Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents
We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to single elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic partial world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods.
Document Collection Visual Question Answering
Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task.
Superlatives in Context: Explicit and Implicit Domain Restrictions for Superlative Frames
Superlatives are used to single out elements with a maximal/minimal property. Semantically, superlatives perform a set comparison: something (or some things) has the min/max property out of a set. As such, superlatives provide an ideal phenomenon for studying implicit phenomena and discourse restrictions. While this comparison set is often not explicitly defined, its (implicit) restrictions can be inferred from the discourse context the expression appears in. In this work we provide an extensive computational study on the semantics of superlatives. We propose a unified account of superlative semantics which allows us to derive a broad-coverage annotation schema. Using this unified schema we annotated a multi-domain dataset of superlatives and their semantic interpretations. We specifically focus on interpreting implicit or ambiguous superlative expressions, by analyzing how the discourse context restricts the set of interpretations. In a set of experiments we then analyze how well models perform at variations of predicting superlative semantics, with and without context. We show that the fine-grained semantics of superlatives in context can be challenging for contemporary models, including GPT-4.
Vidu4D: Single Generated Video to High-Fidelity 4D Reconstruction with Dynamic Gaussian Surfels
Video generative models are receiving particular attention given their ability to generate realistic and imaginative frames. Besides, these models are also observed to exhibit strong 3D consistency, significantly enhancing their potential to act as world simulators. In this work, we present Vidu4D, a novel reconstruction model that excels in accurately reconstructing 4D (i.e., sequential 3D) representations from single generated videos, addressing challenges associated with non-rigidity and frame distortion. This capability is pivotal for creating high-fidelity virtual contents that maintain both spatial and temporal coherence. At the core of Vidu4D is our proposed Dynamic Gaussian Surfels (DGS) technique. DGS optimizes time-varying warping functions to transform Gaussian surfels (surface elements) from a static state to a dynamically warped state. This transformation enables a precise depiction of motion and deformation over time. To preserve the structural integrity of surface-aligned Gaussian surfels, we design the warped-state geometric regularization based on continuous warping fields for estimating normals. Additionally, we learn refinements on rotation and scaling parameters of Gaussian surfels, which greatly alleviates texture flickering during the warping process and enhances the capture of fine-grained appearance details. Vidu4D also contains a novel initialization state that provides a proper start for the warping fields in DGS. Equipping Vidu4D with an existing video generative model, the overall framework demonstrates high-fidelity text-to-4D generation in both appearance and geometry.
DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage
Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels.
Convolutional Neural Networks and Volcano Plots: Screening and Prediction of Two-Dimensional Single-Atom Catalysts
Single-atom catalysts (SACs) have emerged as frontiers for catalyzing chemical reactions, yet the diverse combinations of active elements and support materials, the nature of coordination environments, elude traditional methodologies in searching optimal SAC systems with superior catalytic performance. Herein, by integrating multi-branch Convolutional Neural Network (CNN) analysis models to hybrid descriptor based activity volcano plot, 2D SAC system composed of diverse metallic single atoms anchored on six type of 2D supports, including graphitic carbon nitride, nitrogen-doped graphene, graphene with dual-vacancy, black phosphorous, boron nitride, and C2N, are screened for efficient CO2RR. Starting from establishing a correlation map between the adsorption energies of intermediates and diverse electronic and elementary descriptors, sole singular descriptor lost magic to predict catalytic activity. Deep learning method utilizing multi-branch CNN model therefore was employed, using 2D electronic density of states as input to predict adsorption energies. Hybrid-descriptor enveloping both C- and O-types of CO2RR intermediates was introduced to construct volcano plots and limiting potential periodic table, aiming for intuitive screening of catalyst candidates for efficient CO2 reduction to CH4. The eDOS occlusion experiments were performed to unravel individual orbital contribution to adsorption energy. To explore the electronic scale principle governing practical engineering catalytic CO2RR activity, orbitalwise eDOS shifting experiments based on CNN model were employed. The study involves examining the adsorption energy and, consequently, catalytic activities while varying supported single atoms. This work offers a tangible framework to inform both theoretical screening and experimental synthesis, thereby paving the way for systematically designing efficient SACs.
Manhattan Room Layout Reconstruction from a Single 360 image: A Comparative Study of State-of-the-art Methods
Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g. SegNet or ResNet), type of elements predicted (e.g. corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset [3], and introduce two depth-based evaluation metrics.
μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context
Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents. For this reason, they are of great interest to scholars in many social and humanities fields. In this work, we focus on Regesta Pontificum Romanum, a large collection of papal registers. Regesta are visually rich documents, where the layout is as important as the text content to convey the contained information through the structure, and are inherently multi-page documents. Among Digital Humanities techniques that can help scholars efficiently exploit regesta and other documental sources in the form of scanned documents, Document Parsing has emerged as a task to process document images and convert them into machine-readable structured representations, usually markup language. However, current models focus on scientific and business documents, and most of them consider only single-paged documents. To overcome this limitation, in this work, we propose {\mu}gat, an extension of the recently proposed Document parsing Nougat architecture, which can handle elements spanning over the single page limits. Specifically, we adapt Nougat to process a larger, multi-page context, consisting of the previous and the following page, while parsing the current page. Experimental results, both qualitative and quantitative, demonstrate the effectiveness of our proposed approach also in the case of the challenging Regesta Pontificum Romanorum.
SVGCraft: Beyond Single Object Text-to-SVG Synthesis with Comprehensive Canvas Layout
Generating VectorArt from text prompts is a challenging vision task, requiring diverse yet realistic depictions of the seen as well as unseen entities. However, existing research has been mostly limited to the generation of single objects, rather than comprehensive scenes comprising multiple elements. In response, this work introduces SVGCraft, a novel end-to-end framework for the creation of vector graphics depicting entire scenes from textual descriptions. Utilizing a pre-trained LLM for layout generation from text prompts, this framework introduces a technique for producing masked latents in specified bounding boxes for accurate object placement. It introduces a fusion mechanism for integrating attention maps and employs a diffusion U-Net for coherent composition, speeding up the drawing process. The resulting SVG is optimized using a pre-trained encoder and LPIPS loss with opacity modulation to maximize similarity. Additionally, this work explores the potential of primitive shapes in facilitating canvas completion in constrained environments. Through both qualitative and quantitative assessments, SVGCraft is demonstrated to surpass prior works in abstraction, recognizability, and detail, as evidenced by its performance metrics (CLIP-T: 0.4563, Cosine Similarity: 0.6342, Confusion: 0.66, Aesthetic: 6.7832). The code will be available at https://github.com/ayanban011/SVGCraft.
UnZipLoRA: Separating Content and Style from a Single Image
This paper introduces UnZipLoRA, a method for decomposing an image into its constituent subject and style, represented as two distinct LoRAs (Low-Rank Adaptations). Unlike existing personalization techniques that focus on either subject or style in isolation, or require separate training sets for each, UnZipLoRA disentangles these elements from a single image by training both the LoRAs simultaneously. UnZipLoRA ensures that the resulting LoRAs are compatible, i.e., they can be seamlessly combined using direct addition. UnZipLoRA enables independent manipulation and recontextualization of subject and style, including generating variations of each, applying the extracted style to new subjects, and recombining them to reconstruct the original image or create novel variations. To address the challenge of subject and style entanglement, UnZipLoRA employs a novel prompt separation technique, as well as column and block separation strategies to accurately preserve the characteristics of subject and style, and ensure compatibility between the learned LoRAs. Evaluation with human studies and quantitative metrics demonstrates UnZipLoRA's effectiveness compared to other state-of-the-art methods, including DreamBooth-LoRA, Inspiration Tree, and B-LoRA.
RoDUS: Robust Decomposition of Static and Dynamic Elements in Urban Scenes
The task of separating dynamic objects from static environments using NeRFs has been widely studied in recent years. However, capturing large-scale scenes still poses a challenge due to their complex geometric structures and unconstrained dynamics. Without the help of 3D motion cues, previous methods often require simplified setups with slow camera motion and only a few/single dynamic actors, leading to suboptimal solutions in most urban setups. To overcome such limitations, we present RoDUS, a pipeline for decomposing static and dynamic elements in urban scenes, with thoughtfully separated NeRF models for moving and non-moving components. Our approach utilizes a robust kernel-based initialization coupled with 4D semantic information to selectively guide the learning process. This strategy enables accurate capturing of the dynamics in the scene, resulting in reduced artifacts caused by NeRF on background reconstruction, all by using self-supervision. Notably, experimental evaluations on KITTI-360 and Pandaset datasets demonstrate the effectiveness of our method in decomposing challenging urban scenes into precise static and dynamic components.
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyenas new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level, an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 17 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on all 8 datasets on average by +9 accuracy points.
Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey
Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.
TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space
We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/
ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization, which aims to generate a sequence of visually coherent images aligning with a given narrative and reference images, has seen significant progress with recent advancements in generative models. To further enhance the performance of story visualization frameworks in real-world scenarios, we introduce a comprehensive evaluation benchmark, ViStoryBench. We collect a diverse dataset encompassing various story types and artistic styles, ensuring models are evaluated across multiple dimensions such as different plots (e.g., comedy, horror) and visual aesthetics (e.g., anime, 3D renderings). ViStoryBench is carefully curated to balance narrative structures and visual elements, featuring stories with single and multiple protagonists to test models' ability to maintain character consistency. Additionally, it includes complex plots and intricate world-building to challenge models in generating accurate visuals. To ensure comprehensive comparisons, our benchmark incorporates a wide range of evaluation metrics assessing critical aspects. This structured and multifaceted framework enables researchers to thoroughly identify both the strengths and weaknesses of different models, fostering targeted improvements.
MADP: Multi-Agent Deductive Planning for Enhanced Cognitive-Behavioral Mental Health Question Answer
The Mental Health Question Answer (MHQA) task requires the seeker and supporter to complete the support process in one-turn dialogue. Given the richness of help-seeker posts, supporters must thoroughly understand the content and provide logical, comprehensive, and well-structured responses. Previous works in MHQA mostly focus on single-agent approaches based on the cognitive element of Cognitive Behavioral Therapy (CBT), but they overlook the interactions among various CBT elements, such as emotion and cognition. This limitation hinders the models' ability to thoroughly understand the distress of help-seekers. To address this, we propose a framework named Multi-Agent Deductive Planning (MADP), which is based on the interactions between the various psychological elements of CBT. This method guides Large Language Models (LLMs) to achieve a deeper understanding of the seeker's context and provide more personalized assistance based on individual circumstances. Furthermore, we construct a new dataset based on the MADP framework and use it to fine-tune LLMs, resulting in a specialized model named MADP-LLM. We conduct extensive experiments, including comparisons with multiple LLMs, human evaluations, and automatic evaluations, to validate the effectiveness of the MADP framework and MADP-LLM.
RetrieveGPT: Merging Prompts and Mathematical Models for Enhanced Code-Mixed Information Retrieval
Code-mixing, the integration of lexical and grammatical elements from multiple languages within a single sentence, is a widespread linguistic phenomenon, particularly prevalent in multilingual societies. In India, social media users frequently engage in code-mixed conversations using the Roman script, especially among migrant communities who form online groups to share relevant local information. This paper focuses on the challenges of extracting relevant information from code-mixed conversations, specifically within Roman transliterated Bengali mixed with English. This study presents a novel approach to address these challenges by developing a mechanism to automatically identify the most relevant answers from code-mixed conversations. We have experimented with a dataset comprising of queries and documents from Facebook, and Query Relevance files (QRels) to aid in this task. Our results demonstrate the effectiveness of our approach in extracting pertinent information from complex, code-mixed digital conversations, contributing to the broader field of natural language processing in multilingual and informal text environments. We use GPT-3.5 Turbo via prompting alongwith using the sequential nature of relevant documents to frame a mathematical model which helps to detect relevant documents corresponding to a query.
CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences
Code completion is an essential feature of IDEs, yet current autocompleters are restricted to either grammar-based or NLP-based single token completions. Both approaches have significant drawbacks: grammar-based autocompletion is restricted in dynamically-typed language environments, whereas NLP-based autocompleters struggle to understand the semantics of the programming language and the developer's code context. In this work, we present CodeFill, a language model for autocompletion that combines learned structure and naming information. Using a parallel Transformer architecture and multi-task learning, CodeFill consumes sequences of source code token names and their equivalent AST token types. Uniquely, CodeFill is trained both for single-token and multi-token (statement) prediction, which enables it to learn long-range dependencies among grammatical and naming elements. We train CodeFill on two datasets, consisting of 29M and 425M lines of code, respectively. To make the evaluation more realistic, we develop a method to automatically infer points in the source code at which completion matters. We compare CodeFill against four baselines and two state-of-the-art models, GPT-C and TravTrans+.CodeFill surpasses all baselines in single token prediction (MRR: 70.9% vs. 66.2% and 67.8%) and outperforms the state of the art for multi-token prediction (ROUGE-L: 63.7% vs. 52.4% and 59.2%, for n=4 tokens). We publicly release our source code and datasets.
Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.
The Lost Melody: Empirical Observations on Text-to-Video Generation From A Storytelling Perspective
Text-to-video generation task has witnessed a notable progress, with the generated outcomes reflecting the text prompts with high fidelity and impressive visual qualities. However, current text-to-video generation models are invariably focused on conveying the visual elements of a single scene, and have so far been indifferent to another important potential of the medium, namely a storytelling. In this paper, we examine text-to-video generation from a storytelling perspective, which has been hardly investigated, and make empirical remarks that spotlight the limitations of current text-to-video generation scheme. We also propose an evaluation framework for storytelling aspects of videos, and discuss the potential future directions.
KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.
Cross-modal RAG: Sub-dimensional Retrieval-Augmented Text-to-Image Generation
Text-to-image generation increasingly demands access to domain-specific, fine-grained, and rapidly evolving knowledge that pretrained models cannot fully capture. Existing Retrieval-Augmented Generation (RAG) methods attempt to address this by retrieving globally relevant images, but they fail when no single image contains all desired elements from a complex user query. We propose Cross-modal RAG, a novel framework that decomposes both queries and images into sub-dimensional components, enabling subquery-aware retrieval and generation. Our method introduces a hybrid retrieval strategy - combining a sub-dimensional sparse retriever with a dense retriever - to identify a Pareto-optimal set of images, each contributing complementary aspects of the query. During generation, a multimodal large language model is guided to selectively condition on relevant visual features aligned to specific subqueries, ensuring subquery-aware image synthesis. Extensive experiments on MS-COCO, Flickr30K, WikiArt, CUB, and ImageNet-LT demonstrate that Cross-modal RAG significantly outperforms existing baselines in both retrieval and generation quality, while maintaining high efficiency.
Disentangled Clothed Avatar Generation from Text Descriptions
In this paper, we introduced a novel text-to-avatar generation method that separately generates the human body and the clothes and allows high-quality animation on the generated avatar. While recent advancements in text-to-avatar generation have yielded diverse human avatars from text prompts, these methods typically combine all elements-clothes, hair, and body-into a single 3D representation. Such an entangled approach poses challenges for downstream tasks like editing or animation. To overcome these limitations, we propose a novel disentangled 3D avatar representation named Sequentially Offset-SMPL (SO-SMPL), building upon the SMPL model. SO-SMPL represents the human body and clothes with two separate meshes, but associates them with offsets to ensure the physical alignment between the body and the clothes. Then, we design an Score Distillation Sampling(SDS)-based distillation framework to generate the proposed SO-SMPL representation from text prompts. In comparison with existing text-to-avatar methods, our approach not only achieves higher exture and geometry quality and better semantic alignment with text prompts, but also significantly improves the visual quality of character animation, virtual try-on, and avatar editing. Our project page is at https://shanemankiw.github.io/SO-SMPL/.
Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures
Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.
AB5 type multicomponent TiVCoNiMn2 high-entropy alloy
Recent theoretical and practical research has focused on multi-component High Entropy Alloys (HEAs), which have superior mechanical and functional properties than standard alloys based on a single major element, thereby establishing a new field. A multi-component HEA contains five or more primary elements at concentrations ranging from 5 to 35 atomic percent. We examined the microstructure and mechanical properties of TiVCoNiMn2 HEA. The mixing enthalpy and other thermodynamic parameters were determined using Meidma's model. TiVCoNiMn2 exhibits a mixing enthalpy of -15.6 kJ/mol and an atomic radius mismatch of approximately 10.03%. HEA is derived from both hydride and non-hydride-producing elements. This could be a useful hydrogen storage material. The hydrogen absorption/desorption capabilities of these HEAs are promising.
Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites
Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.
Lifelong Machine Learning Potentials
Machine learning potentials (MLPs) trained on accurate quantum chemical data can retain the high accuracy, while inflicting little computational demands. On the downside, they need to be trained for each individual system. In recent years, a vast number of MLPs has been trained from scratch because learning additional data typically requires to train again on all data to not forget previously acquired knowledge. Additionally, most common structural descriptors of MLPs cannot represent efficiently a large number of different chemical elements. In this work, we tackle these problems by introducing element-embracing atom-centered symmetry functions (eeACSFs) which combine structural properties and element information from the periodic table. These eeACSFs are a key for our development of a lifelong machine learning potential (lMLP). Uncertainty quantification can be exploited to transgress a fixed, pre-trained MLP to arrive at a continuously adapting lMLP, because a predefined level of accuracy can be ensured. To extend the applicability of an lMLP to new systems, we apply continual learning strategies to enable autonomous and on-the-fly training on a continuous stream of new data. For the training of deep neural networks, we propose the continual resilient (CoRe) optimizer and incremental learning strategies relying on rehearsal of data, regularization of parameters, and the architecture of the model.
SingleInsert: Inserting New Concepts from a Single Image into Text-to-Image Models for Flexible Editing
Recent progress in text-to-image (T2I) models enables high-quality image generation with flexible textual control. To utilize the abundant visual priors in the off-the-shelf T2I models, a series of methods try to invert an image to proper embedding that aligns with the semantic space of the T2I model. However, these image-to-text (I2T) inversion methods typically need multiple source images containing the same concept or struggle with the imbalance between editing flexibility and visual fidelity. In this work, we point out that the critical problem lies in the foreground-background entanglement when learning an intended concept, and propose a simple and effective baseline for single-image I2T inversion, named SingleInsert. SingleInsert adopts a two-stage scheme. In the first stage, we regulate the learned embedding to concentrate on the foreground area without being associated with the irrelevant background. In the second stage, we finetune the T2I model for better visual resemblance and devise a semantic loss to prevent the language drift problem. With the proposed techniques, SingleInsert excels in single concept generation with high visual fidelity while allowing flexible editing. Additionally, SingleInsert can perform single-image novel view synthesis and multiple concepts composition without requiring joint training. To facilitate evaluation, we design an editing prompt list and introduce a metric named Editing Success Rate (ESR) for quantitative assessment of editing flexibility. Our project page is: https://jarrentwu1031.github.io/SingleInsert-web/
Mathematical modelling of flow and adsorption in a gas chromatograph
In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.
Creation of single vacancies in hBN with electron irradiation
Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.
Fast and Accurate Prediction of Material Properties with Three-Body Tight-Binding Model for the Periodic Table
Parameterized tight-binding models fit to first principles calculations can provide an efficient and accurate quantum mechanical method for predicting properties of molecules and solids. However, well-tested parameter sets are generally only available for a limited number of atom combinations, making routine use of this method difficult. Furthermore, most previous models consider only simple two-body interactions, which limits accuracy. To tackle these challenges, we develop a density functional theory database of nearly one million materials, which we use to fit a universal set of tight-binding parameters for 65 elements and their binary combinations. We include both two-body and three-body effective interaction terms in our model, plus self-consistent charge transfer, enabling our model to work for metallic, covalent, and ionic bonds with the same parameter set. To ensure predictive power, we adopt a learning framework where we repeatedly test the model on new low energy crystal structures and then add them to the fitting dataset, iterating until predictions improve. We distribute the materials database and tools developed in this work publicly.
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].
All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems - such as molecules and materials - the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on QM9 and MP20 datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, exceeding state-of-the-art results from molecule and crystal-specific models. ADiT uses standard Transformers for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer
MatterGen: a generative model for inorganic materials design
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data
Over the past decade, the revolution in single-cell sequencing has enabled the simultaneous molecular profiling of various modalities across thousands of individual cells, allowing scientists to investigate the diverse functions of complex tissues and uncover underlying disease mechanisms. Among all the analytical steps, assigning individual cells to specific types is fundamental for understanding cellular heterogeneity. However, this process is usually labor-intensive and requires extensive expert knowledge. Recent advances in large language models (LLMs) have demonstrated their ability to efficiently process and synthesize vast corpora of text to automatically extract essential biological knowledge, such as marker genes, potentially promoting more efficient and automated cell type annotations. To thoroughly evaluate the capability of modern instruction-tuned LLMs in automating the cell type identification process, we introduce SOAR, a comprehensive benchmarking study of LLMs for cell type annotation tasks in single-cell genomics. Specifically, we assess the performance of 8 instruction-tuned LLMs across 11 datasets, spanning multiple cell types and species. Our study explores the potential of LLMs to accurately classify and annotate cell types in single-cell RNA sequencing (scRNA-seq) data, while extending their application to multiomics data through cross-modality translation. Additionally, we evaluate the effectiveness of chain-of-thought (CoT) prompting techniques in generating detailed biological insights during the annotation process. The results demonstrate that LLMs can provide robust interpretations of single-cell data without requiring additional fine-tuning, advancing the automation of cell type annotation in genomics research.
Multi-view biomedical foundation models for molecule-target and property prediction
Foundation models applied to bio-molecular space hold promise to accelerate drug discovery. Molecular representation is key to building such models. Previous works have typically focused on a single representation or view of the molecules. Here, we develop a multi-view foundation model approach, that integrates molecular views of graph, image and text. Single-view foundation models are each pre-trained on a dataset of up to 200M molecules and then aggregated into combined representations. Our multi-view model is validated on a diverse set of 18 tasks, encompassing ligand-protein binding, molecular solubility, metabolism and toxicity. We show that the multi-view models perform robustly and are able to balance the strengths and weaknesses of specific views. We then apply this model to screen compounds against a large (>100 targets) set of G Protein-Coupled receptors (GPCRs). From this library of targets, we identify 33 that are related to Alzheimer's disease. On this subset, we employ our model to identify strong binders, which are validated through structure-based modeling and identification of key binding motifs.
Coherent shuttle of electron-spin states
We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.