a wide-range of table tasks, including holdout unseen tasks, and (2) strong generalizability, in its ability to respond to diverse human instructions to perform new table-tasks, in a manner similar to GPT-3.5 and ChatGPT.
MT-RAIG: Novel Benchmark and Evaluation Framework for Retrieval-Augmented Insight Generation over Multiple Tables
Recent advancements in table-based reasoning have expanded beyond factoid-level QA to address insight-level tasks, where systems should synthesize implicit knowledge in the table to provide explainable analyses. Although effective, existing studies remain confined to scenarios where a single gold table is given alongside the user query, failing to address cases where users seek comprehensive insights from multiple unknown tables. To bridge these gaps, we propose MT-RAIG Bench, design to evaluate systems on Retrieval-Augmented Insight Generation over Mulitple-Tables. Additionally, to tackle the suboptimality of existing automatic evaluation methods in the table domain, we further introduce a fine-grained evaluation framework MT-RAIG Eval, which achieves better alignment with human quality judgments on the generated insights. We conduct extensive experiments and reveal that even frontier LLMs still struggle with complex multi-table reasoning, establishing our MT-RAIG Bench as a challenging testbed for future research.
Learning to Reason for Text Generation from Scientific Tables
In this paper, we introduce SciGen, a new challenge dataset for the task of reasoning-aware data-to-text generation consisting of tables from scientific articles and their corresponding descriptions. Describing scientific tables goes beyond the surface realization of the table content and requires reasoning over table values. The unique properties of SciGen are that (1) tables mostly contain numerical values, and (2) the corresponding descriptions require arithmetic reasoning. SciGen is therefore the first dataset that assesses the arithmetic reasoning capabilities of generation models on complex input structures, i.e., tables from scientific articles. We study the effectiveness of state-of-the-art data-to-text generation models on SciGen and evaluate the results using common metrics as well as human evaluation. Our results and analyses show that (a) while humans like to reason for describing scientific tables, the ability of state-of-the-art models is severely limited on this task, (b) while adding more training data improves the results, it is not the solution for reasoning-aware text generation, and (c) one of the main bottlenecks for this task is the lack of proper automatic evaluation metrics. The data, code, and annotations for human evaluation will be available at https://github.com/UKPLab/SciGen. SciGen opens new avenues for future research in reasoning-aware text generation and evaluation.
TAPEX: Table Pre-training via Learning a Neural SQL Executor
Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes the improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks. Our code can be found at https://github.com/microsoft/Table-Pretraining.
TabFSBench: Tabular Benchmark for Feature Shifts in Open Environments
Tabular data is widely utilized in various machine learning tasks. Current tabular learning research predominantly focuses on closed environments, while in real-world applications, open environments are often encountered, where distribution and feature shifts occur, leading to significant degradation in model performance. Previous research has primarily concentrated on mitigating distribution shifts, whereas feature shifts, a distinctive and unexplored challenge of tabular data, have garnered limited attention. To this end, this paper conducts the first comprehensive study on feature shifts in tabular data and introduces the first tabular feature-shift benchmark (TabFSBench). TabFSBench evaluates impacts of four distinct feature-shift scenarios on four tabular model categories across various datasets and assesses the performance of large language models (LLMs) and tabular LLMs in the tabular benchmark for the first time. Our study demonstrates three main observations: (1) most tabular models have the limited applicability in feature-shift scenarios; (2) the shifted feature set importance has a linear relationship with model performance degradation; (3) model performance in closed environments correlates with feature-shift performance. Future research direction is also explored for each observation. Benchmark: https://github.com/LAMDASZ-ML/TabFSBench.
CARTE: pretraining and transfer for tabular learning
Pretrained deep-learning models are the go-to solution for images or text. However, for tabular data the standard is still to train tree-based models. Pre-training or transfer is a huge challenge as in general tables have columns about different quantities and naming conventions that vary vastly across sources. Data integration tackles correspondences across multiple sources: schema matching for columns, and entity matching for entries. We propose a neural architecture that does not need such matches. As a result, we can pretrain it on background data that has not been matched. The architecture - CARTE for Context Aware Representation of Table Entries - uses a graph representation of tabular (or relational) data to process tables with different columns, string embeddings of entries and columns names to model an open vocabulary, and a graph-attentional network to contextualize entries with column names and neighboring entries. An extensive benchmark shows that CARTE facilitates learning, outperforming a solid set of baselines including the best tree-based models. CARTE also enables joint learning across tables with unmatched columns, enhancing a small table with bigger ones. CARTE opens the door to large pretrained models embarking information for tabular data.
Towards Foundation Models for Relational Databases [Vision Paper]
Tabular representation learning has recently gained a lot of attention. However, existing approaches only learn a representation from a single table, and thus ignore the potential to learn from the full structure of relational databases, including neighboring tables that can contain important information for a contextualized representation. Moreover, current models are significantly limited in scale, which prevents that they learn from large databases. In this paper, we thus introduce our vision of relational representation learning, that can not only learn from the full relational structure, but also can scale to larger database sizes that are commonly found in real-world. Moreover, we also discuss opportunities and challenges we see along the way to enable this vision and present initial very promising results. Overall, we argue that this direction can lead to foundation models for relational databases that are today only available for text and images.
Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs
Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.
Making Pre-trained Language Models Great on Tabular Prediction
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing. However, due to the heterogeneity among tables, such DNN bonus is still far from being well exploited on tabular data prediction (e.g., regression or classification tasks). Condensing knowledge from diverse domains, language models (LMs) possess the capability to comprehend feature names from various tables, potentially serving as versatile learners in transferring knowledge across distinct tables and diverse prediction tasks, but their discrete text representation space is inherently incompatible with numerical feature values in tables. In this paper, we present TP-BERTa, a specifically pre-trained LM for tabular data prediction. Concretely, a novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names. Comprehensive experiments demonstrate that our pre-trained TP-BERTa leads the performance among tabular DNNs and is competitive with Gradient Boosted Decision Tree models in typical tabular data regime.
ExcelFormer: Can a DNN be a Sure Bet for Tabular Prediction?
Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.
TabLib: A Dataset of 627M Tables with Context
It is well-established that large, diverse datasets play a pivotal role in the performance of modern AI systems for text and image modalities. However, there are no datasets for tabular data of comparable size and diversity to those available for text and images. Thus we present "TabLib'', a compilation of 627 million tables totaling 69 TiB, along with 867B tokens of context. TabLib was extracted from numerous file formats, including CSV, HTML, SQLite, PDF, Excel, and others, sourced from GitHub and Common Crawl. The size and diversity of TabLib offer considerable promise in the table modality, reminiscent of the original promise of foundational datasets for text and images, such as The Pile and LAION.
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
We introduce TabRepo, a new dataset of tabular model evaluations and predictions. TabRepo contains the predictions and metrics of 1310 models evaluated on 200 classification and regression datasets. We illustrate the benefit of our dataset in multiple ways. First, we show that it allows to perform analysis such as comparing Hyperparameter Optimization against current AutoML systems while also considering ensembling at marginal cost by using precomputed model predictions. Second, we show that our dataset can be readily leveraged to perform transfer-learning. In particular, we show that applying standard transfer-learning techniques allows to outperform current state-of-the-art tabular systems in accuracy, runtime and latency.
HiddenTables & PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies
A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-3.5-turbo. We propose a cooperative game dubbed "HiddenTables" as a potential resolution to this challenge. In essence, "HiddenTables" is played between the code-generating LLM "Solver" and the "Oracle" which evaluates the ability of the LLM agents to solve Table QA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM's collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of "HiddenTables" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset "PyQTax" that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns & labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs' deficiency in TableQA tasks, "HiddenTables" is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.
Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study
Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, the understanding of their capability to process structured data like tables remains an under-explored area. While tables can be serialized as input for LLMs, there is a lack of comprehensive studies on whether LLMs genuinely comprehend this data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities of LLMs through seven distinct tasks, e.g., cell lookup, row retrieval and size detection. Specially, we perform a series of evaluations on the recent most advanced LLM models, GPT-3.5 and GPT-4 and observe that performance varied with different input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose self-augmentation for effective structural prompting, such as critical value / range identification using internal knowledge of LLMs. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, e.g., TabFact(uparrow2.31%), HybridQA(uparrow2.13%), SQA(uparrow2.72%), Feverous(uparrow0.84%), and ToTTo(uparrow5.68%). We believe that our open source benchmark and proposed prompting methods can serve as a simple yet generic selection for future research. The code and data of this paper will be temporality released at https://anonymous.4open.science/r/StructuredLLM-76F3/README.md and will be replaced with an official one at https://github.com/microsoft/TableProvider later.
Benchmarking Multimodal AutoML for Tabular Data with Text Fields
We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well. Here we assemble 18 multimodal data tables that each contain some text fields and stem from a real business application. Our publicly-available benchmark enables researchers to comprehensively evaluate their own methods for supervised learning with numeric, categorical, and text features. To ensure that any single modeling strategy which performs well over all 18 datasets will serve as a practical foundation for multimodal text/tabular AutoML, the diverse datasets in our benchmark vary greatly in: sample size, problem types (a mix of classification and regression tasks), number of features (with the number of text columns ranging from 1 to 28 between datasets), as well as how the predictive signal is decomposed between text vs. numeric/categorical features (and predictive interactions thereof). Over this benchmark, we evaluate various straightforward pipelines to model such data, including standard two-stage approaches where NLP is used to featurize the text such that AutoML for tabular data can then be applied. Compared with human data science teams, the fully automated methodology that performed best on our benchmark (stack ensembling a multimodal Transformer with various tree models) also manages to rank 1st place when fit to the raw text/tabular data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle's Mercari Price Suggestion Challenge.
XTab: Cross-table Pretraining for Tabular Transformers
The success of self-supervised learning in computer vision and natural language processing has motivated pretraining methods on tabular data. However, most existing tabular self-supervised learning models fail to leverage information across multiple data tables and cannot generalize to new tables. In this work, we introduce XTab, a framework for cross-table pretraining of tabular transformers on datasets from various domains. We address the challenge of inconsistent column types and quantities among tables by utilizing independent featurizers and using federated learning to pretrain the shared component. Tested on 84 tabular prediction tasks from the OpenML-AutoML Benchmark (AMLB), we show that (1) XTab consistently boosts the generalizability, learning speed, and performance of multiple tabular transformers, (2) by pretraining FT-Transformer via XTab, we achieve superior performance than other state-of-the-art tabular deep learning models on various tasks such as regression, binary, and multiclass classification.
UniPredict: Large Language Models are Universal Tabular Classifiers
Tabular data prediction is a fundamental machine learning task for many applications. Existing methods predominantly employ discriminative modeling and operate under the assumption of a fixed target column, necessitating re-training for every new predictive task. Inspired by the generative power of large language models (LLMs), this paper exploits the idea of building universal tabular data predictors based on generative modeling, namely UniPredict. Here, we demonstrate the scalability of an LLM to extensive tabular datasets, enabling it to comprehend diverse tabular inputs and predict target variables following the provided instructions. Specifically, we train a single LLM on an aggregation of 169 tabular datasets with diverse targets and compare its performance against baselines that are trained on each dataset separately. We observe this versatile UniPredict model demonstrates an advantage over other models, ranging from 5.4% to 13.4%, when compared with the best tree-boosting baseline and the best neural network baseline, respectively. We further test UniPredict in few-shot learning settings on another 62 tabular datasets. Our method achieves strong performance in quickly adapting to new tasks. In low-resource few-shot setup, we observed a 100%+ performance advantage compared with XGBoost, and significant margin over all baselines. We envision that UniPredict sheds light on developing a universal tabular data prediction system that learns from data at scale and serves a wide range of prediction tasks.
Table Question Answering for Low-resourced Indic Languages
TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).
Exploring Prompting Methods for Mitigating Class Imbalance through Synthetic Data Generation with Large Language Models
Large language models (LLMs) have demonstrated impressive in-context learning capabilities across various domains. Inspired by this, our study explores the effectiveness of LLMs in generating realistic tabular data to mitigate class imbalance. We investigate and identify key prompt design elements such as data format, class presentation, and variable mapping to optimize the generation performance. Our findings indicate that using CSV format, balancing classes, and employing unique variable mapping produces realistic and reliable data, significantly enhancing machine learning performance for minor classes in imbalanced datasets. Additionally, these approaches improve the stability and efficiency of LLM data generation. We validate our approach using six real-world datasets and a toy dataset, achieving state-of-the-art performance in classification tasks. The code is available at: https://github.com/seharanul17/synthetic-tabular-LLM
CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images
Localizing page elements/objects such as tables, figures, equations, etc. is the primary step in extracting information from document images. We propose a novel end-to-end trainable deep network, (CDeC-Net) for detecting tables present in the documents. The proposed network consists of a multistage extension of Mask R-CNN with a dual backbone having deformable convolution for detecting tables varying in scale with high detection accuracy at higher IoU threshold. We empirically evaluate CDeC-Net on all the publicly available benchmark datasets - ICDAR-2013, ICDAR-2017, ICDAR-2019,UNLV, Marmot, PubLayNet, and TableBank - with extensive experiments. Our solution has three important properties: (i) a single trained model CDeC-Net{\ddag} performs well across all the popular benchmark datasets; (ii) we report excellent performances across multiple, including higher, thresholds of IoU; (iii) by following the same protocol of the recent papers for each of the benchmarks, we consistently demonstrate the superior quantitative performance. Our code and models will be publicly released for enabling the reproducibility of the results.
TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning
Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an hybrid framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main.
TabFact: A Large-scale Dataset for Table-based Fact Verification
The problem of verifying whether a textual hypothesis holds based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are mainly restricted to dealing with unstructured evidence (e.g., natural language sentences and documents, news, etc), while verification under structured evidence, such as tables, graphs, and databases, remains under-explored. This paper specifically aims to study the fact verification given semi-structured data as evidence. To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED. TabFact is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. To address these reasoning challenges, we design two different models: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages the state-of-the-art pre-trained language model to encode the linearized tables and statements into continuous vectors for verification. LPA parses statements into programs and executes them against the tables to obtain the returned binary value for verification. Both methods achieve similar accuracy but still lag far behind human performance. We also perform a comprehensive analysis to demonstrate great future opportunities. The data and code of the dataset are provided in https://github.com/wenhuchen/Table-Fact-Checking.
CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis
With growing attention to tabular data these days, the attempt to apply a synthetic table to various tasks has been expanded toward various scenarios. Owing to the recent advances in generative modeling, fake data generated by tabular data synthesis models become sophisticated and realistic. However, there still exists a difficulty in modeling discrete variables (columns) of tabular data. In this work, we propose to process continuous and discrete variables separately (but being conditioned on each other) by two diffusion models. The two diffusion models are co-evolved during training by reading conditions from each other. In order to further bind the diffusion models, moreover, we introduce a contrastive learning method with a negative sampling method. In our experiments with 11 real-world tabular datasets and 8 baseline methods, we prove the efficacy of the proposed method, called CoDi.
Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization
Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores.
TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
HD-RAG: Retrieval-Augmented Generation for Hybrid Documents Containing Text and Hierarchical Tables
With the rapid advancement of large language models (LLMs), Retrieval-Augmented Generation (RAG) effectively combines LLMs generative capabilities with external retrieval-based information. The Hybrid Document RAG task aims to integrate textual and hierarchical tabular data for more comprehensive retrieval and generation in complex scenarios. However, there is no existing dataset specifically designed for this task that includes both text and tabular data. Additionally, existing methods struggle to retrieve relevant tabular data and integrate it with text. Semantic similarity-based retrieval lacks accuracy, while table-specific methods fail to handle complex hierarchical structures effectively. Furthermore, the QA task requires complex reasoning and calculations, further complicating the challenge. In this paper, we propose a new large-scale dataset, DocRAGLib, specifically designed for the question answering (QA) task scenario under Hybrid Document RAG. To tackle these challenges, we introduce HD-RAG, a novel framework that incorporates a row-and-column level (RCL) table representation, employs a two-stage process combining ensemble and LLM-based retrieval, and integrates RECAP, which is designed for multi-step reasoning and complex calculations in Document-QA tasks. We conduct comprehensive experiments with DocRAGLib, showing that HD-RAG outperforms existing baselines in both retrieval accuracy and QA performance, demonstrating its effectiveness.
Tabular Embedding Model (TEM): Finetuning Embedding Models For Tabular RAG Applications
In recent times Large Language Models have exhibited tremendous capabilities, especially in the areas of mathematics, code generation and general-purpose reasoning. However for specialized domains especially in applications that require parsing and analyzing large chunks of numeric or tabular data even state-of-the-art (SOTA) models struggle. In this paper, we introduce a new approach to solving domain-specific tabular data analysis tasks by presenting a unique RAG workflow that mitigates the scalability issues of existing tabular LLM solutions. Specifically, we present Tabular Embedding Model (TEM), a novel approach to fine-tune embedding models for tabular Retrieval-Augmentation Generation (RAG) applications. Embedding models form a crucial component in the RAG workflow and even current SOTA embedding models struggle as they are predominantly trained on textual datasets and thus underperform in scenarios involving complex tabular data. The evaluation results showcase that our approach not only outperforms current SOTA embedding models in this domain but also does so with a notably smaller and more efficient model structure.
ConTextTab: A Semantics-Aware Tabular In-Context Learner
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. While being architecturally efficient and well-adapted to tabular data structures, current table-native ICL architectures, being trained exclusively on synthetic data, do not fully leverage the rich semantics and world knowledge contained in real-world tabular data. On another end of this spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark.
TReB: A Comprehensive Benchmark for Evaluating Table Reasoning Capabilities of Large Language Models
The majority of data in businesses and industries is stored in tables, databases, and data warehouses. Reasoning with table-structured data poses significant challenges for large language models (LLMs) due to its hidden semantics, inherent complexity, and structured nature. One of these challenges is lacking an effective evaluation benchmark fairly reflecting the performances of LLMs on broad table reasoning abilities. In this paper, we fill in this gap, presenting a comprehensive table reasoning evolution benchmark, TReB, which measures both shallow table understanding abilities and deep table reasoning abilities, a total of 26 sub-tasks. We construct a high quality dataset through an iterative data processing procedure. We create an evaluation framework to robustly measure table reasoning capabilities with three distinct inference modes, TCoT, PoT and ICoT. Further, we benchmark over 20 state-of-the-art LLMs using this frame work and prove its effectiveness. Experimental results reveal that existing LLMs still have significant room for improvement in addressing the complex and real world Table related tasks. Both the dataset and evaluation framework are publicly available, with the dataset hosted on [HuggingFace] and the framework on [GitHub].
Does Table Source Matter? Benchmarking and Improving Multimodal Scientific Table Understanding and Reasoning
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.
Sketch and Refine: Towards Faithful and Informative Table-to-Text Generation
Table-to-text generation refers to generating a descriptive text from a key-value table. Traditional autoregressive methods, though can generate text with high fluency, suffer from low coverage and poor faithfulness problems. To mitigate these problems, we propose a novel Skeleton-based two-stage method that combines both Autoregressive and Non-Autoregressive generations (SANA). Our approach includes: (1) skeleton generation with an autoregressive pointer network to select key tokens from the source table; (2) edit-based non-autoregressive generation model to produce texts via iterative insertion and deletion operations. By integrating hard constraints from the skeleton, the non-autoregressive model improves the generation's coverage over the source table and thus enhances its faithfulness. We conduct automatic and human evaluations on both WikiPerson and WikiBio datasets. Experimental results demonstrate that our method outperforms the previous state-of-the-art methods in both automatic and human evaluation, especially on coverage and faithfulness. In particular, we achieve PARENT-T recall of 99.47 in WikiPerson, improving over the existing best results by more than 10 points.
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
Learning embedding table plays a fundamental role in Click-through rate(CTR) prediction from the view of the model performance and memory usage. The embedding table is a two-dimensional tensor, with its axes indicating the number of feature values and the embedding dimension, respectively. To learn an efficient and effective embedding table, recent works either assign various embedding dimensions for feature fields and reduce the number of embeddings respectively or mask the embedding table parameters. However, all these existing works cannot get an optimal embedding table. On the one hand, various embedding dimensions still require a large amount of memory due to the vast number of features in the dataset. On the other hand, decreasing the number of embeddings usually suffers from performance degradation, which is intolerable in CTR prediction. Finally, pruning embedding parameters will lead to a sparse embedding table, which is hard to be deployed. To this end, we propose an optimal embedding table learning framework OptEmbed, which provides a practical and general method to find an optimal embedding table for various base CTR models. Specifically, we propose pruning the redundant embeddings regarding corresponding features' importance by learnable pruning thresholds. Furthermore, we consider assigning various embedding dimensions as one single candidate architecture. To efficiently search the optimal embedding dimensions, we design a uniform embedding dimension sampling scheme to equally train all candidate architectures, meaning architecture-related parameters and learnable thresholds are trained simultaneously in one supernet. We then propose an evolution search method based on the supernet to find the optimal embedding dimensions for each field. Experiments on public datasets show that OptEmbed can learn a compact embedding table which can further improve the model performance.
HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation
Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge existing methods by hierarchical indexing, as well as implicit relationships of calculation and semantics. This work presents HiTab, a free and open dataset to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports (analyses) and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) both target sentences for NLG and questions for QA are revised from original, meaningful, and diverse descriptive sentences authored by analysts and professions of reports. (3) to reveal complex numerical reasoning in statistical analyses, we provide fine-grained annotations of entity and quantity alignment. HiTab provides 10,686 QA pairs and descriptive sentences with well-annotated quantity and entity alignment on 3,597 tables with broad coverage of table hierarchies and numerical reasoning types. Targeting hierarchical structure, we devise a novel hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting complex numerical reasoning, we propose partially supervised training given annotations of entity and quantity alignment, which helps models to largely reduce spurious predictions in the QA task. In the NLG task, we find that entity and quantity alignment also helps NLG models to generate better results in a conditional generation setting. Experiment results of state-of-the-art baselines suggest that this dataset presents a strong challenge and a valuable benchmark for future research.
Beyond Importance Scores: Interpreting Tabular ML by Visualizing Feature Semantics
Interpretability is becoming an active research topic as machine learning (ML) models are more widely used to make critical decisions. Tabular data is one of the most commonly used modes of data in diverse applications such as healthcare and finance. Much of the existing interpretability methods used for tabular data only report feature-importance scores -- either locally (per example) or globally (per model) -- but they do not provide interpretation or visualization of how the features interact. We address this limitation by introducing Feature Vectors, a new global interpretability method designed for tabular datasets. In addition to providing feature-importance, Feature Vectors discovers the inherent semantic relationship among features via an intuitive feature visualization technique. Our systematic experiments demonstrate the empirical utility of this new method by applying it to several real-world datasets. We further provide an easy-to-use Python package for Feature Vectors.
A Closer Look at Deep Learning Methods on Tabular Datasets
Tabular data is prevalent across diverse domains in machine learning. While classical methods like tree-based models have long been effective, Deep Neural Network (DNN)-based methods have recently demonstrated promising performance. However, the diverse characteristics of methods and the inherent heterogeneity of tabular datasets make understanding and interpreting tabular methods both challenging and prone to unstable observations. In this paper, we conduct in-depth evaluations and comprehensive analyses of tabular methods, with a particular focus on DNN-based models, using a benchmark of over 300 tabular datasets spanning a wide range of task types, sizes, and domains. First, we perform an extensive comparison of 32 state-of-the-art deep and tree-based methods, evaluating their average performance across multiple criteria. Although method ranks vary across datasets, we empirically find that top-performing methods tend to concentrate within a small subset of tabular models, regardless of the criteria used. Next, we investigate whether the training dynamics of deep tabular models can be predicted based on dataset properties. This approach not only offers insights into the behavior of deep tabular methods but also identifies a core set of "meta-features" that reflect dataset heterogeneity. The other subset includes datasets where method ranks are consistent with the overall benchmark, acting as a reliable probe for further tabular analysis.
Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
CTE: A Dataset for Contextualized Table Extraction
Relevant information in documents is often summarized in tables, helping the reader to identify useful facts. Most benchmark datasets support either document layout analysis or table understanding, but lack in providing data to apply both tasks in a unified way. We define the task of Contextualized Table Extraction (CTE), which aims to extract and define the structure of tables considering the textual context of the document. The dataset comprises 75k fully annotated pages of scientific papers, including more than 35k tables. Data are gathered from PubMed Central, merging the information provided by annotations in the PubTables-1M and PubLayNet datasets. The dataset can support CTE and adds new classes to the original ones. The generated annotations can be used to develop end-to-end pipelines for various tasks, including document layout analysis, table detection, structure recognition, and functional analysis. We formally define CTE and evaluation metrics, showing which subtasks can be tackled, describing advantages, limitations, and future works of this collection of data. Annotations and code will be accessible a https://github.com/AILab-UniFI/cte-dataset.
Long Text and Multi-Table Summarization: Dataset and Method
Automatic document summarization aims to produce a concise summary covering the input document's salient information. Within a report document, the salient information can be scattered in the textual and non-textual content. However, existing document summarization datasets and methods usually focus on the text and filter out the non-textual content. Missing tabular data can limit produced summaries' informativeness, especially when summaries require covering quantitative descriptions of critical metrics in tables. Existing datasets and methods cannot meet the requirements of summarizing long text and multiple tables in each report. To deal with the scarcity of available data, we propose FINDSum, the first large-scale dataset for long text and multi-table summarization. Built on 21,125 annual reports from 3,794 companies, it has two subsets for summarizing each company's results of operations and liquidity. To summarize the long text and dozens of tables in each report, we present three types of summarization methods. Besides, we propose a set of evaluation metrics to assess the usage of numerical information in produced summaries. Dataset analyses and experimental results indicate the importance of jointly considering input textual and tabular data when summarizing report documents.
Towards Foundation Models for Learning on Tabular Data
Learning on tabular data underpins numerous real-world applications. Despite considerable efforts in developing effective learning models for tabular data, current transferable tabular models remain in their infancy, limited by either the lack of support for direct instruction following in new tasks or the neglect of acquiring foundational knowledge and capabilities from diverse tabular datasets. In this paper, we propose Tabular Foundation Models (TabFMs) to overcome these limitations. TabFMs harness the potential of generative tabular learning, employing a pre-trained large language model (LLM) as the base model and fine-tuning it using purpose-designed objectives on an extensive range of tabular datasets. This approach endows TabFMs with a profound understanding and universal capabilities essential for learning on tabular data. Our evaluations underscore TabFM's effectiveness: not only does it significantly excel in instruction-following tasks like zero-shot and in-context inference, but it also showcases performance that approaches, and in instances, even transcends, the renowned yet mysterious closed-source LLMs like GPT-4. Furthermore, when fine-tuning with scarce data, our model achieves remarkable efficiency and maintains competitive performance with abundant training data. Finally, while our results are promising, we also delve into TabFM's limitations and potential opportunities, aiming to stimulate and expedite future research on developing more potent TabFMs.
ReasTAP: Injecting Table Reasoning Skills During Pre-training via Synthetic Reasoning Examples
Reasoning over tabular data requires both table structure understanding and a broad set of table reasoning skills. Current models with table-specific architectures and pre-training methods perform well on understanding table structures, but they still struggle with tasks that require various table reasoning skills. In this work, we develop ReasTAP to show that high-level table reasoning skills can be injected into models during pre-training without a complex table-specific architecture design. We define 7 table reasoning skills, such as numerical operation, temporal comparison, and conjunction. Each reasoning skill is associated with one example generator, which synthesizes questions over semi-structured tables according to the sampled templates. We model the table pre-training task as a sequence generation task and pre-train ReasTAP to generate precise answers to the synthetic examples. ReasTAP is evaluated on four benchmarks covering three downstream tasks including: 1) WikiSQL and WTQ for Table Question Answering; 2) TabFact for Table Fact Verification; and 3) LogicNLG for Faithful Table-to-Text Generation. Experimental results demonstrate that ReasTAP achieves new state-of-the-art performance on all benchmarks and delivers a significant improvement on low-resource setting. Our code is publicly available at https://github.com/Yale-LILY/ReasTAP.
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
PowerNorm: Rethinking Batch Normalization in Transformers
The standard normalization method for neural network (NN) models used in Natural Language Processing (NLP) is layer normalization (LN). This is different than batch normalization (BN), which is widely-adopted in Computer Vision. The preferred use of LN in NLP is principally due to the empirical observation that a (naive/vanilla) use of BN leads to significant performance degradation for NLP tasks; however, a thorough understanding of the underlying reasons for this is not always evident. In this paper, we perform a systematic study of NLP transformer models to understand why BN has a poor performance, as compared to LN. We find that the statistics of NLP data across the batch dimension exhibit large fluctuations throughout training. This results in instability, if BN is naively implemented. To address this, we propose Power Normalization (PN), a novel normalization scheme that resolves this issue by (i) relaxing zero-mean normalization in BN, (ii) incorporating a running quadratic mean instead of per batch statistics to stabilize fluctuations, and (iii) using an approximate backpropagation for incorporating the running statistics in the forward pass. We show theoretically, under mild assumptions, that PN leads to a smaller Lipschitz constant for the loss, compared with BN. Furthermore, we prove that the approximate backpropagation scheme leads to bounded gradients. We extensively test PN for transformers on a range of NLP tasks, and we show that it significantly outperforms both LN and BN. In particular, PN outperforms LN by 0.4/0.6 BLEU on IWSLT14/WMT14 and 5.6/3.0 PPL on PTB/WikiText-103. We make our code publicly available at https://github.com/sIncerass/powernorm.
Beyond Extraction: Contextualising Tabular Data for Efficient Summarisation by Language Models
The conventional use of the Retrieval-Augmented Generation (RAG) architecture has proven effective for retrieving information from diverse documents. However, challenges arise in handling complex table queries, especially within PDF documents containing intricate tabular structures.This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems. Our methodology involves storing PDFs in the retrieval database and extracting tabular content separately. The extracted tables undergo a process of context enrichment, concatenating headers with corresponding values. To ensure a comprehensive understanding of the enriched data, we employ a fine-tuned version of the Llama-2-chat language model for summarisation within the RAG architecture. Furthermore, we augment the tabular data with contextual sense using the ChatGPT 3.5 API through a one-shot prompt. This enriched data is then fed into the retrieval database alongside other PDFs. Our approach aims to significantly improve the precision of complex table queries, offering a promising solution to a longstanding challenge in information retrieval.
Script Normalization for Unconventional Writing of Under-Resourced Languages in Bilingual Communities
The wide accessibility of social media has provided linguistically under-represented communities with an extraordinary opportunity to create content in their native languages. This, however, comes with certain challenges in script normalization, particularly where the speakers of a language in a bilingual community rely on another script or orthography to write their native language. This paper addresses the problem of script normalization for several such languages that are mainly written in a Perso-Arabic script. Using synthetic data with various levels of noise and a transformer-based model, we demonstrate that the problem can be effectively remediated. We conduct a small-scale evaluation of real data as well. Our experiments indicate that script normalization is also beneficial to improve the performance of downstream tasks such as machine translation and language identification.