new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

Dark matter halos of luminous AGNs from galaxy-galaxy lensing with the HSC Subaru Strategic Program

We assess the dark matter halo masses of luminous AGNs over the redshift range 0.2 to 1.2 using galaxy-galaxy lensing based on imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We measure the weak lensing signal of a sample of 48907 AGNs constructed using HSC and WISE photometry. %The lensing detection around AGNs has a signal to noise ratio of 29. As expected, we find that the lensing mass profile of total AGN sample is consistent with that of massive galaxies (rm log(M_{*}/h^{-2}M_odot)sim 10.61). Surprisingly, the lensing signal remains unchanged when the AGN sample is split into four stellar mass bins of host galaxies. Specifically, we find that the excess surface density (ESD) of AGNs, residing in galaxies with high stellar masses, significantly differs from that of the control sample. We further fit a halo occupation distribution model to the data to infer the posterior distribution of parameters including the average halo mass. We find that the characteristic halo mass of the full AGN population lies near the knee (rm log(M_h/h^{-1}M_{odot})=12.0) of the stellar-to-halo mass relation (SHMR). Illustrative of the results given above, the halo masses of AGNs residing in host galaxies with high stellar masses (i.e., above the knee of the SHMR) falls below the calibrated SHMR while the halo mass of the low stellar mass sample is more consistent with the established SHMR. These results indicate that massive halos with higher clustering bias tends to suppress AGN activity, probably due to the lack of available gas.

NeutralUniverseMachine: How Filaments and Dark Matter Halo Influence the Galaxy Cold Gas Content

Aims. We aim to investigate the influence of the distance to filaments and dark-matter haloes on galaxy cold-gas content in the empirical model NeutralUniverseMachine (NUM) and the hydrodynamical simulation IllustrisTNG. Methods. We used DisPerSE to identify cosmic web structures and calculate the distance of galaxies to filaments for both observations and models. We show the results of the HI and H2 mass functions, HI- and H2-halo-mass relations, HI- and H2-stellar-mass relations for galaxies in the NUM model and IllustrisTNG with different distances to filaments and compare them with observational measurements. We also show the evolution of HI and H2 mass densities at different distances to filament bins. Results. We find that how filaments affect the HI gas is generally less significant compared to the halo environment. There is a weak trend in the observations at z=0 that low-mass haloes lying closer to the filaments tend to have reduced HI masses. However, this trend reverses for massive haloes with log(Mvir/Msun) > 12.5. This behaviour is accurately reproduced in the NUM model due to the dependence of HI gas on the halo formation time, but it does not appear in IllustrisTNG. The influence of filaments on the HI gas becomes slightly weaker at higher redshifts and is only significant for galaxies that reside in massive haloes in the NUM model. Filaments have almost no impact on the H2-stellar-mass relation in both models, confirming that H2 is primarily determined by the galaxy stellar mass and star formation rate.

Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly-mass dependent star formation efficiency

Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

Tracing the cosmological origin of gas that fuels in situ star formation in TNG50 galaxies

Based on their cosmological origin, the stars of a galaxy can be divided into two categories: those that enter through merger events (ex situ) and those born in the main progenitor (in situ). We used the TNG50 cosmological magnetohydrodynamical simulation and its Lagrangian tracer particles to explore and quantify the origin of gas that ultimately forms the in situ stars of galaxies. We tracked back the baryonic mass contributing to the z=0 in situ stellar populations of galaxies, studying trends in mass from dwarfs to group-scale halos. We find that more massive halos acquire this matter earlier than lower-mass halos, reflecting an overall earlier assembly of their in situ stellar mass. Defining the Lagrangian half-mass radius R_{rm L, 1/2} of a galaxy as the distance containing half of the mass that will form its in situ stars by z=0, we find that R_{rm L, 1/2} is larger for more massive halos at early times, reflecting larger "in situ Lagrangian regions." However, the dependence of this radius on halo mass becomes flat at z simeq 3 and then inverts toward z=0. In addition, R_{rm L, 1/2} increases rapidly with redshift, surpassing the virial radii of halos at z sim 2. This marks the cosmic epoch at which most of the gas that eventually forms the in situ stars of galaxies leaves the intergalactic medium (IGM) and enters halos, a transition that occurs earlier for more massive halos. The formation redshift of the in situ stellar component increases with halo mass, while the formation redshift of the dark matter halo decreases, indicative of a differential assembly history between these two components. Finally, we decomposed the z=0 in situ stellar mass into its distinct modes of accretion. Smooth accretion from the IGM is the most important for low-mass galaxies, while mergers and satellite-stripped gas become relevant and even dominant only for high-mass galaxies.

MSA-3D: Metallicity Gradients in Galaxies at zsim1 with JWST/NIRSpec Slit-stepping Spectroscopy

The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 lesssim z lesssim 1.7 from the \msasd survey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST's diffraction limit and a high spectral resolution of Rsimeq2700. The metallicity gradients measured in our galaxy sample range from -0.03 to 0.02 dex~kpc^{-1}. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient at zsim1 with small intrinsic scatter of 0.02 dex~kpc^{-1}. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more ``disky". This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of JWST NIRSpec/MSA in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.

The Redshift Evolution of the M_bullet-M_star Relation for JWST's Supermassive Black Holes at z > 4

JWST has detected many overmassive galactic systems at z > 4, where the mass of the black hole, M_bullet, is 10-100 times larger than expected from local relations, given the host's stellar mass, M_star. This Letter presents a model to describe these overmassive systems in the high-z Universe. We suggest that the black hole mass is the main driver of high-z star formation quenching. SMBHs globally impact their high-z galaxies because their hosts are physically small, and the black holes have duty cycles close to unity at z > 4. In this regime, we assume that black hole mass growth is regulated by the quasar's output, while stellar mass growth is quenched by it and uncorrelated to the global properties of the host halo. We find that the ratio M_bullet/M_star controls the average star formation efficiency: if M_bullet/M_star > 8times 10^{18} (n Lambda/f_{edd})[(Omega_b M_h)/(Omega_m M_star) - 1], then the galaxy is unable to form stars efficiently. Once this ratio exceeds the threshold, a runaway process brings the originally overmassive system towards the local M_bullet - M_star relation. Furthermore, the M_bullet - M_star relation evolves with redshift as propto (1+z)^{5/2}. At z sim 5, we find an overmassive factor of sim 55, in excellent agreement with current JWST data and the high-z relation inferred from those. Extending the black hole horizon farther in redshift and lower in mass will test this model and improve our understanding of the early co-evolution of black holes and galaxies.

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

Star Formation Rates, Metallicities, and Stellar Masses on kpc-scales in TNG50

Integral field units (IFU) have extended our knowledge of galactic properties to kpc (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially-resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially-resolved scaling relations within central galaxies (M_star>10^{9.0}) at z=0 in IllustrisTNG. We examine both the resolved star-forming main sequence (rSFMS) and the resolved mass-metallicity relation (rMZR) using 1~{rm kpc}times1~{rm kpc} maps of galaxies. We find that the rSFMS in IllustrisTNG is well-described by a power-law, but has some dependence on the host galaxy's mass. Conversely, the rMZR for IllustrisTNG can be described by a single power-law at low stellar mass surface density that flattens at high surface densities and is independent of host galaxy mass. We find quantitative agreement in both the rSFMS and rMZR with recent IFU observational campaigns. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt-Kennicutt (SK) law and local gas fraction relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the `net' outflow rate for the spaxel, and the observed scaling relations indicate a preference for a low net outflow rate.

Exploring the Current Star Formation Rate and Nebula Ratio of Star-Formation Galaxies at z < 0.4 with FADO

The star formation rate is a crucial astrophysical tracer for understanding the formation and evolution of galaxies, determining the interaction between interstellar medium properties and star formation, thereby inferring the evolutionary laws of cosmic star formation history and cosmic energy density. The mainstream approach to studying the stellar property in galaxies relies on pure stellar population synthesis models. However, these methods fail to account for the contamination of SFR caused by nebular gas radiation. Recent studies have indicated that neglecting nebular radiation contamination appears non-negligible in galaxies with intense star-forming activities and at relatively high redshifts, potentially leading to overestimating stellar masses. However, there is currently limited targeted research, particularly regarding galaxies at redshifts (z < 0.4). In this work, 6,511 star-formation galaxies are selected from the SDSS-DR18, and FADO fits their spectra. This tool can exclude nebular radiation contributions in the spectral fitting. A tentative work is carried out to explore the SFR of these galaxies. The results indicate that the median \( H_{\alpha} \) flux obtained from FADO fitting differs from that obtained using the pure stellar population synthesis model {\it qsofitmore} by approximately 0.034 dex. Preliminary evidence suggests that the average nebula ratio increases with redshift. Additionally, we investigated the impact of stellar mass on the nebula ratio at low to moderate redshifts. By comparing two spectral fitting software packages, we found that although the contribution of nebular emission is minimal, it generally shows an increasing trend with redshift. We anticipate that by combining optical and near-infrared spectral data, the influence of nebulae may become more prominent in star-forming galaxies at higher redshifts (e.g., up to z sim 2).

Impulsive mixing of stellar populations in dwarf spheroidal galaxies

We study the response of mono-energetic stellar populations with initially isotropic kinematics to impulsive and adiabatic changes to an underlying dark matter potential. Half-light radii expand and velocity dispersions decrease as enclosed dark matter is removed. The details of this expansion and cooling depend on the time scale on which the underlying potential changes. In the adiabatic regime, the product of half-light radius and average velocity dispersion is conserved. We show that the stellar populations maintain centrally isotropic kinematics throughout their adiabatic evolution, and their densities can be approximated by a family of analytical radial profiles. Metallicity gradients within the galaxy flatten as dark matter is slowly removed. In the case of strong impulsive perturbations, stellar populations develop power-law-like density tails with radially biased kinematics. We show that the distribution of stellar binding energies within the dark matter halo substantially widens after an impulsive perturbation, no matter the sign of the perturbation. This allows initially energetically separated stellar populations to mix, to the extent that previously chemo-dynamically distinct populations may masquerade as a single population with large metallicity and energy spread. Finally, we show that in response to an impulsive perturbation, stellar populations that are deeply embedded in cored dark matter halos undergo a series of damped oscillations before reaching a virialised equilibrium state, driven by inefficient phase mixing in the harmonic potentials of cored halos. This slow return to equilibrium adds substantial systematic uncertainty to dynamical masses estimated from Jeans modeling or the virial theorem.

Physical properties of circumnuclear ionising clusters. III. Kinematics of gas and stars in NGC 7742

In this third paper of a series, we study the kinematics of the ionised gas and stars, calculating the dynamical masses of the circumnuclear star-forming regions in the ring of of the face-on spiral NGC 7742. We have used high spectral resolution data from the MEGARA instrument attached to the Gran Telescopio Canarias (GTC) to measure the kinematical components of the nebular emission lines of selected HII regions and the stellar velocity dispersions from the CaT absorption lines that allow the derivation of the associated cluster virialized masses. The emission line profiles show two different kinematical components: a narrow one with velocity dispersion sim 10 km/s and a broad one with velocity dispersion similar to those found for the stellar absorption lines. The derived star cluster dynamical masses range from 2.5 times 10^6 to 10.0 times 10^7 M_odot. The comparison of gas and stellar velocity dispersions suggests a scenario where the clusters have formed simultaneously in a first star formation episode with a fraction of the stellar evolution feedback remaining trapped in the cluster, subject to the same gravitational potential as the cluster stars. Between 0.15 and 7.07 % of the total dynamical mass of the cluster would have cooled down and formed a new, younger, population of stars, responsible for the ionisation of the gas currently observed.

The bulk metallicity of giant planets around M stars

The bulk-metallicity determination of giant exoplanets is essential to constrain their formation and evolution pathways and to compare them to the solar system. Previous studies inferred an inverse relation between the mass and bulk metallicity. However, the data almost exclusively contained planets that orbit FGK stars. The recent discoveries of giant exoplanets around M-dwarf stars present an opportunity to probe whether they follow a mass-metallicity trend different from that of their FGK counterparts. Using evolution models we characterised the interiors of giant exoplanets with reliable mass-radius measurements that orbit FGK and M-dwarf stars. We then inferred the mass-metallicity trends for both populations. We found that the bulk metallicity of giant planets around M stars is overall lower compared to those around FGK stars. This yielded mass-metallicity relations for the two populations with similar slopes but significantly different offsets. The lack of metal-rich giant planets around M dwarfs could explain the difference in the inferred offset and be a result of different formation conditions. However, there were only 20 successful bulk-metallicity retrievals for the giant planets around M dwarfs, which resulted in rather large uncertainties. Therefore, it is of great importance to continue detecting these planets with both transit and radial velocities. Additionally, the characterisation of the atmospheres of giant planets around M-stars can further help to constrain their interiors and to investigate the atmosp

A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo

We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.

Probing the shape of the Milky Way dark matter halo with hypervelocity stars: a new method

We propose a new method to determine the shape of the gravitational potential of the dark matter (DM) halo of the Milky Way (MW) with the galactocentric tangential velocities of a sample of hypervelocity stars (HVSs). We compute the trajectories of different samples of HVSs in a MW where the baryon distribution is axisymmetric and the DM potential either is spherical or is spheroidal or triaxial with radial-dependent axis ratios. We determine the shape of the DM potential with the distribution of the latitudinal velocity |v_{vartheta}| in axisymmetric Galactic potentials, or with the distribution of |v_{vartheta}| and of a function bar v_{varphi} of the azimuthal velocity in non-axisymmetric Galactic potentials. We recover the correct shape of the DM potential by comparing the distribution of |v_{vartheta}| and bar v_{varphi} against the corresponding distributions of mock samples of HVSs that traveled in DM halos of different shapes. We use the largest possible sample of sim 800 HVSs of 4~M_odot ejected with the Hills mechanism at a rate sim 10^{-4} yr^{-1}, currently outgoing, and located at more than 10 kpc from the Galactic center. In our ideal case of galactocentric velocities with null uncertainties and no observational limitations, our method recovers the correct shape of the DM potential with a success rate Sgtrsim 89% in axisymmetric Galactic potentials, and S > 96% in the explored non-axisymmetric cases. The unsuccessful cases yield axis ratios of the DM potential that are off by pm 0.1. The success rate decreases with decreasing sample size: for example, for a spherical DM halo, S drops from sim 98% to sim 38% when the sample size decreases from sim 800 to sim 40 HVSs. A robust determination of the shape of the DM potential thus requires the measure of the galactocentric velocity of a few hundred genuine HVSs.

Effects of Dark Matter Self Interactions on Sagittarius and Its Stream

This work explores how assumptions regarding the particle-physics nature of dark matter can alter the evolution of the Sagittarius (Sgr) dwarf spheroidal galaxy and its expansive stellar stream. We run a large suite of N-body simulations to model the infall of a Sgr-like dwarf, exploring how the presence of dark matter self interactions impacts its evolution. For a scattering cross section of sigma/m_chi = 30 cm^2/g (at orbital velocity scales), these interactions result in significantly less stellar mass and little to no dark matter bound to the progenitor at the present day. To isolate the cause of this mass loss, we introduce a novel technique for controlling which pairs of dark matter simulation particles can interact. This enables us to identify ram-pressure evaporation - the scattering of satellite and host dark matter particles - as the primary source of the enhanced mass loss. The rapid disintegration of the Sgr progenitor when self interactions are allowed alters some key properties of the resulting stellar stream, most dramatically suppressing the presence of a "spur" on the apocenter of the trailing stream arm that correlates with the mass of the satellite at last pericenter. We demonstrate how the effects on the Sgr system scale with the particular choice of self-interaction cross section, which affects the degree of ram-pressure evaporation. These findings generalize beyond the Sgr system, underscoring that dwarf stellar streams and dwarf galaxies with close passages may serve as sensitive probes for dark matter self interactions.

The JWST EXCELS survey: direct estimates of C, N, and O abundances in two relatively metal-rich galaxies at zsimeq5

We present a spectroscopic analysis of two star-forming galaxies at z~5 observed with JWST/NIRSpec as part of the Early eXtragalactic Continuum and Emission Line Science (EXCELS) survey. The detection of the C III]lambdalambda1906,09, [O II]lambdalambda3726,29, [O III]lambdalambda4363,5007, and [N II]lambda6584 nebular emission lines enables investigation of the C/O, N/O, and C/N abundance ratios using the temperature-sensitive method. The two galaxies have stellar masses of log(M_{star}/M_{odot} ) = 8.13pm0.09 and log(M_{star}/M_{odot} )=8.52pm0.13 and corresponding metallicities of Z~0.2Z_{odot} and Z~0.3Z_{odot}. These metallicities are somewhat higher than is typical for other z>5 galaxies with similar stellar mass and are in fact comparable to high-redshift analogue galaxies at z~0. Both galaxies display evidence for N/O enhancement with respect to the z~0 sample, with log(N/O)=-1.07pm0.17 and log(N/O)=-0.86pm0.15 respectively. In contrast, we find low C abundances, with log(C/O)=-0.82pm0.22 and log(C/O)=-1.02pm0.22, consistent with the predicted yields of core-collapse supernovae. Following the trend observed in other high-redshift sources, we find that the C/N ratios are lower at fixed O/H compared to the majority of local galaxies. In contrast to the top-heavy IMF invoked in some studies to explain low C/N ratios in metal-poor galaxies, we find, via comparison to chemical evolution models, that a standard or bottom-heavy IMF better explains the observed abundance ratios in more enriched systems due to an increase in N-enrichment from intermediate mass (4-7M_{odot}) stars. Our results demonstrate that robust measurements of CNO abundances with JWST can reveal unique enrichment pathways in galaxies as a function of both metallicity and redshift.

Cosmology with one galaxy?

Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star-formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2,000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allow our models to infer the value of Omega_{rm m}, at fixed Omega_{rm b}, with a sim10% precision, while no constraint can be placed on sigma_8. Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, zleq3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Omega_{rm m}. We believe that our results can be explained taking into account that changes in the value of Omega_{rm m}, or potentially Omega_{rm b}/Omega_{rm m}, affect the dark matter content of galaxies. That effect leaves a distinct signature in galaxy properties to the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.

PRIMER: JWST/MIRI reveals the evolution of star-forming structures in galaxies at z<2.5

The stellar structures of star-forming galaxies (SFGs) undergo significant size growth during their mass assembly and must pass through a compaction phase as they evolve into quiescent galaxies (QGs). To shed light on the mechanisms behind this structural evolution, we study the morphology of the star-forming components of 665 SFGs at 0<z<2.5 measured using JWST/MIRI observation and compare them with the morphology of their stellar components taken from the literature. The stellar and star-forming components of most SFGs (66%) have extended disk-like structures that are aligned with each other and are of the same size. The star-forming components of these galaxies follow a mass-size relation, similar to that followed by their stellar components. At the highest mass, the optical S\'ersic index of these SFGs increases to 2.5, suggesting the presence of a dominant stellar bulge. Because their star-forming components remain disk-like, these bulges cannot have formed by secular in-situ growth. We identify a second population of galaxies lying below the MIR mass-size relation, with compact star-forming components embedded in extended stellar components (EC galaxy). These galaxies are overall rare (15%) but become more dominant (30%) at high mass (>10^{10.5}M_odot). The compact star-forming components of these galaxies are also concentrated and slightly spheroidal, suggesting that this compaction phase can build dense bulge in-situ. Finally, we identify a third population of SFGs (19%), with both compact stellar and star-forming components. The density of their stellar cores resemble those of QGs and are compatible with being the descendants of EC galaxy. Overall, the structural evolution of SFGs is mainly dominated by a secular inside-out growth, which can, however, be interrupted by violent compaction phase(s) that can build dominant stellar bulges like those in massive SFGs or QGs.

Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues

Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.

The S2 orbit and tidally disrupted binaries: indications for collisional depletion in the Galactic center

The properties of the stellar cluster surrounding Sagittarius A* can be assessed indirectly through the motion of the S-stars. Specifically, the current accuracy to which the prograde precession of the S2 star is measured allows to place significant constraints on the extended mass enclosed by its orbit. We suggest that high velocity destructive collisions (DCs) offer a natural mechanism for depleting the mass inside the S2 orbit, thus allowing to reconcile the measured precession and the existence of a dense stellar cluster. Such a solution is especially necessary when considering that stars are supplied to the inner part of the cluster by both dynamical relaxation and by stars being captured in tight orbits during tidal disruption of binaries. We use analytic arguments and results from simulations to demonstrate that in order to obtain a precession that is consistent with observations, collisional depletion is necessary if the capture rate is greater than a few 10^{-6} yr^{-1}. We also show that fluctuations arising from the finite number of stars cannot serve as an alternative to DCs for generating consistency with the observed S2 precession. We conclude that astrometric observations of the S-stars provide a meaningful indication that the inner part of our galactic center is shaped by collisional depletion, supporting the hypothesis that DCs occur in galactic nuclei at an astrophysically significant rate.

The FRB20190520B Sightline Intersects Foreground Galaxy Clusters

The repeating fast radio burst FRB20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM=1205,pc/cc) despite its low redshift of z_frb=0.241. This excess has been attributed to a large host contribution of DM_{host}approx 900,pc/cc, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separate M_{halo} >10^{14},M_odot galaxy clusters, at z=0.1867 and z=0.2170, respectively, that are directly intersected by the FRB sightline within their characteristic halo radius . Subtracting off their estimated DM contributions as well that of the diffuse intergalactic medium, we estimate a host contribution of DM_{host}=430^{+140}_{-220},pc/cc or DM_{host}=280^{+140}_{-170},pc/cc (observed frame) depending on whether we assume the halo gas extends to r_{200} or 2times r_{200}. This significantly smaller DM_{host} -- no longer the largest known value -- is now consistent with Halpha emission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be F Gapprox4.5 - 11,(pc^2;km)^{-1/3}, suggesting most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses, both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

A 2.4% Determination of the Local Value of the Hubble Constant

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant (H_0) from 3.3% to 2.4%. Improvements come from new, near-infrared observations of Cepheid variables in 11 new hosts of recent SNe~Ia, more than doubling the sample of SNe~Ia having a Cepheid-calibrated distance for a total of 19; these leverage the magnitude-z relation based on 300 SNe~Ia at z<0.15. All 19 hosts and the megamaser system NGC4258 were observed with WFC3, thus nullifying cross-instrument zeropoint errors. Other improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC4258, more Cepheids and a more robust distance to the LMC from late-type DEBs, HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes, and (iv) 2 DEBs in M31. H_0 from each is 72.25+/-2.51, 72.04+/-2.67, 76.18+/-2.37, and 74.50+/-3.27 km/sec/Mpc, respectively. Our best estimate of 73.24+/-1.74 km/sec/Mpc combines the anchors NGC4258, MW, and LMC, and includes systematic errors for a final uncertainty of 2.4%. This value is 3.4 sigma higher than 66.93+/-0.62 km/sec/Mpc predicted by LambdaCDM with 3 neutrinos with mass 0.06 eV and the Planck data, but reduces to 2.1 sigma relative to the prediction of 69.3+/-0.7 km/sec/Mpc with the combination of WMAP+ACT+SPT+BAO, suggesting systematic uncertainties in CMB measurements may play a role in the tension. If we take the conflict between Planck and H_0 at face value, one plausible explanation could involve an additional source of dark radiation in the early Universe in the range of Delta N_eff=0.4-1. We anticipate significant improvements in H_0 from upcoming parallax measurements.

Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter

Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.

AutoKnots: Adaptive Knot Allocation for Spline Interpolation

In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions

This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.

A mechanism to generate varying speed of light via Higgs-dilaton coupling: Theory and cosmological applications

We allow the Higgs field Phi to interact with a dilaton field chi of the background spacetime via the coupling chi^2,Phi^daggerPhi. Upon spontaneous gauge symmetry breaking, the Higgs VEV becomes proportional to chi. While traditionally this linkage is employed to make the Planck mass and particle masses dependent on chi, we present an textit alternative mechanism: the Higgs VEV will be used to construct Planck's constant hbar and speed of light c. Specifically, each open set vicinity of a given point x^* on the spacetime manifold is equipped with a replica of the Glashow-Weinberg-Salam action operating with its own effective values of hbar_* and c_* per hbar_*proptochi^{-1/2}(x^*) and c_*proptochi^{1/2}(x^*), causing these ``fundamental constants'' to vary alongside the dynamical field chi. Moreover, in each open set around x^*, the prevailing value chi(x^*) determines the length and time scales for physical processes occurring in this region as lproptochi^{-1}(x^*) and tauproptochi^{-3/2}(x^*). This leads to an textit anisotropic relation tau^{-1}propto l^{-3/2} between the rate of clocks and the length of rods, resulting in a distinct set of novel physical phenomena. For late-time cosmology, the variation of c along the trajectory of light waves from distant supernovae towards the Earth-based observer necessitates modifications to the Lema\^itre redshift relation and the Hubble law. These modifications are capable of: (1) Accounting for the Pantheon Catalog of SNeIa through a declining speed of light in an expanding Einstein--de Sitter universe, thus avoiding the need for dark energy; (2) Revitalizing Blanchard-Douspis-Rowan-Robinson-Sarkar's CMB power spectrum analysis that bypassed dark energy [A&A 412, 35 (2003)]; and (3) Resolving the H_0 tension without requiring a dynamical dark energy component.

Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB

We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.

Addressing the core-cusp and diversity problem of dwarf and disk galaxies using cold collisionless DARKexp theory

Observed dwarf galaxies tend to have linearly rising rotation curves, which indicate flat density cores in their centers. Furthermore, disk galaxies show a wide range of rotation curves shapes. High resolution simulations of cold collisionless dark matter do not reproduce flat central profiles, or the observed diversity of rotation curve shapes; even hydrodynamic simulations incorporating baryonic feedback cannot do that robustly. However, numerical simulations are not the only way to make predictions about density profiles of equilibrium dark matter halos. A theoretical model based on statistical mechanics shows that maximum entropy solutions for cold collisionless self-gravitating dark matter halos can have a range of inner density profiles, including flat density cores. These theoretical profiles, called DARKexp, have only one shape parameter, and are able to fit the observed rotation curves of galaxies with last measured velocities in the range ~20-200 km/s. Here we present fits to 96 SPARC catalog galaxies, and the Milky Way. DARKexp also provides good fits to the projected stellar density distributions of ultrafaint dwarfs that show cores, suggesting that the dark matter halo hosts could have flat density cores. Thus, DARKexp appears to be able to address the core-cusp problem and the diversity of rotation curves with cold collisionless dark matter alone, without baryonic feedback.

Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs

Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.

Multi-mode Pulsations in AGB Stars: Insights from 3D RHD CO5BOLD Simulations

Stars on the AGB can exhibit acoustic pulsation modes of different radial orders, along with non-radial modes. These pulsations are essential to the mass-loss process and influence the evolutionary pathways of AGB stars. P-L relations serve as a valuable diagnostic for understanding stellar evolution along the AGB. 3D RHD simulations provide a powerful tool for investigating pulsation phenomena driven by convective processes and their non-linear coupling with stellar oscillations. We investigate multi-mode pulsations in AGB stars using advanced 3D 'star-in-a-box' simulations with the CO5BOLD code. Signatures of these multi-mode pulsations were weak in our previous 3D models. Our focus is on identifying and characterising the various pulsation modes, examining their persistence and transitions, and comparing the results with 1D model predictions and observational data where applicable. We produced a new model grid comprising AGB stars with current masses of 0.7, 0.8, and 1,M_{odot}. Fourier analysis was applied to dynamic, time-dependent quantities to extract dominant pulsation modes and their corresponding periods. Additionally, wavelet transforms were employed to identify mode-switching behaviour over time. The models successfully reproduce the P-L sequences found in AGB stars. Mode-switching phenomena are found in both the models and wavelet analyses of observational data, allowing us to infer similarities in the underlying pulsation dynamics. These 3D simulations highlight the natural emergence of multi-mode pulsations, including both radial and non-radial modes, driven by the self-consistent interplay of convection and oscillations. Our findings underscore the value of 3D RHD models in capturing the non-linear behaviour of AGB pulsations, providing insights into mode switching, envelope structures, and potential links to episodic mass-loss events.

Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation

The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.

The emergence of galactic thin and thick discs across cosmic history

Present-day disc galaxies often exhibit distinct thin and thick discs. The formation mechanisms of the two discs and the timing of their onset remain open questions. To address these questions, we select edge-on galaxies from flagship JWST programs and investigate their disc structures in rest-frame, near-infrared bands. For the first time, we identify thick and thin discs at cosmological distances, dating back over 10 Gyr, and investigate their decomposed structural properties. We classify galaxies into those that require two (i.e. thin and thick) discs and those well fitted by a single disc. Disc radial sizes and vertical heights correlate strongly with the total galaxy mass and/or disc mass, independent of cosmic time. The structure of the thick disc resembles discs found in single-disc galaxies, suggesting that galaxies form a thick disc first, followed by the subsequent formation of an embedded thin disc. The transition from single to double discs occurred around 8 Gyr ago in high-mass galaxies (10^{9.75} - 10^{11}M_odot), earlier than the transition which occurred 4 Gyr ago in low-mass galaxies (10^{9.0} - 10^{9.75}M_odot), indicating sequential formation proceeds in a "downsizing" manner. Toomre Q-regulated disc formation explains the delayed thin disc formation in low-mass galaxies, leading to the observed anti-correlation between the thick-to-thin disc mass ratio and the total galaxy mass. Despite the dominant sequential formation, observations suggest that thick discs may continue to build up mass alongside their thin-disc counterparts.

The Hubble Missing Globular Cluster Survey. I. Survey overview and the first precise age estimate for ESO452-11 and 2MASS-GC01

We present the Hubble Missing Globular Cluster Survey (MGCS), a Hubble Space Telescope treasury programme dedicated to the observation of all the kinematically confirmed Milky Way globular clusters that missed previous Hubble imaging. After introducing the aims of the programme and describing its target clusters, we showcase the first results of the survey. These are related to two clusters, one located at the edge of the Milky Way Bulge and observed in optical bands, namely ESO452-11, and one located in the Galactic Disc observed in the near-IR, namely 2MASS-GC01. For both clusters, the deep colour-magnitude diagrams obtained from the MGCS observations reach several magnitudes below their main-sequence turn-off, and thus enable the first precise estimate of their age. By using the methods developed within the CARMA project, we find ESO452-11 to be an old, metal-intermediate globular cluster, with {rm [M/H]}simeq-0.80^{+0.08}_{-0.11} and an age of {rm t}=13.59^{+0.48}_{-0.69} Gyr. Its location on the age-metallicity relation makes it consistent with an in-situ origin, in agreement with its dynamical properties. On the other hand, the results for 2MASS-GC01 highlight it as a young, metal-intermediate cluster, with an age of {rm t}=7.22^{+0.93}_{-1.11} Gyr at {rm [M/H]}=-0.73^{+0.06}_{-0.06}. This is the first ever age estimate for this extremely extincted cluster, and indicates it either as the youngest globular known to date, or as a massive and compact open cluster, which is consistent with its almost circular, disc-like orbit.

A catalog of ringed galaxies in the TNG50 simulation: Analysis of their properties and structure

The catalog of ringed galaxies was compiled through visual classification of synthetic images from the TNG50 simulation. Galaxies were selected based on specific criteria: a redshift range of 0.01 < z < 0.1, stellar mass M_star >10^9 M_odot, stellar half-mass radius r_{50} > 1 kpc, and specific star formation rate (sSFR), log(sSFR/yr^{-1}) > -13. Our classification allowed for differentiation between inner rings, outer rings, combinations of rings, and partial rings (pseudo-rings), including barred and non-barred ringed galaxies. We constructed a control sample of non-ringed galaxies with similar redshift, stellar mass, and environmental density distributions. We identified 807 ringed galaxies. Approximately 59% possess an inner ring, 22% a partial ring, 12% an outer ring, and 7% have i+o rings. Our statistical analysis reveals that 64% (507 galaxies) exhibit bars. Ringed galaxies exhibit lower efficiency for star formation, reduced gas fractions, redder colors, and higher metallicities compared to non-ringed disk objects. They also show greater variability in metallicity for a given stellar mass. From the analysis of radial profiles, galaxies with outer rings exhibit a r_{50} similar to or slightly larger than their control group, while those with inner or partial rings tend to have smaller sizes. A deeper exploration of radial density profiles revealed a pronounced central mass deficit preceding the ring structures, with inner and outer rings located at r_{50} and 1.5 , r_{50}, respectively. Galaxies with both i+o rings have inner rings that are more compact and massive. Additionally, galaxies with partial rings exhibit deeper mass profiles than their controls, particularly in central areas. These findings improve our understanding of galactic evolution and the complex interplay between mass distribution and morphology.

Signatures of the Shock Interaction as an Additional Power Source in the Nebular Spectra of SN 2023ixf

Red supergiants may lose significant mass through steady winds and episodic eruptions in the final 100-1000 years before the core collapses, shaping their circumstellar environment. Interaction between supernova (SN) ejecta and distant circumstellar material (CSM) can generate shocks, which can energize the ejecta and serve as a key power source during the nebular phase of the SN. In the present work, we investigate the nebular spectrum of SN 2023ixf, observed one year post-explosion (at +363 d) with the recently commissioned WEAVE instrument on the 4.2m William Herschel Telescope. This marks the first supernova spectrum captured with WEAVE. In this spectrum, Halpha exhibits a peculiar evolution, flanked by blueward and redward broad components centred at simpm 5650,km,s^{-1} from the rest velocity of Halpha, which are seen for only a few SNe to date. These features indicate energy deposition from shocks generated by the interaction of ejecta with a CSM expelled nearly 350 - 640 years pre-explosion. Comparisons of the +363 d spectrum with model spectra from the literature, that include varying shock powers, suggest a shock power of at least sim 5 times 10 ^{40},erg,s^{-1} at this epoch. Additionally, analysis of the [O I] doublet, along with other prominent emission lines, provides evidence for clumpiness, dust formation, and asymmetry within the ejecta and/or the surrounding CSM. These emission lines also helped to constrain the oxygen mass (approx0.19^{scriptscriptstyle +0.08}_{scriptscriptstyle -0.04} M_odot), He-core mass (<3 M_odot) and the zero-age main sequence mass (lesssim 12 M_odot) of the progenitor of SN 2023ixf. The comparison with other Type II SNe highlights SN 2023ixf's unique shock interaction signatures and evidence of dust formation, setting it apart in terms of evolution and dynamics.

Channels of Stellar-mass Black Hole Formation

On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.

New Radio Observations of the Supernova Remnant CTA 1

We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.

Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

EIGER IV: The cool 10^4K circumgalactic environment of high-z galaxies reveals remarkably efficient IGM enrichment

We report new observations of the cool diffuse gas around 29, 2.3<z<6.3 galaxies, using deep JWST/NIRCam slitless grism spectroscopy around the sightline to the quasar J0100+2802. The galaxies span a stellar mass range of 7.1 leq log M_{*}/M_{sun} leq 10.7, and star-formation rates of -0.1 < log ; SFR/M_{sun}yr^{-1} ; <2.3. We find galaxies for seven MgII absorption systems within 300 kpc of the quasar sightline. The MgII radial absorption profile falls off sharply with radii, with most of the absorption extending out to 2-3R_{200} of the host galaxies. Six out of seven MgII absorption systems are detected around galaxies with log M_{*}/M_{sun} >9. MgII absorption kinematics are shifted from the systemic redshift of host galaxies with a median absolute velocity of 135 km/s and standard deviation of 85 km/s. The high kinematic offset and large radial separation (R> 1.3 R_{200}), suggest that five out of the seven MgII absorption systems are gravitationally not bound to the galaxies. In contrast, most cool circumgalactic media at z<1 are gravitationally bound. The high incidence of unbound MgII gas in this work suggests that towards the end of reionization, galaxy halos are in a state of remarkable disequilibrium, and are highly efficient in enriching the intergalactic medium. Two strongest MgII absorption systems are detected at zsim 4.22 and 4.5, the former associated with a merging galaxy system and the latter associated with three kinematically close galaxies. Both these galaxies reside in local galaxy over-densities, indicating the presence of cool MgII absorption in two "proto-groups" at z>4.

Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites

Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.

Radii, masses, and transit-timing variations of the three-planet system orbiting the naked-eye star TOI-396

TOI-396 is an F6V star (Vapprox6.4) orbited by three transiting planets. The orbital periods of the two innermost planets are close to the 5:3 commensurability (P_b sim3.6 d and P_c sim6.0 d). To measure the masses of the three planets, refine their radii, and investigate whether planets b and c are in MMR, we carried out HARPS RV observations and retrieved photometric data from TESS. We extracted the RVs via a skew-normal fit onto the HARPS CCFs and performed an MCMC joint analysis of the Doppler measurements and transit photometry, while employing the breakpoint method to remove stellar activity from the RV time series. We also performed a thorough TTV dynamical analysis of the system. Our analysis confirms that the three planets have similar sizes: R_b=2.004_{-0.047}^{+0.045}R_{oplus}; R_c=1.979_{-0.051}^{+0.054}R_{oplus}; R_d=2.001_{-0.064}^{+0.063}R_{oplus}. For the first time, we have determined the RV masses for TOI-396b and d: M_b=3.55_{-0.96}^{+0.94}M_{oplus} (rho_b=2.44_{-0.68}^{+0.69} g cm^{-3}) and M_d=7.1pm1.6M_{oplus} (rho_d=4.9_{-1.1}^{+1.2} g cm^{-3}). Our results suggest a quite unusual system architecture, with the outermost planet being the densest. The Doppler reflex motion induced by TOI-396c remains undetected in our RV time series, likely due to the proximity of P_c to the star's rotation period (P_{rot}=6.7pm1.3 d). We also discovered that TOI-396b and c display significant TTVs. While the TTV dynamical analysis returns a formally precise mass for TOI-396c (M_{c,dyn}=2.24^{+0.13}_{-0.67}M_{oplus}), the result might not be accurate owing to the poor sampling of the TTV phase. We also conclude that TOI-396b and c are close to but out of the 5:3 MMR. Our numerical simulation suggests TTV semi-amplitudes of up to 5 hours over a temporal baseline of sim5.2 years.

A JWST Project on 47 Tucanae: Kinematics, energy equipartition and anisotropy of multiple populations

Recent work with JWST has demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data from JWST, HST, and Gaia. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to sim10R_h. Our findings indicate that while 1G stars are isotropic, 2G stars are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2G_A and 2G_B, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (sim2-4R_h), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Finally, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population, while 1G stars exhibit higher skewness in their tangential proper motions, providing further evidence of differences in the kinematic properties of the 1G and 2G populations.

Resolving Pleiades binary stars with Gaia and speckle interferometric observations

The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.

Statistical selection of high-redshift, neutral-hydrogen-rich, lensed galaxies with the Square Kilometre Array

Deep wide spectral line surveys with the Square Kilometre Array (SKA) will expand the cosmic frontiers of neutral atomic hydrogen (HI) in galaxies. However, at cosmologically significant redshifts (z gtrsim 0.5), detections will typically be spatially unresolved and limited to the highest mass systems. Gravitational lensing could potentially alleviate these limitations, enabling lower mass systems to be studied at higher redshift and spatially resolved dynamical studies of some HI discs. Additionally, lensed HI systems would select foreground dark matter haloes using a different, more extended baryonic tracer compared to other lens surveys. This may result in a wider selected range of foreground dark matter halo properties, such as the concentration parameter. This paper uses the distortion of the observed HI mass function (HIMF) produced by strong gravitational lensing to find a flux density criterion for selecting lensed HI sources in future SKA-Mid spectral line surveys. This selection approach could yield lensed HI source densities in the range of sim 0.1--10 galaxies per square degree out to a redshift of z simeq 3 covered by SKA-MID Band 1. Although the sample sizes are modest, even with the proposed SKA-Mid surveys, the selection approach is straightforward and should have a 50% efficiency without any additional information, such as low-impact-factor or lower-redshift massive galaxies. The efficiency of selecting high-redshift, neutral-hydrogen-rich, lensed galaxies should then be greatly enhanced by using SKA-MID data in concert with the Vera C. Rubin Large Survey of Space and Time.

Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region

In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.

SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase

We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak V-band absolute magnitude of -18.2 pm 0.07, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than sim 70 days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 rm M_{odot} progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of M = 0.01 rm M_{odot} yr^{-1} from the r1w6 model matches best with the early-time spectra, higher than M approx 2.4 times 10^{-3} rm M_{odot} yr^{-1} derived from the ionized H{alpha} luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H_{0}=73.1^{+3.68}_{-3.50} km s^{-1} Mpc^{-1}, consistent with the results from SNe~Ia and many other independent methods.

Massive neutrinos and cosmic composition

Cosmological data probe massive neutrinos via their effects on the geometry of the Universe and the growth of structure, both of which are degenerate with the late-time expansion history. We clarify the nature of these degeneracies and the individual roles of both probes in neutrino mass inference. Geometry is strongly sensitive to neutrino masses: within LambdaCDM, the primary cosmic microwave background anisotropies alone impose that the matter fraction Omega_m must increase fivefold with increasing neutrino mass. Moreover, large-scale structure observables, like weak lensing of the CMB, are dimensionless and thus depend not on the matter density (as often quoted) but in fact the matter fraction. We explore the consequential impact of this distinction on the interplay between probes of structure, low-redshift distances, and CMB anisotropies. We derive constraints on the neutrino's masses independently from their suppression of structure and impact on geometry, showing that the latter is at least as important as the former. While the Dark Energy Spectroscopic Instrument's recent baryon acoustic oscillation data place stringent bounds largely deriving from their geometric incompatibility with massive neutrinos, all recent type Ia supernova datasets drive marginal preferences for nonzero neutrino masses because they prefer substantially larger matter fractions. Recent CMB lensing data, however, neither exclude neutrinos' suppression of structure nor constrain it strongly enough to discriminate between mass hierarchies. Current data thus evince not a need for modified dynamics of neutrino perturbations or structure growth but rather an inconsistent compatibility with massive neutrinos' impact on the expansion history. We identify two of DESI's measurements that strongly influence its constraints, and we also discuss neutrino mass measurements in models that alter the sound horizon.

The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge

The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.

ALMA Lensing Cluster Survey: Physical characterization of near-infrared-dark intrinsically faint ALMA sources at z=2-4

We present results from Atacama Large Millimeter/submillimeter Array (ALMA) spectral line-scan observations at 3-mm and 2-mm bands of three near-infrared-dark (NIR-dark) galaxies behind two massive lensing clusters MACS J0417.5-1154 and RXC J0032.1+1808. Each of these three sources is a faint (de-lensed S_{1.2 mm} < 1 mJy) triply lensed system originally discovered in the ALMA Lensing Cluster Survey. We have successfully detected CO and [C I] emission lines and confirmed that their spectroscopic redshifts are z=3.652, 2.391, and 2.985. By utilizing a rich multi-wavelength data set, we find that the NIR-dark galaxies are located on the star formation main sequence in the intrinsic stellar mass range of log (M_*/M_odot) = 9.8 - 10.4, which is about one order of magnitude lower than that of typical submillimeter galaxies (SMGs). These NIR-dark galaxies show a variety in gas depletion times and spatial extent of dust emission. One of the three is a normal star-forming galaxy with gas depletion time consistent with a scaling relation, and its infrared surface brightness is an order of magnitude smaller than that of typical SMGs. Since this galaxy has an elongated axis ratio of sim 0.17, we argue that normal star-forming galaxies in an edge-on configuration can be heavily dust-obscured. This implies that existing deep WFC3/F160W surveys may miss a fraction of typical star-forming main-sequence galaxies due to their edge-on orientation.

Characterizing WASP-43b's interior structure: unveiling tidal decay and apsidal motion

Context. Recent developments in exoplanetary research highlight the importance of Love numbers in understanding their internal dynamics, formation, migration history and their potential habitability. Love numbers represent crucial parameters that gauge how exoplanets respond to external forces such as tidal interactions and rotational effects. By measuring these responses, we can gain insights into the internal structure, composition, and density distribution of exoplanets. The rate of apsidal precession of a planetary orbit is directly linked to the second-order fluid Love number, thus we can gain valuable insights into the mass distribution of the planet. Aims. In this context, we aim to re-determine the orbital parameters of WASP-43b-in particular, orbital period, eccentricity, and argument of the periastron-and its orbital evolution. We study the outcomes of the tidal interaction with the host star:whether tidal decay and periastron precession are occurring in the system. Method. We observed the system with HARPS, whose data we present for the first time, and we also analyse the newly acquired JWST full-phase light curve. We fit jointly archival and new radial velocity and transit and occultation mid-times, including tidal decay, periastron precession and long-term acceleration in the system. Results. We detected a tidal decay rate of \dotP_a=(-1.99pm0.50) and a periastron precession rate of \dotomega=(0.1851+0.0070-0.0077)=(0.1727+0.0083-0.0089)deg/d=(621.72+29.88-32.04)arcsec/d. This is the first time that both periastron precession and tidal decay are simultaneously detected in an exoplanetary system. The observed tidal interactions can neither be explained by the tidal contribution to apsidal motion of a non-aligned stellar or planetary rotation axis nor by assuming non-synchronous rotation for the planet, and a value for the planetary Love number cannot be derived. [...]

Planck 2018 results. VI. Cosmological parameters

We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter LambdaCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base LambdaCDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega_c h^2 = 0.120pm 0.001, baryon density Omega_b h^2 = 0.0224pm 0.0001, scalar spectral index n_s = 0.965pm 0.004, and optical depth tau = 0.054pm 0.007 (in this abstract we quote 68,% confidence regions on measured parameters and 95,% on upper limits). The angular acoustic scale is measured to 0.03,% precision, with 100theta_*=1.0411pm 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-LambdaCDM cosmology, the inferred late-Universe parameters are: Hubble constant H_0 = (67.4pm 0.5)km/s/Mpc; matter density parameter Omega_m = 0.315pm 0.007; and matter fluctuation amplitude sigma_8 = 0.811pm 0.006. We find no compelling evidence for extensions to the base-LambdaCDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be N_{rm eff} = 2.99pm 0.17, and the neutrino mass is tightly constrained to sum m_nu< 0.12eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -LambdaCDM at over 2,sigma, which pulls some parameters that affect the lensing amplitude away from the base-LambdaCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

Radiation-magnetohydrodynamics with MPI-AMRVAC using flux-limited diffusion

Context. Radiation plays a significant role in solar and astrophysical environments as it may constitute a sizeable fraction of the energy density, momentum flux, and the total pressure. Modelling the dynamic interaction between radiation and magnetized plasmas in such environments is an intricate and computationally costly task. Aims. The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework MPI-AMRVAC, in solving equations of radiation-magnetohydrodynamics (RMHD), and to present benchmark test cases relevant for radiation-dominated magnetized plasmas. Methods. The existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules are combined to solve the equations of radiation-magnetohydrodynamics (RMHD) on block-adaptive finite volume Cartesian meshes in any dimensionality. Results. We introduce and validate several benchmark test cases such as steady radiative MHD shocks, radiation-damped linear MHD waves, radiation-modified Riemann problems and a multi-dimensional radiative magnetoconvection case. We recall the basic governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick radiation fields where the diffusion limit is reached. The RMHD system allows for 8 linear wave types, where the classical 7-wave MHD picture (entropy and three wave pairs for slow, Alfven and fast) is augmented with a radiative diffusion mode. Conclusions. The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation making it well-suited for larger scientific applications to study magnetized matter-radiation interactions in solar and stellar interiors and atmospheres.

Harnessing the Hubble Space Telescope Archives: A Catalogue of 21,926 Interacting Galaxies

Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these systems require ever larger samples, which can be difficult (even impossible) to select from individual surveys. We use the new platform ESA Datalabs to assemble a catalogue of interacting galaxies from the Hubble Space Telescope science archives; this catalogue is larger than previously published catalogues by nearly an order of magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble Source Catalogue. We employ a combination of automated visual representation and visual analysis to identify a clean sample of 21,926 interacting galaxy systems, mostly with z < 1. Sixty five percent of these systems have no previous references in either the NASA Extragalactic Database or Simbad. In the process of removing contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary disks, and `backlit' overlapping galaxies. We briefly investigate the basic properties of this sample, and we make our catalogue publicly available for use by the community. In addition to providing a new catalogue of scientifically interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate substantial archival analysis without placing a high computational or storage burden on the end user.

JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations

The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.

The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of (25~h^{-1}{rm Mpc})^3 volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying Omega_m, sigma_8, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of (400~h^{-1}{rm Mpc})^3. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.

First detections of CO absorption in the Magellanic Clouds and direct measurement of the CO-to-H_2 ratio

Molecular hydrogen (H_2) is by far the most abundant molecule in the Universe. However, due to the low emissivity of H_2, carbon monoxide (CO) is widely used instead to trace molecular gas in galaxies. The relative abundances of these molecules is expected to depend on both physical (e.g., density) and chemical (e.g., metal enrichment) properties of the gas, making direct measurements in diverse environments crucial. We present a systematic search for CO in absorption toward 34 stars behind H_2 gas in the Magellanic Clouds using the Hubble Space Telescope. We report the first two definitive detections of CO absorption in the Large Magellanic Cloud (LMC) and one in the Small Magellanic Cloud (SMC), along with stringent upper limits for the remaining sightlines. Non-detections of CO are consistent with models of low thermal pressures and/or low metallicities while detections at the lower metallicities of the Magellanic Clouds require higher thermal pressures, P_{rm th}=10^5-10^6,K,cm^{-3} than detections the Milky Way at similar N({rm H_2}). Notably, the high density derived from the rotational excitation of CO towards SK,143 in the SMC suggests full molecularization of CO in the absorbing cloud, with CO/H_2 = 8.3^{+2.0}_{-1.6}times10^{-5} consistent with the standard ratio (3.2times10^{-4}) measured in dense molecular gas in the Milky Way, scaled to the SMC's 0.2,Z_{odot} metallicity.

The FAST HI 21-cm absorption blind survey. II. -- Statistic Exploration for Associated and Intervening systems

We present an extragalactic HI 21-cm absorption lines catalog from a blind search at z leqslant 0.35, using drift-scan data collected in 1325.6 hours by the ongoing Commensal Radio Astronomy FasT Survey (CRAFTS) and FAST All Sky HI Survey (FASHI), which spans a sky area of 6072.0 deg^{2} and covers 84533 radio sources with a flux density greater than 12 mJy. 14 previously identified HI absorbers and 20 newly discovered HI absorbers were detected, comprising 15 associated systems, 10 intervening systems, and 9 systems with undetermined classifications. Through spectral stacking, the mean peak optical path, mean velocity-integrated optical path, mean FWHM and mean HI column density are measured to be 0.47 and 0.30; 27.19 and 4.36 km s^{-1}; 42.61 and 9.33 km s^{-1}; 0.49 and 0.08 T_{s} times 10^{20}cm^{-2}K^{-1}, for the associated and intervening samples, respectively. Statistical analysis also reveals that associated systems tend to be hosted by red (g-r>0.7) galaxies at lower redshifts, whereas galaxies hosting intervening HI absorption are typically found at higher redshifts and are of a bluer (g-rleqslant0.7) type. A noticeable difference is observed in the positions of foregrounds, backgrounds of intervening systems, and high-redshift and low-redshift associated systems on the WISE color-color diagram. All identified foreground sources in our sample have W1-W2 magnitudes below 0.8, suggesting no Active Galactic Nuclei (AGN). In contrast, backgrounds of intervening systems tend to have W1-W2 magnitudes above 0.8, indicating AGN presence. For associated absorption, most low-redshift (zleqslant0.5) systems show W1-W2 values below 0.8, while higher-redshift associated absorption (z>0.5) displays a broader range of W1-W2 values.

Mapping the Chemo-dynamics of the Galactic disk using the LAMOST and APOGEE red clump stars

A detailed measurement is made of the metallicity distributions, kinematics and dynamics of the thin and thick disks, across a large disk volume (5.0 leq R leq 15.0 kpc and |Z| leq3.0 kpc), by using the LAMOST-APOGEE red clump stars. The metallicity distributions results show that the radial metallicity gradient Delta[Fe/H]/DeltaR of the thin disk weakens with |Z| from -0.06 dex kpc^{-1} at around |Z| < 0.25 kpc to -0.02 dex kpc^{-1} at around |Z| > 2.75 kpc, while the thick disk displays a global weak positive Delta[Fe/H]/DeltaR, generally weaker than 0.01 dex kpc^{-1}. The vertical metallicity gradient Delta[Fe/H]/Delta|Z| weakened steadily from -0.36 dex kpc^{-1} at R sim 5.5 kpc to -0.05 dex kpc^{-1} at around R > 11.5 kpc for the thin disk, while the thick disk presents an almost constant value (nearly -0.06 sim -0.08 dex kpc^{-1}) for all the R bins. These results indicate the contribution of the radial migration to the disk evolution, and the obvious north-south asymmetry in [Fe/H] may be linked to the disk warp and/or the disk perturbation events. The oscillations of the corrected Delta[Fe/H]/Delta|Z| with R are likely because of the resonances with the Galactic Bar. Our detailed measurements of DeltaV_{phi}/Delta[Fe/H] indicate an "inside-out" and "upside-down" star formation scenario for the thick disk. The results of eccentricity distributions and [alpha/Fe]--velocity dispersion relations are likely to suggest that the thick disk stars require an obvious contribution from other heating mechanisms such as merger and accretion, or born in the chaotic mergers of gas-rich systems and/or turbulent interstellar medium.

Investigating cannibalistic millisecond pulsar binaries using MESA: New constraints from pulsar spin and mass evolution

Compact binary millisecond pulsars (MSPs) with orbital periods lesssim1d are key to understanding binary evolution involving massive neutron stars (NSs). Due to the ablation of the companion by the rapidly spinning pulsar, these systems are also known as spiders and categorized into two main branches: redbacks (RBs; companion mass in the range of 0.1 to 0.5\,\Msun) and black widows (BWs; companion mass lesssim\,0.1\,\Msun). We present models of low- and intermediate-mass X-ray binaries and compare them with observations of Galactic spiders (including the presence or absence of hydrogen lines in their optical spectra), and we constrain and quantify the interaction between the pulsar and the companion. Using MESA, we created the allowed initial parameter space. For the first time in MESA, we also included the detailed evolution of the pulsar spin and modeled the irradiation of the companion by the pulsar wind. Efficient mass accretion onto the NS (at least 70% of the mass transferred is accreted) with an X-ray irradiated disk followed by strong irradiation of the companion can explain most of the properties of the observed spiders. Our RB evolutionary tracks continue to the BW regime, connecting the two branches of spiders. Our models explain the lack of hydrogen in some observed BWs with ultra-light companions. During accretion induced spin up, the mass required to spin up an NS to sub-milliseconds is high enough to collapse it into a black hole. Finally, after analyzing the formation of RB-like spiders with giant companions and orbital periods of several days (huntsmen), we conclude that they are unlikely to produce super-massive NSs (maximum accreted mass lesssim0.5M_{odot}). Cannibalistic MSP binary formation depends heavily on the interplay between accretion onto the pulsar and pulsar wind irradiation.

KIC 4150611: A quadruply eclipsing heptuple star system with a g-mode period-spacing pattern Asteroseismic modelling of the g-mode period-spacing pattern

In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy (T_{rm eff} and log(g)) and eclipse modelling (R). To estimate the level of uncertainty due to different frequency extraction and pattern identification processes, we consider four different variations on the period-spacing patterns. To better understand the correlations between and the uncertainty structure of our parameter estimates, we also employed a classical, parameter-based MCMC grid search on four different stellar grids. The best-fitting, externally constrained model to the period-spacing pattern arrives at estimates of the stellar properties for Aa of: M=1.51 pm 0.05 M_odot, X_c =0.43 pm 0.04, R=1.66 pm 0.1 R_odot, f_{rm ov}=0.010, Omega_c=1.58 pm 0.01 d^{-1} with rigid rotation to within the measurement errors, log(T_{rm eff})=3.856 pm 0.008 dex, log(g)=4.18 pm 0.04 dex, and log(L)=0.809 pm 0.005 dex, which agree well with previous measurements from eclipse modelling, spectroscopy, and the Gaia DR3 luminosity. We find that the near-core properties of the best-fitting asteroseismic models are consistent with external constraints from eclipse modelling and spectroscopy. Aa appears to be a typical example of a gamma Dor star, fitting well within existing populations. We find that Aa is quasi-rigidly rotating to within the uncertainties, and note that the asteroseismic age estimate for Aa (1100 pm 100 Myr) is considerably older than the young (35 Myr) age implied by previous isochrone fits to the B binary in the literature. Our MCMC parameter-based grid-search agrees well with our pattern-modelling approach.

Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material

In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.

Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap

TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.

The Low Mass Ratio Overcontact Binary GV Leonis and Its Circumbinary Companion

Photometric and spectroscopic observations of GV Leo were performed from 2017 to 2024. The light curves show a flat bottom at the primary eclipse and the conventional O'Connell effect. The echelle spectra reveal that the effective temperature and rotation velocity of the more massive secondary are T_{rm eff,2} = 5220pm120 K and v_2 sin i = 223pm40 km s^{-1}, respectively. Our binary modeling indicates that the program target is a W-subclass contact binary with a mass ratio of q = 5.48, an inclination angle of i = 81^circ.68, a temperature difference of (T_{rm eff,1}-T_{rm eff,2}) = 154 K, and a filling factor of f = 36 \%. The light asymmetries were reasonably modeled by a dark starspot on the secondary's photosphere. Including our 26 minimum epochs, 84 times of minimum light were used to investigate the orbital period of the system. We found that the eclipse times of GV Leo have varied by a sinusoid with a period of 14.9 years and a semi-amplitude of 0.0076 days superimposed on a downward parabola. The periodic modulation is interpreted as a light time effect produced by an unseen outer tertiary with a minimum mass of 0.26 M_odot, while the parabolic component is thought to be a combination of mass transfer (secondary to primary) and angular momentum loss driven by magnetic braking. The circumbinary tertiary would have caused the eclipsing pair of GV Leo to evolve into its current short-period contact state by removing angular momentum from the primordial widish binary.

A Machine Learning Framework for Stellar Collision Transient Identification

Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy

We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.

Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis

We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, C_{rm HOD}, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, C_{rm stat}, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed LambdaCDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data.

The redshift dependence of the inferred H_0 in a local void solution to the Hubble tension

Galaxy number counts suggest that we are located within the Gpc-scale KBC void. The Hubble tension might arise due to gravitationally driven outflow from this void, as explored in detail by Haslbauer et al. We explore how the impact of the void on redshift decays at large distances. We define H_0(z) as the present expansion rate H_0 that would be inferred from observations in a narrow redshift range centred on z. We find H_0(z) in three different ways, all of which give similar results. We then compare these results with the observations of Jia et al., who were careful to minimise the impact of correlations between H_0 measurements from data in different redshift bins. We find reasonable agreement with their results for the Gaussian and Exponential void underdensity profiles, although the agreement is less good in the Maxwell-Boltzmann case. The latter profile causes severe disagreement with the observed bulk flow curve at z < 0.1 (Mazurenko et al.), so the tension with higher redshift data further highlights that the deepest part of the KBC void is probably near its centre. The observations show a decline of H_0(z) towards the background Planck value in qualitative agreement with the considered models, even if we use a larger void. The good overall agreement with the recent results of Jia et al. suggests that the local supervoid evident from the galaxy luminosity density out to a Gpc might also solve the Hubble tension while retaining a low background H_0 consistent with Planck data, assuming enhanced structure formation on >100 Mpc scales.

An analytic redshift-independent formulation of baryonic effects on the matter power spectrum

Baryonic effects created by feedback processes associated with galaxy formation are an important, poorly constrained systematic effect for models of large-scale structure as probed by weak gravitational lensing. Upcoming surveys require fast methods to predict and marginalize over the potential impact of baryons on the total matter power spectrum. Here we use the FLAMINGO cosmological hydrodynamical simulations to test a recent proposal to approximate the matter power spectrum as the sum of the linear matter power spectrum and a constant multiple, A_{rm mod}, of the difference between the linear and non-linear gravity-only power spectra. We show that replacing this constant multiple with a one-parameter family of sigmoid functions of the wavenumber k allows to us match the predictions of simulations with different feedback strengths for z leq 1, k < 3~hrm Mpc^{-1}, and the different cosmological models in the FLAMINGO suite. The baryonic response predicted by FLAMINGO models that use jet-like AGN feedback instead of the fiducial thermally-driven AGN feedback can also be reproduced, but at the cost of increasing the number of parameters in the sigmoid function from one to three. The assumption that A_{rm mod} depends only on k breaks down for decaying dark matter models, highlighting the need for more advanced baryon response models when studying cosmological models that deviate strongly from LambdaCDM.

The Binary Fraction of Red Supergiants in the Magellanic Clouds

Red supergiants (RSGs), as the descendants of OB-type stars and the progenitors of supernovae, provide crucial insights into the evolution of massive stars, particularly in binary systems. Previous studies show that the binary fraction of RSGs (approx 15% - 40%) is significantly lower than that of their predecessors (approx 50% - 70%). In this work, we investigate the binary fraction of RSGs with the recently selected largest samples of 4695 and 2097 RSGs in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively. The binary system with a hot companion (O-, B- and A-type star) is identified by detecting the ultraviolet (UV) excess in the observed spectral energy distribution (SED) ranging from ultraviolet to mid-infrared after subtracting the model SED of RSG since RSGs are very weak in the UV band. It is found that the lower limit of binarity is 30.2% pm 0.7% and 32.2% pm 1% in the LMC and SMC, respectively. If the sample is limited to luminous RSGs with log L/L_{odot} > 4.0, the binary fraction becomes 26.6% pm 1.1% and 26.4% pm 1.7% in the LMC and SMC, respectively. The derived binary fraction is valid in the range of sim 2.3 < log P / [d] < sim 8. Our study suggests that roughly one-third of massive stars host a third companion within sim 30,000 AU. In addition, 15 RSGs are also identified as binary via HST/STIS spectra, and a handful of the binaries identified by the SED fitting are confirmed by their light curve and radial velocity dispersion. The stellar parameters of the companions, i.e. T_{eff}, R, L and log g, are calculated by model fitting.

Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk

The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.