new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 7

Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL

Generating accurate SQL from natural language questions (text-to-SQL) is a long-standing challenge due to the complexities in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, causing PLMs with parameter constraints to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which, in turn, restricts the applications of PLM-based systems. Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale increases. Therefore, integrating LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.

LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL

Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign

Valentine: Evaluating Matching Techniques for Dataset Discovery

Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.

CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases

Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.

Matchmaker: Self-Improving Large Language Model Programs for Schema Matching

Schema matching -- the task of finding matches between attributes across disparate data sources with different tables and hierarchies -- is critical for creating interoperable machine learning (ML)-ready data. Addressing this fundamental data-centric problem has wide implications, especially in domains like healthcare, finance and e-commerce -- but also has the potential to benefit ML models more generally, by increasing the data available for ML model training. However, schema matching is a challenging ML task due to structural/hierarchical and semantic heterogeneity between different schemas. Previous ML approaches to automate schema matching have either required significant labeled data for model training, which is often unrealistic or suffer from poor zero-shot performance. To this end, we propose Matchmaker - a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring. Matchmaker also self-improves in a zero-shot manner without the need for labeled demonstrations via a novel optimization approach, which constructs synthetic in-context demonstrations to guide the language model's reasoning process. Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches, highlighting its potential to accelerate data integration and interoperability of ML-ready data.

Matching Table Metadata with Business Glossaries Using Large Language Models

Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.

XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL

To tackle the challenges of large language model performance in natural language to SQL tasks, we introduce XiYan-SQL, an innovative framework that employs a multi-generator ensemble strategy to improve candidate generation. We introduce M-Schema, a semi-structured schema representation method designed to enhance the understanding of database structures. To enhance the quality and diversity of generated candidate SQL queries, XiYan-SQL integrates the significant potential of in-context learning (ICL) with the precise control of supervised fine-tuning. On one hand, we propose a series of training strategies to fine-tune models to generate high-quality candidates with diverse preferences. On the other hand, we implement the ICL approach with an example selection method based on named entity recognition to prevent overemphasis on entities. The refiner optimizes each candidate by correcting logical or syntactical errors. To address the challenge of identifying the best candidate, we fine-tune a selection model to distinguish nuances of candidate SQL queries. The experimental results on multiple dialect datasets demonstrate the robustness of XiYan-SQL in addressing challenges across different scenarios. Overall, our proposed XiYan-SQL achieves the state-of-the-art execution accuracy of 89.65% on the Spider test set, 69.86% on SQL-Eval, 41.20% on NL2GQL, and a competitive score of 72.23% on the Bird development benchmark. The proposed framework not only enhances the quality and diversity of SQL queries but also outperforms previous methods.

Magneto: Combining Small and Large Language Models for Schema Matching

Recent advances in language models opened new opportunities to address complex schema matching tasks. Schema matching approaches have been proposed that demonstrate the usefulness of language models, but they have also uncovered important limitations: Small language models (SLMs) require training data (which can be both expensive and challenging to obtain), and large language models (LLMs) often incur high computational costs and must deal with constraints imposed by context windows. We present Magneto, a cost-effective and accurate solution for schema matching that combines the advantages of SLMs and LLMs to address their limitations. By structuring the schema matching pipeline in two phases, retrieval and reranking, Magneto can use computationally efficient SLM-based strategies to derive candidate matches which can then be reranked by LLMs, thus making it possible to reduce runtime without compromising matching accuracy. We propose a self-supervised approach to fine-tune SLMs which uses LLMs to generate syntactically diverse training data, and prompting strategies that are effective for reranking. We also introduce a new benchmark, developed in collaboration with domain experts, which includes real biomedical datasets and presents new challenges to schema matching methods. Through a detailed experimental evaluation, using both our new and existing benchmarks, we show that Magneto is scalable and attains high accuracy for datasets from different domains.

CodeS: Towards Building Open-source Language Models for Text-to-SQL

Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.

Statically Contextualizing Large Language Models with Typed Holes

Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary LLM-based code completion systems often hallucinate broken code because they lack appropriate context, particularly when working with definitions not in the training data nor near the cursor. This paper demonstrates that tight integration with the type and binding structure of a language, as exposed by its language server, can address this contextualization problem in a token-efficient manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into the Hazel live program sketching environment. The Hazel Language Server identifies the type and typing context of the hole being filled, even in the presence of errors, ensuring that a meaningful program sketch is always available. This allows prompting with codebase-wide contextual information not lexically local to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer's goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language server. To evaluate these techniques, we introduce MVUBench, a dataset of model-view-update (MVU) web applications. These applications serve as challenge problems due to their reliance on application-specific data structures. We find that contextualization with type definitions is particularly impactful. After introducing our ideas in the context of Hazel we duplicate our techniques and port MVUBench to TypeScript in order to validate the applicability of these methods to higher-resource languages. Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language servers can implement to expose capabilities that AI code completion systems of various designs can use to incorporate static context when generating prompts for an LLM.

MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL

Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.

DesignRepair: Dual-Stream Design Guideline-Aware Frontend Repair with Large Language Models

The rise of Large Language Models (LLMs) has streamlined frontend interface creation through tools like Vercel's V0, yet surfaced challenges in design quality (e.g., accessibility, and usability). Current solutions, often limited by their focus, generalisability, or data dependency, fall short in addressing these complexities. Moreover, none of them examine the quality of LLM-generated UI design. In this work, we introduce DesignRepair, a novel dual-stream design guideline-aware system to examine and repair the UI design quality issues from both code aspect and rendered page aspect. We utilised the mature and popular Material Design as our knowledge base to guide this process. Specifically, we first constructed a comprehensive knowledge base encoding Google's Material Design principles into low-level component knowledge base and high-level system design knowledge base. After that, DesignRepair employs a LLM for the extraction of key components and utilizes the Playwright tool for precise page analysis, aligning these with the established knowledge bases. Finally, we integrate Retrieval-Augmented Generation with state-of-the-art LLMs like GPT-4 to holistically refine and repair frontend code through a strategic divide and conquer approach. Our extensive evaluations validated the efficacy and utility of our approach, demonstrating significant enhancements in adherence to design guidelines, accessibility, and user experience metrics.

KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction

In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.

Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models

Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.

DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL

Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.

High-performance symbolic-numerics via multiple dispatch

As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.

ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents

Recent advancements in integrating large language models (LLMs) with application programming interfaces (APIs) have gained significant interest in both academia and industry. These API-based agents, leveraging the strong autonomy and planning capabilities of LLMs, can efficiently solve problems requiring multi-step actions. However, their ability to handle multi-dimensional difficulty levels, diverse task types, and real-world demands through APIs remains unknown. In this paper, we introduce ShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents in solving tasks with varying levels of difficulty, diverse task types, and real-world demands. ShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems, refined user queries from shortcuts, human-annotated high-quality action sequences from shortcut developers, and accurate parameter filling values about primitive parameter types, enum parameter types, outputs from previous actions, and parameters that need to request necessary information from the system or user. Our extensive evaluation of agents built with 5 leading open-source (size >= 57B) and 4 closed-source LLMs (e.g. Gemini-1.5-Pro and GPT-3.5) reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users. These findings highlight the challenges that API-based agents face in effectively fulfilling real and complex user queries. All datasets, code, and experimental results will be available at https://github.com/eachsheep/shortcutsbench.

LayoutPrompter: Awaken the Design Ability of Large Language Models

Conditional graphic layout generation, which automatically maps user constraints to high-quality layouts, has attracted widespread attention today. Although recent works have achieved promising performance, the lack of versatility and data efficiency hinders their practical applications. In this work, we propose LayoutPrompter, which leverages large language models (LLMs) to address the above problems through in-context learning. LayoutPrompter is made up of three key components, namely input-output serialization, dynamic exemplar selection and layout ranking. Specifically, the input-output serialization component meticulously designs the input and output formats for each layout generation task. Dynamic exemplar selection is responsible for selecting the most helpful prompting exemplars for a given input. And a layout ranker is used to pick the highest quality layout from multiple outputs of LLMs. We conduct experiments on all existing layout generation tasks using four public datasets. Despite the simplicity of our approach, experimental results show that LayoutPrompter can compete with or even outperform state-of-the-art approaches on these tasks without any model training or fine-tuning. This demonstrates the effectiveness of this versatile and training-free approach. In addition, the ablation studies show that LayoutPrompter is significantly superior to the training-based baseline in a low-data regime, further indicating the data efficiency of LayoutPrompter. Our project is available at https://github.com/microsoft/LayoutGeneration/tree/main/LayoutPrompter.

Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching

Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.

From Commands to Prompts: LLM-based Semantic File System for AIOS

Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.

Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset

Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting.

DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-Scale Databases

The task of converting natural language queries into SQL queries is intricate, necessitating a blend of precise techniques for an accurate translation. The DIN-SQL (Decomposed-In-Context SQL) methodology represents a significant development in this domain. This paper introduces DFIN (Decomposed Focused-In-Context), an innovative extension of DIN-SQL that enhances Text-to-SQL conversion by addressing schema linking errors, which are a major source of inaccuracies. DFIN uniquely alternates between prompting techniques and Retrieval-Augmented Generation (RAG), adapting to the size and complexity of the database schema. A preprocessing phase embeds database definitions and leverages annotated files, akin to those in the BIRD dataset, facilitating the runtime retrieval of pertinent schema information. This strategy significantly reduces the token count for schema linking prompts, enabling the use of a standard GPT-4 model over its larger context variant, thus handling large-scale databases more effectively and economically. Our evaluation on the BIRD dataset, a challenging real-world benchmark, demonstrates that DFIN not only scales efficiently but also improves accuracy, achieving a score of 51.69. This improvement surpasses DIN-SQL method (the current third-place), which is the highest-ranked model employing in-context learning rather than fine-tuning, previously scoring 50.72. The advancement of DFIN underscores the evolving capabilities of in-context learning methodologies combined with advanced language models, offering a promising avenue for future research in complex Text-to-SQL conversion tasks.

Prompting Is Programming: A Query Language for Large Language Models

Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL(short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (26-85% cost savings).

Observatory: Characterizing Embeddings of Relational Tables

Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.

DocCGen: Document-based Controlled Code Generation

Recent developments show that Large Language Models (LLMs) produce state-of-the-art performance on natural language (NL) to code generation for resource-rich general-purpose languages like C++, Java, and Python. However, their practical usage for structured domain-specific languages (DSLs) such as YAML, JSON is limited due to domain-specific schema, grammar, and customizations generally unseen by LLMs during pre-training. Efforts have been made to mitigate this challenge via in-context learning through relevant examples or by fine-tuning. However, it suffers from problems, such as limited DSL samples and prompt sensitivity but enterprises maintain good documentation of the DSLs. Therefore, we propose DocCGen, a framework that can leverage such rich knowledge by breaking the NL-to-Code generation task for structured code languages into a two-step process. First, it detects the correct libraries using the library documentation that best matches the NL query. Then, it utilizes schema rules extracted from the documentation of these libraries to constrain the decoding. We evaluate our framework for two complex structured languages, Ansible YAML and Bash command, consisting of two settings: Out-of-domain (OOD) and In-domain (ID). Our extensive experiments show that DocCGen consistently improves different-sized language models across all six evaluation metrics, reducing syntactic and semantic errors in structured code. We plan to open-source the datasets and code to motivate research in constrained code generation.

Chatting with Logs: An exploratory study on Finetuning LLMs for LogQL

Logging is a critical function in modern distributed applications, but the lack of standardization in log query languages and formats creates significant challenges. Developers currently must write ad hoc queries in platform-specific languages, requiring expertise in both the query language and application-specific log details -- an impractical expectation given the variety of platforms and volume of logs and applications. While generating these queries with large language models (LLMs) seems intuitive, we show that current LLMs struggle with log-specific query generation due to the lack of exposure to domain-specific knowledge. We propose a novel natural language (NL) interface to address these inconsistencies and aide log query generation, enabling developers to create queries in a target log query language by providing NL inputs. We further introduce ~NL2QL, a manually annotated, real-world dataset of natural language questions paired with corresponding LogQL queries spread across three log formats, to promote the training and evaluation of NL-to-loq query systems. Using NL2QL, we subsequently fine-tune and evaluate several state of the art LLMs, and demonstrate their improved capability to generate accurate LogQL queries. We perform further ablation studies to demonstrate the effect of additional training data, and the transferability across different log formats. In our experiments, we find up to 75\% improvement of finetuned models to generate LogQL queries compared to non finetuned models.

Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks

Retrieval-augmented Generation (RAG) has markedly enhanced the capabilities of Large Language Models (LLMs) in tackling knowledge-intensive tasks. The increasing demands of application scenarios have driven the evolution of RAG, leading to the integration of advanced retrievers, LLMs and other complementary technologies, which in turn has amplified the intricacy of RAG systems. However, the rapid advancements are outpacing the foundational RAG paradigm, with many methods struggling to be unified under the process of "retrieve-then-generate". In this context, this paper examines the limitations of the existing RAG paradigm and introduces the modular RAG framework. By decomposing complex RAG systems into independent modules and specialized operators, it facilitates a highly reconfigurable framework. Modular RAG transcends the traditional linear architecture, embracing a more advanced design that integrates routing, scheduling, and fusion mechanisms. Drawing on extensive research, this paper further identifies prevalent RAG patterns-linear, conditional, branching, and looping-and offers a comprehensive analysis of their respective implementation nuances. Modular RAG presents innovative opportunities for the conceptualization and deployment of RAG systems. Finally, the paper explores the potential emergence of new operators and paradigms, establishing a solid theoretical foundation and a practical roadmap for the continued evolution and practical deployment of RAG technologies.

DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models

Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.

CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets

Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.

Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs

Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.

Build the web for agents, not agents for the web

Recent advancements in Large Language Models (LLMs) and multimodal counterparts have spurred significant interest in developing web agents -- AI systems capable of autonomously navigating and completing tasks within web environments. While holding tremendous promise for automating complex web interactions, current approaches face substantial challenges due to the fundamental mismatch between human-designed interfaces and LLM capabilities. Current methods struggle with the inherent complexity of web inputs, whether processing massive DOM trees, relying on screenshots augmented with additional information, or bypassing the user interface entirely through API interactions. This position paper advocates for a paradigm shift in web agent research: rather than forcing web agents to adapt to interfaces designed for humans, we should develop a new interaction paradigm specifically optimized for agentic capabilities. To this end, we introduce the concept of an Agentic Web Interface (AWI), an interface specifically designed for agents to navigate a website. We establish six guiding principles for AWI design, emphasizing safety, efficiency, and standardization, to account for the interests of all primary stakeholders. This reframing aims to overcome fundamental limitations of existing interfaces, paving the way for more efficient, reliable, and transparent web agent design, which will be a collaborative effort involving the broader ML community.

ActionBert: Leveraging User Actions for Semantic Understanding of User Interfaces

As mobile devices are becoming ubiquitous, regularly interacting with a variety of user interfaces (UIs) is a common aspect of daily life for many people. To improve the accessibility of these devices and to enable their usage in a variety of settings, building models that can assist users and accomplish tasks through the UI is vitally important. However, there are several challenges to achieve this. First, UI components of similar appearance can have different functionalities, making understanding their function more important than just analyzing their appearance. Second, domain-specific features like Document Object Model (DOM) in web pages and View Hierarchy (VH) in mobile applications provide important signals about the semantics of UI elements, but these features are not in a natural language format. Third, owing to a large diversity in UIs and absence of standard DOM or VH representations, building a UI understanding model with high coverage requires large amounts of training data. Inspired by the success of pre-training based approaches in NLP for tackling a variety of problems in a data-efficient way, we introduce a new pre-trained UI representation model called ActionBert. Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components. Our key intuition is that user actions, e.g., a sequence of clicks on different UI components, reveals important information about their functionality. We evaluate the proposed model on a wide variety of downstream tasks, ranging from icon classification to UI component retrieval based on its natural language description. Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.

What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models

The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.

Query Rewriting via LLMs

Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.

Semantic Decomposition of Question and SQL for Text-to-SQL Parsing

Text-to-SQL semantic parsing faces challenges in generalizing to cross-domain and complex queries. Recent research has employed a question decomposition strategy to enhance the parsing of complex SQL queries. However, this strategy encounters two major obstacles: (1) existing datasets lack question decomposition; (2) due to the syntactic complexity of SQL, most complex queries cannot be disentangled into sub-queries that can be readily recomposed. To address these challenges, we propose a new modular Query Plan Language (QPL) that systematically decomposes SQL queries into simple and regular sub-queries. We develop a translator from SQL to QPL by leveraging analysis of SQL server query optimization plans, and we augment the Spider dataset with QPL programs. Experimental results demonstrate that the modular nature of QPL benefits existing semantic-parsing architectures, and training text-to-QPL parsers is more effective than text-to-SQL parsing for semantically equivalent queries. The QPL approach offers two additional advantages: (1) QPL programs can be paraphrased as simple questions, which allows us to create a dataset of (complex question, decomposed questions). Training on this dataset, we obtain a Question Decomposer for data retrieval that is sensitive to database schemas. (2) QPL is more accessible to non-experts for complex queries, leading to more interpretable output from the semantic parser.

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).

Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation

The development of Large Language Models (LLMs) has revolutionized Q&A across various industries, including the database domain. However, there is still a lack of a comprehensive benchmark to evaluate the capabilities of different LLMs and their modular components in database Q&A. To this end, we introduce DQA, the first comprehensive database Q&A benchmark. DQA features an innovative LLM-based method for automating the generation, cleaning, and rewriting of database Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These Q&A pairs cover nearly all aspects of database knowledge, including database manuals, database blogs, and database tools. This inclusion allows for additional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool Invocation Generation (TIG) capabilities in the database Q&A task. Furthermore, we propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed is highly modular and scalable, with both basic and advanced components like Question Classification Routing (QCR), RAG, TIG, and Prompt Template Engineering (PTE). Besides, DQA provides a complete evaluation pipeline, featuring diverse metrics and a standardized evaluation process to ensure comprehensiveness, accuracy, and fairness. We use DQA to evaluate the database Q&A capabilities under the proposed testbed comprehensively. The evaluation reveals findings like (i) the strengths and limitations of nine different LLM-based Q&A bots and (ii) the performance impact and potential improvements of various service components (e.g., QCR, RAG, TIG). We hope our benchmark and findings will better guide the future development of LLM-based database Q&A research.

DataLab: A Unifed Platform for LLM-Powered Business Intelligence

Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.

Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository

LLMs have demonstrated significant potential in code generation tasks, achieving promising results at the function or statement level across various benchmarks. However, the complexities associated with creating code artifacts like classes, particularly within the context of real-world software repositories, remain underexplored. Prior research treats class-level generation as an isolated task, neglecting the intricate dependencies & interactions that characterize real-world software environments. To address this gap, we introduce RepoClassBench, a comprehensive benchmark designed to rigorously evaluate LLMs in generating complex, class-level code within real-world repositories. RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories. We ensure that each class in our dataset not only has cross-file dependencies within the repository but also includes corresponding test cases to verify its functionality. We find that current models struggle with the realistic challenges posed by our benchmark, primarily due to their limited exposure to relevant repository contexts. To address this shortcoming, we introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context in an agent-based framework. Our experiments demonstrate that RRR significantly outperforms existing baselines on RepoClassBench, showcasing its effectiveness across programming languages & under various settings. Our findings emphasize the critical need for code-generation benchmarks to incorporate repo-level dependencies to more accurately reflect the complexities of software development. Our work shows the benefits of leveraging specialized tools to enhance LLMs' understanding of repository context. We plan to make our dataset & evaluation harness public.

DB-GPT: Empowering Database Interactions with Private Large Language Models

The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. Database technologies particularly have an important entanglement with LLMs as efficient and intuitive database interactions are paramount. In this paper, we present DB-GPT, a revolutionary and production-ready project that integrates LLMs with traditional database systems to enhance user experience and accessibility. DB-GPT is designed to understand natural language queries, provide context-aware responses, and generate complex SQL queries with high accuracy, making it an indispensable tool for users ranging from novice to expert. The core innovation in DB-GPT lies in its private LLM technology, which is fine-tuned on domain-specific corpora to maintain user privacy and ensure data security while offering the benefits of state-of-the-art LLMs. We detail the architecture of DB-GPT, which includes a novel retrieval augmented generation (RAG) knowledge system, an adaptive learning mechanism to continuously improve performance based on user feedback and a service-oriented multi-model framework (SMMF) with powerful data-driven agents. Our extensive experiments and user studies confirm that DB-GPT represents a paradigm shift in database interactions, offering a more natural, efficient, and secure way to engage with data repositories. The paper concludes with a discussion of the implications of DB-GPT framework on the future of human-database interaction and outlines potential avenues for further enhancements and applications in the field. The project code is available at https://github.com/eosphoros-ai/DB-GPT. Experience DB-GPT for yourself by installing it with the instructions https://github.com/eosphoros-ai/DB-GPT#install and view a concise 10-minute video at https://www.youtube.com/watch?v=KYs4nTDzEhk.

AskIt: Unified Programming Interface for Programming with Large Language Models

In the evolving landscape of software development, Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers grapple with decisions surrounding the direct embedding of LLMs within applications versus employing them for code generation. Moreover, effective prompt design becomes a critical concern, given the necessity of data extraction from natural language outputs. To address these intricacies, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration, offering type-guided output control, template-based function definitions, and a unified interface that diminishes the distinction between LLM-based code generation and application integration. Furthermore, through Programming by Example (PBE), AskIt harnesses the power of few-shot learning at the programming language level. Our evaluations underscore AskIt's potency. Across 50 tasks, AskIt generated concise prompts for the given tasks, achieving a 16.14% reduction in prompt length relative to benchmarks. Additionally, by enabling the transition from direct LLM application usage to function generation, AskIt achieved significant speedups, as observed in our GSM8K benchmark experiments. Through these advancements, AskIt streamlines the integration of LLMs in software development, offering a more efficient, versatile approach for leveraging emergent abilities. The implementations of AskIt in TypeScript and Python are available at https://github.com/katsumiok/ts-askit and https://github.com/katsumiok/pyaskit, respectively.

Query Rewriting via Large Language Models

Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.

Metasql: A Generate-then-Rank Framework for Natural Language to SQL Translation

The Natural Language Interface to Databases (NLIDB) empowers non-technical users with database access through intuitive natural language (NL) interactions. Advanced approaches, utilizing neural sequence-to-sequence models or large-scale language models, typically employ auto-regressive decoding to generate unique SQL queries sequentially. While these translation models have greatly improved the overall translation accuracy, surpassing 70% on NLIDB benchmarks, the use of auto-regressive decoding to generate single SQL queries may result in sub-optimal outputs, potentially leading to erroneous translations. In this paper, we propose Metasql, a unified generate-then-rank framework that can be flexibly incorporated with existing NLIDBs to consistently improve their translation accuracy. Metasql introduces query metadata to control the generation of better SQL query candidates and uses learning-to-rank algorithms to retrieve globally optimized queries. Specifically, Metasql first breaks down the meaning of the given NL query into a set of possible query metadata, representing the basic concepts of the semantics. These metadata are then used as language constraints to steer the underlying translation model toward generating a set of candidate SQL queries. Finally, Metasql ranks the candidates to identify the best matching one for the given NL query. Extensive experiments are performed to study Metasql on two public NLIDB benchmarks. The results show that the performance of the translation models can be effectively improved using Metasql.

Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis

Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe.

AutoGUI: Scaling GUI Grounding with Automatic Functionality Annotations from LLMs

User interface understanding with vision-language models has received much attention due to its potential for enabling next-generation software automation. However, existing UI datasets either only provide large-scale context-free element annotations or contextualized functional descriptions for elements at a much smaller scale. In this work, we propose the pipeline for automatically annotating UI elements with detailed functionality descriptions at scale. Specifically, we leverage large language models (LLMs) to infer element functionality by comparing the UI content changes before and after simulated interactions with specific UI elements. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid and incorrect annotations without human labor. We construct an -704k dataset using the proposed pipeline, featuring multi-resolution, multi-device screenshots, diverse data domains, and detailed functionality annotations that have never been provided by previous datasets. Human evaluation shows that the AutoGUI pipeline achieves annotation correctness comparable to trained human annotators. Extensive experimental results show that our -704k dataset remarkably enhances VLM's UI grounding capabilities, exhibits significant scaling effects, and outperforms existing web pre-training data types. We envision AutoGUI as a scalable pipeline for generating massive data to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous URL: https://autogui-project.github.io/.

ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development

The growing demand for Domain-Specific Architecture (DSA) has driven the development of Agile Hardware Development Methodology (AHDM). Hardware Construction Language (HCL) like Chisel offers high-level abstraction features, making it an ideal language for HCL-Based AHDM. While Large Language Models (LLMs) excel in code generation tasks, they still face challenges with Chisel generation, particularly regarding syntax correctness and design variability. Recent reasoning models have significantly enhanced code generation capabilities through test-time scaling techniques. However, we found that reasoning models without domain adaptation cannot bring substantial benefits to Chisel code generation tasks. This paper presents ChiseLLM, a solution comprising data processing and transformation, prompt-guided reasoning trace synthesis, and domain-adapted model training. We constructed high-quality datasets from public RTL code resources and guided the model to adopt structured thinking patterns through prompt enhancement methods. Experiments demonstrate that our ChiseLLM-7B and ChiseLLM-32B models improved syntax correctness by 18.85% and 26.32% respectively over base models, while increasing variability design ability by 47.58% compared to baseline reasoning models. Our datasets and models are publicly available, providing high-performance, cost-effective models for HCL-Based AHDM, and offering an effective baseline for future research. Github repository: https://github.com/observerw/ChiseLLM

Neural Databases

In recent years, neural networks have shown impressive performance gains on long-standing AI problems, and in particular, answering queries from natural language text. These advances raise the question of whether they can be extended to a point where we can relax the fundamental assumption of database management, namely, that our data is represented as fields of a pre-defined schema. This paper presents a first step in answering that question. We describe NeuralDB, a database system with no pre-defined schema, in which updates and queries are given in natural language. We develop query processing techniques that build on the primitives offered by the state of the art Natural Language Processing methods. We begin by demonstrating that at the core, recent NLP transformers, powered by pre-trained language models, can answer select-project-join queries if they are given the exact set of relevant facts. However, they cannot scale to non-trivial databases and cannot perform aggregation queries. Based on these findings, we describe a NeuralDB architecture that runs multiple Neural SPJ operators in parallel, each with a set of database sentences that can produce one of the answers to the query. The result of these operators is fed to an aggregation operator if needed. We describe an algorithm that learns how to create the appropriate sets of facts to be fed into each of the Neural SPJ operators. Importantly, this algorithm can be trained by the Neural SPJ operator itself. We experimentally validate the accuracy of NeuralDB and its components, showing that we can answer queries over thousands of sentences with very high accuracy.

Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning

Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.

Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems

Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.

BEAVER: An Enterprise Benchmark for Text-to-SQL

Existing text-to-SQL benchmarks have largely been constructed from web tables with human-generated question-SQL pairs. LLMs typically show strong results on these benchmarks, leading to a belief that LLMs are effective at text-to-SQL tasks. However, how these results transfer to enterprise settings is unclear because tables in enterprise databases might differ substantially from web tables in structure and content. To contend with this problem, we introduce a new dataset BEAVER, the first enterprise text-to-SQL benchmark sourced from real private enterprise data warehouses. This dataset includes natural language queries and their correct SQL statements, which we collected from actual query logs. We then benchmark off-the-shelf LLMs on this dataset. LLMs perform poorly, even when augmented with standard prompt engineering and RAG techniques. We identify three main reasons for the poor performance: (1) schemas of enterprise tables are more complex than the schemas in public data, resulting in SQL-generation tasks intrinsically harder; (2) business-oriented questions are often more complex, requiring joins over multiple tables, aggregations, and nested queries; (3) public LLMs cannot train on private enterprise data warehouses that are not publicly accessible, and therefore it is difficult for the model to learn to solve (1) and (2). We believe BEAVER will facilitate future research in building text-to-SQL systems that perform better in enterprise settings.

A Survey of Context Engineering for Large Language Models

The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.

Generating a Low-code Complete Workflow via Task Decomposition and RAG

AI technologies are moving rapidly from research to production. With the popularity of Foundation Models (FMs) that generate text, images, and video, AI-based systems are increasing their complexity. Compared to traditional AI-based software, systems employing FMs, or GenAI-based systems, are more difficult to design due to their scale and versatility. This makes it necessary to document best practices, known as design patterns in software engineering, that can be used across GenAI applications. Our first contribution is to formalize two techniques, Task Decomposition and Retrieval-Augmented Generation (RAG), as design patterns for GenAI-based systems. We discuss their trade-offs in terms of software quality attributes and comment on alternative approaches. We recommend to AI practitioners to consider these techniques not only from a scientific perspective but also from the standpoint of desired engineering properties such as flexibility, maintainability, safety, and security. As a second contribution, we describe our industry experience applying Task Decomposition and RAG to build a complex real-world GenAI application for enterprise users: Workflow Generation. The task of generating workflows entails generating a specific plan using data from the system environment, taking as input a user requirement. As these two patterns affect the entire AI development cycle, we explain how they impacted the dataset creation, model training, model evaluation, and deployment phases.

Generating Structured Outputs from Language Models: Benchmark and Studies

Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench

ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents

Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.

Learning Type Inference for Enhanced Dataflow Analysis

Statically analyzing dynamically-typed code is a challenging endeavor, as even seemingly trivial tasks such as determining the targets of procedure calls are non-trivial without knowing the types of objects at compile time. Addressing this challenge, gradual typing is increasingly added to dynamically-typed languages, a prominent example being TypeScript that introduces static typing to JavaScript. Gradual typing improves the developer's ability to verify program behavior, contributing to robust, secure and debuggable programs. In practice, however, users only sparsely annotate types directly. At the same time, conventional type inference faces performance-related challenges as program size grows. Statistical techniques based on machine learning offer faster inference, but although recent approaches demonstrate overall improved accuracy, they still perform significantly worse on user-defined types than on the most common built-in types. Limiting their real-world usefulness even more, they rarely integrate with user-facing applications. We propose CodeTIDAL5, a Transformer-based model trained to reliably predict type annotations. For effective result retrieval and re-integration, we extract usage slices from a program's code property graph. Comparing our approach against recent neural type inference systems, our model outperforms the current state-of-the-art by 7.85% on the ManyTypes4TypeScript benchmark, achieving 71.27% accuracy overall. Furthermore, we present JoernTI, an integration of our approach into Joern, an open source static analysis tool, and demonstrate that the analysis benefits from the additional type information. As our model allows for fast inference times even on commodity CPUs, making our system available through Joern leads to high accessibility and facilitates security research.

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and Compliance Checks

Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.

Retrieval-Augmented Code Generation for Universal Information Extraction

Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.

A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation

Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.

The First Prompt Counts the Most! An Evaluation of Large Language Models on Iterative Example-based Code Generation

The capabilities of Large Language Models (LLMs) in code generation, particularly for implementing target functionalities from natural language descriptions, have been extensively studied. As an alternative form of natural language, input-output examples (I/O examples) provide an accessible, unambiguous, and flexible way to describe functionalities, but the diversity, sparseness, and incompleteness of I/O examples also place challenges on understanding and implementing requirements. Therefore, generating code from input-output examples (i.e., example-based code generation) provides a new perspective, allowing us to evaluate LLMs' capability to infer target functionalities from limited information and to process new-form requirements. However, related research about LLMs in example-based code generation remains largely unexplored. To fill this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation framework and formalize the objective of example-based code generation as two sequential sub-objectives: generating code conforming to given examples and generating code that successfully implements the target functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark of 168 diverse target functionalities. The results demonstrate that when requirements were described using iterative I/O examples rather than natural language, the LLMs' score decreased by over 60%, indicating that example-based code generation remains challenging for the evaluated LLMs. More interestingly, the vast majority (even over 95%) of successfully implemented functionalities are achieved in the first round of iterations, suggesting that the LLMs struggle to effectively utilize the iteratively supplemented requirements.

Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows

Real-world enterprise text-to-SQL workflows often involve complex cloud or local data across various database systems, multiple SQL queries in various dialects, and diverse operations from data transformation to analytics. We introduce Spider 2.0, an evaluation framework comprising 632 real-world text-to-SQL workflow problems derived from enterprise-level database use cases. The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake. We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-level codebases. This challenge calls for models to interact with complex SQL workflow environments, process extremely long contexts, perform intricate reasoning, and generate multiple SQL queries with diverse operations, often exceeding 100 lines, which goes far beyond traditional text-to-SQL challenges. Our evaluations indicate that based on o1-preview, our code agent framework successfully solves only 17.0% of the tasks, compared with 91.2% on Spider 1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language models have demonstrated remarkable performance in code generation -- especially in prior text-to-SQL benchmarks -- they require significant improvement in order to achieve adequate performance for real-world enterprise usage. Progress on Spider 2.0 represents crucial steps towards developing intelligent, autonomous, code agents for real-world enterprise settings. Our code, baseline models, and data are available at https://spider2-sql.github.io.