Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnhancing Reasoning Capabilities of Large Language Models: A Graph-Based Verification Approach
Large Language Models (LLMs) have showcased impressive reasoning capabilities, particularly when guided by specifically designed prompts in complex reasoning tasks such as math word problems. These models typically solve tasks using a chain-of-thought approach, which not only bolsters their reasoning abilities but also provides valuable insights into their problem-solving process. However, there is still significant room for enhancing the reasoning abilities of LLMs. Some studies suggest that the integration of an LLM output verifier can boost reasoning accuracy without necessitating additional model training. In this paper, we follow these studies and introduce a novel graph-based method to further augment the reasoning capabilities of LLMs. We posit that multiple solutions to a reasoning task, generated by an LLM, can be represented as a reasoning graph due to the logical connections between intermediate steps from different reasoning paths. Therefore, we propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions generated by LLMs. By evaluating these graphs, models can yield more accurate and reliable results.Our experimental results show that our graph-based verification method not only significantly enhances the reasoning abilities of LLMs but also outperforms existing verifier methods in terms of improving these models' reasoning performance.
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models
Graph-structured data plays a vital role in numerous domains, such as social networks, citation networks, commonsense reasoning graphs and knowledge graphs. While graph neural networks have been employed for graph processing, recent advancements have explored integrating large language models for graph-based tasks. In this paper, we propose a novel approach named Learnable Graph Pooling Token (LGPT), which addresses the limitations of the scalability issues in node-level projection and information loss in graph-level projection. LGPT enables flexible and efficient graph representation by introducing learnable parameters that act as tokens in large language models, balancing fine-grained and global graph information. Additionally, we investigate an Early Query Fusion technique, which fuses query context before constructing the graph representation, leading to more effective graph embeddings. Our method achieves a 4.13\% performance improvement on the GraphQA benchmark without training the large language model, demonstrating significant gains in handling complex textual-attributed graph data.
HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification
We introduce HoVer (HOppy VERification), a dataset for many-hop evidence extraction and fact verification. It challenges models to extract facts from several Wikipedia articles that are relevant to a claim and classify whether the claim is Supported or Not-Supported by the facts. In HoVer, the claims require evidence to be extracted from as many as four English Wikipedia articles and embody reasoning graphs of diverse shapes. Moreover, most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations such as coreference. We show that the performance of an existing state-of-the-art semantic-matching model degrades significantly on our dataset as the number of reasoning hops increases, hence demonstrating the necessity of many-hop reasoning to achieve strong results. We hope that the introduction of this challenging dataset and the accompanying evaluation task will encourage research in many-hop fact retrieval and information verification. We make the HoVer dataset publicly available at https://hover-nlp.github.io
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Mixture of Length and Pruning Experts for Knowledge Graphs Reasoning
Knowledge Graph (KG) reasoning, which aims to infer new facts from structured knowledge repositories, plays a vital role in Natural Language Processing (NLP) systems. Its effectiveness critically depends on constructing informative and contextually relevant reasoning paths. However, existing graph neural networks (GNNs) often adopt rigid, query-agnostic path-exploration strategies, limiting their ability to adapt to diverse linguistic contexts and semantic nuances. To address these limitations, we propose MoKGR, a mixture-of-experts framework that personalizes path exploration through two complementary components: (1) a mixture of length experts that adaptively selects and weights candidate path lengths according to query complexity, providing query-specific reasoning depth; and (2) a mixture of pruning experts that evaluates candidate paths from a complementary perspective, retaining the most informative paths for each query. Through comprehensive experiments on diverse benchmark, MoKGR demonstrates superior performance in both transductive and inductive settings, validating the effectiveness of personalized path exploration in KGs reasoning.
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT.
Talk like a Graph: Encoding Graphs for Large Language Models
Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.
Video Captioning with Aggregated Features Based on Dual Graphs and Gated Fusion
The application of video captioning models aims at translating the content of videos by using accurate natural language. Due to the complex nature inbetween object interaction in the video, the comprehensive understanding of spatio-temporal relations of objects remains a challenging task. Existing methods often fail in generating sufficient feature representations of video content. In this paper, we propose a video captioning model based on dual graphs and gated fusion: we adapt two types of graphs to generate feature representations of video content and utilize gated fusion to further understand these different levels of information. Using a dual-graphs model to generate appearance features and motion features respectively can utilize the content correlation in frames to generate various features from multiple perspectives. Among them, dual-graphs reasoning can enhance the content correlation in frame sequences to generate advanced semantic features; The gated fusion, on the other hand, aggregates the information in multiple feature representations for comprehensive video content understanding. The experiments conducted on worldly used datasets MSVD and MSR-VTT demonstrate state-of-the-art performance of our proposed approach.
Grounding LLM Reasoning with Knowledge Graphs
Knowledge Graphs (KGs) are valuable tools for representing relationships between entities in a structured format. Traditionally, these knowledge bases are queried to extract specific information. However, question-answering (QA) over such KGs poses a challenge due to the intrinsic complexity of natural language compared to the structured format and the size of these graphs. Despite these challenges, the structured nature of KGs can provide a solid foundation for grounding the outputs of Large Language Models (LLMs), offering organizations increased reliability and control. Recent advancements in LLMs have introduced reasoning methods at inference time to improve their performance and maximize their capabilities. In this work, we propose integrating these reasoning strategies with KGs to anchor every step or "thought" of the reasoning chains in KG data. Specifically, we evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), using GRBench, a benchmark dataset for graph reasoning with domain-specific graphs. Our experiments demonstrate that this approach consistently outperforms baseline models, highlighting the benefits of grounding LLM reasoning processes in structured KG data.
Complex Logical Reasoning over Knowledge Graphs using Large Language Models
Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep understanding of the complex relationships between entities and the underlying logic of their relations. Current approaches rely on learning geometries to embed entities in vector space for logical query operations, but they suffer from subpar performance on complex queries and dataset-specific representations. In this paper, we propose a novel decoupled approach, Language-guided Abstract Reasoning over Knowledge graphs (LARK), that formulates complex KG reasoning as a combination of contextual KG search and logical query reasoning, to leverage the strengths of graph extraction algorithms and large language models (LLM), respectively. Our experiments demonstrate that the proposed approach outperforms state-of-the-art KG reasoning methods on standard benchmark datasets across several logical query constructs, with significant performance gain for queries of higher complexity. Furthermore, we show that the performance of our approach improves proportionally to the increase in size of the underlying LLM, enabling the integration of the latest advancements in LLMs for logical reasoning over KGs. Our work presents a new direction for addressing the challenges of complex KG reasoning and paves the way for future research in this area.
Multimodal Analogical Reasoning over Knowledge Graphs
Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance. Code and datasets are available in https://github.com/zjunlp/MKG_Analogy.
Reasoning of Large Language Models over Knowledge Graphs with Super-Relations
While large language models (LLMs) have made significant progress in processing and reasoning over knowledge graphs, current methods suffer from a high non-retrieval rate. This limitation reduces the accuracy of answering questions based on these graphs. Our analysis reveals that the combination of greedy search and forward reasoning is a major contributor to this issue. To overcome these challenges, we introduce the concept of super-relations, which enables both forward and backward reasoning by summarizing and connecting various relational paths within the graph. This holistic approach not only expands the search space, but also significantly improves retrieval efficiency. In this paper, we propose the ReKnoS framework, which aims to Reason over Knowledge Graphs with Super-Relations. Our framework's key advantages include the inclusion of multiple relation paths through super-relations, enhanced forward and backward reasoning capabilities, and increased efficiency in querying LLMs. These enhancements collectively lead to a substantial improvement in the successful retrieval rate and overall reasoning performance. We conduct extensive experiments on nine real-world datasets to evaluate ReKnoS, and the results demonstrate the superior performance of ReKnoS over existing state-of-the-art baselines, with an average accuracy gain of 2.92%.
Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA) due to their structured representation of knowledge. Existing research on the utilization of KG for large language models (LLMs) prevalently relies on subgraph retriever or iterative prompting, overlooking the potential synergy of LLMs' step-wise reasoning capabilities and KGs' structural nature. In this paper, we present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs. We first define a concept, well-formed chain, which consists of a sequence of interrelated fact triplets on the KGs, starting from question entities and leading to answers. We argue that this concept can serve as a principle for making faithful and sound reasoning for KGQA. To enable LLMs to generate well-formed chains, we propose graph-aware constrained decoding, in which a constraint derived from the topology of the KG regulates the decoding process of the LLMs. This constrained decoding method ensures the generation of well-formed chains while making full use of the step-wise reasoning capabilities of LLMs. Based on the above, DoG, a training-free approach, is able to provide faithful and sound reasoning trajectories grounded on the KGs. Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance. DoG also shows general applicability with various open-source LLMs.
Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning abilities, but they still struggle with faithful reasoning due to knowledge gaps and hallucinations. To address these issues, knowledge graphs (KGs) have been utilized to enhance LLM reasoning through their structured knowledge. However, existing KG-enhanced methods, either retrieval-based or agent-based, encounter difficulties in accurately retrieving knowledge and efficiently traversing KGs at scale. In this work, we introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reasoning by integrating KG structure into the LLM decoding process through KG-Trie, a trie-based index that encodes KG reasoning paths. KG-Trie constrains the decoding process, allowing LLMs to directly reason on graphs and generate faithful reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-specialized LLM for graph-constrained reasoning alongside a powerful general LLM for inductive reasoning over multiple reasoning paths, resulting in accurate reasoning with zero reasoning hallucination. Extensive experiments on several KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
Graph Agent: Explicit Reasoning Agent for Graphs
Graph embedding methods such as Graph Neural Networks (GNNs) and Graph Transformers have contributed to the development of graph reasoning algorithms for various tasks on knowledge graphs. However, the lack of interpretability and explainability of graph embedding methods has limited their applicability in scenarios requiring explicit reasoning. In this paper, we introduce the Graph Agent (GA), an intelligent agent methodology of leveraging large language models (LLMs), inductive-deductive reasoning modules, and long-term memory for knowledge graph reasoning tasks. GA integrates aspects of symbolic reasoning and existing graph embedding methods to provide an innovative approach for complex graph reasoning tasks. By converting graph structures into textual data, GA enables LLMs to process, reason, and provide predictions alongside human-interpretable explanations. The effectiveness of the GA was evaluated on node classification and link prediction tasks. Results showed that GA reached state-of-the-art performance, demonstrating accuracy of 90.65%, 95.48%, and 89.32% on Cora, PubMed, and PrimeKG datasets, respectively. Compared to existing GNN and transformer models, GA offered advantages of explicit reasoning ability, free-of-training, easy adaption to various graph reasoning tasks
FactKG: Fact Verification via Reasoning on Knowledge Graphs
In real world applications, knowledge graphs (KG) are widely used in various domains (e.g. medical applications and dialogue agents). However, for fact verification, KGs have not been adequately utilized as a knowledge source. KGs can be a valuable knowledge source in fact verification due to their reliability and broad applicability. A KG consists of nodes and edges which makes it clear how concepts are linked together, allowing machines to reason over chains of topics. However, there are many challenges in understanding how these machine-readable concepts map to information in text. To enable the community to better use KGs, we introduce a new dataset, FactKG: Fact Verification via Reasoning on Knowledge Graphs. It consists of 108k natural language claims with five types of reasoning: One-hop, Conjunction, Existence, Multi-hop, and Negation. Furthermore, FactKG contains various linguistic patterns, including colloquial style claims as well as written style claims to increase practicality. Lastly, we develop a baseline approach and analyze FactKG over these reasoning types. We believe FactKG can advance both reliability and practicality in KG-based fact verification.
SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs
Recent advancements have highlighted that Large Language Models (LLMs) are prone to hallucinations when solving complex reasoning problems, leading to erroneous results. To tackle this issue, researchers incorporate Knowledge Graphs (KGs) to improve the reasoning ability of LLMs. However, existing methods face two limitations: 1) they typically assume that all answers to the questions are contained in KGs, neglecting the incompleteness issue of KGs, and 2) they treat the KG as a static repository and overlook the implicit logical reasoning structures inherent in KGs. In this paper, we introduce SymAgent, an innovative neural-symbolic agent framework that achieves collaborative augmentation between KGs and LLMs. We conceptualize KGs as dynamic environments and transform complex reasoning tasks into a multi-step interactive process, enabling KGs to participate deeply in the reasoning process. SymAgent consists of two modules: Agent-Planner and Agent-Executor. The Agent-Planner leverages LLM's inductive reasoning capability to extract symbolic rules from KGs, guiding efficient question decomposition. The Agent-Executor autonomously invokes predefined action tools to integrate information from KGs and external documents, addressing the issues of KG incompleteness. Furthermore, we design a self-learning framework comprising online exploration and offline iterative policy updating phases, enabling the agent to automatically synthesize reasoning trajectories and improve performance. Experimental results demonstrate that SymAgent with weak LLM backbones (i.e., 7B series) yields better or comparable performance compared to various strong baselines. Further analysis reveals that our agent can identify missing triples, facilitating automatic KG updates.
Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors
Reasoning on knowledge graphs is a challenging task because it utilizes observed information to predict the missing one. Particularly, answering complex queries based on first-order logic is one of the crucial tasks to verify learning to reason abilities for generalization and composition. Recently, the prevailing method is query embedding which learns the embedding of a set of entities and treats logic operations as set operations and has shown great empirical success. Though there has been much research following the same formulation, many of its claims lack a formal and systematic inspection. In this paper, we rethink this formulation and justify many of the previous claims by characterizing the scope of queries investigated previously and precisely identifying the gap between its formulation and its goal, as well as providing complexity analysis for the currently investigated queries. Moreover, we develop a new dataset containing ten new types of queries with features that have never been considered and therefore can provide a thorough investigation of complex queries. Finally, we propose a new neural-symbolic method, Fuzzy Inference with Truth value (FIT), where we equip the neural link predictors with fuzzy logic theory to support end-to-end learning using complex queries with provable reasoning capability. Empirical results show that our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning
Large Language Models (LLMs) have demonstrated impressive performance in natural language processing tasks by leveraging chain of thought (CoT) that enables step-by-step thinking. Extending LLMs with multimodal capabilities is the recent interest, but incurs computational cost and requires substantial hardware resources. To address these challenges, we propose KAM-CoT a framework that integrates CoT reasoning, Knowledge Graphs (KGs), and multiple modalities for a comprehensive understanding of multimodal tasks. KAM-CoT adopts a two-stage training process with KG grounding to generate effective rationales and answers. By incorporating external knowledge from KGs during reasoning, the model gains a deeper contextual understanding reducing hallucinations and enhancing the quality of answers. This knowledge-augmented CoT reasoning empowers the model to handle questions requiring external context, providing more informed answers. Experimental findings show KAM-CoT outperforms the state-of-the-art methods. On the ScienceQA dataset, we achieve an average accuracy of 93.87%, surpassing GPT-3.5 (75.17%) by 18% and GPT-4 (83.99%) by 10%. Remarkably, KAM-CoT achieves these results with only 280M trainable parameters at a time, demonstrating its cost-efficiency and effectiveness.
GraphOracle: A Foundation Model for Knowledge Graph Reasoning
Foundation models have demonstrated remarkable capabilities across various domains, but developing analogous models for knowledge graphs presents unique challenges due to their dynamic nature and the need for cross-domain reasoning. To address these issues, we introduce \textsc{GraphOracle}, a relation-centric foundation model that unifies reasoning across knowledge graphs by converting them into Relation-Dependency Graphs (RDG), explicitly encoding compositional patterns with fewer edges than prior methods. A query-dependent attention mechanism is further developed to learn inductive representations for both relations and entities. Pre-training on diverse knowledge graphs, followed by minutes-level fine-tuning, enables effective generalization to unseen entities, relations, and entire graphs. Through comprehensive experiments on 31 diverse benchmarks spanning transductive, inductive, and cross-domain settings, we demonstrate consistent state-of-the-art performance with minimal adaptation, improving the prediction performance by up to 35\% compared to the strongest baselines.
GRAG: Graph Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) enhances the accuracy and relevance of responses by generative language models, it falls short in graph-based contexts where both textual and topological information are important. Naive RAG approaches inherently neglect the structural intricacies of textual graphs, resulting in a critical gap in the generation process. To address this challenge, we introduce Graph Retrieval-Augmented Generation (GRAG), which significantly enhances both the retrieval and generation processes by emphasizing the importance of subgraph structures. Unlike RAG approaches that focus solely on text-based entity retrieval, GRAG maintains an acute awareness of graph topology, which is crucial for generating contextually and factually coherent responses. Our GRAG approach consists of four main stages: indexing of k-hop ego-graphs, graph retrieval, soft pruning to mitigate the impact of irrelevant entities, and generation with pruned textual subgraphs. GRAG's core workflow-retrieving textual subgraphs followed by soft pruning-efficiently identifies relevant subgraph structures while avoiding the computational infeasibility typical of exhaustive subgraph searches, which are NP-hard. Moreover, we propose a novel prompting strategy that achieves lossless conversion from textual subgraphs to hierarchical text descriptions. Extensive experiments on graph multi-hop reasoning benchmarks demonstrate that in scenarios requiring multi-hop reasoning on textual graphs, our GRAG approach significantly outperforms current state-of-the-art RAG methods while effectively mitigating hallucinations.
SEMMA: A Semantic Aware Knowledge Graph Foundation Model
Knowledge Graph Foundation Models (KGFMs) have shown promise in enabling zero-shot reasoning over unseen graphs by learning transferable patterns. However, most existing KGFMs rely solely on graph structure, overlooking the rich semantic signals encoded in textual attributes. We introduce SEMMA, a dual-module KGFM that systematically integrates transferable textual semantics alongside structure. SEMMA leverages Large Language Models (LLMs) to enrich relation identifiers, generating semantic embeddings that subsequently form a textual relation graph, which is fused with the structural component. Across 54 diverse KGs, SEMMA outperforms purely structural baselines like ULTRA in fully inductive link prediction. Crucially, we show that in more challenging generalization settings, where the test-time relation vocabulary is entirely unseen, structural methods collapse while SEMMA is 2x more effective. Our findings demonstrate that textual semantics are critical for generalization in settings where structure alone fails, highlighting the need for foundation models that unify structural and linguistic signals in knowledge reasoning.
SPRING: Situated Conversation Agent Pretrained with Multimodal Questions from Incremental Layout Graph
Existing multimodal conversation agents have shown impressive abilities to locate absolute positions or retrieve attributes in simple scenarios, but they fail to perform well when complex relative positions and information alignments are involved, which poses a bottleneck in response quality. In this paper, we propose a Situated Conversation Agent Petrained with Multimodal Questions from INcremental Layout Graph (SPRING) with abilities of reasoning multi-hops spatial relations and connecting them with visual attributes in crowded situated scenarios. Specifically, we design two types of Multimodal Question Answering (MQA) tasks to pretrain the agent. All QA pairs utilized during pretraining are generated from novel Incremental Layout Graphs (ILG). QA pair difficulty labels automatically annotated by ILG are used to promote MQA-based Curriculum Learning. Experimental results verify the SPRING's effectiveness, showing that it significantly outperforms state-of-the-art approaches on both SIMMC 1.0 and SIMMC 2.0 datasets.
FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data
Prior research on training grounded factuality classification models to detect hallucinations in large language models (LLMs) has relied on public natural language inference (NLI) data and synthetic data. However, conventional NLI datasets are not well-suited for document-level reasoning, which is critical for detecting LLM hallucinations. Recent approaches to document-level synthetic data generation involve iteratively removing sentences from documents and annotating factuality using LLM-based prompts. While effective, this method is computationally expensive for long documents and limited by the LLM's capabilities. In this work, we analyze the differences between existing synthetic training data used in state-of-the-art models and real LLM output claims. Based on our findings, we propose a novel approach for synthetic data generation, CG2C, that leverages multi-hop reasoning on context graphs extracted from documents. Our fact checker model, FactCG, demonstrates improved performance with more connected reasoning, using the same backbone models. Experiments show it even outperforms GPT-4-o on the LLM-Aggrefact benchmark with much smaller model size.
ReasonGraph: Visualisation of Reasoning Paths
Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
Answering Questions over Knowledge Graphs (KGQA) is key to well-functioning autonomous language agents in various real-life applications. To improve the neural-symbolic reasoning capabilities of language agents powered by Large Language Models (LLMs) in KGQA, we propose the DecompositionAlignment-Reasoning Agent (DARA) framework. DARA effectively parses questions into formal queries through a dual mechanism: high-level iterative task decomposition and low-level task grounding. Importantly, DARA can be efficiently trained with a small number of high-quality reasoning trajectories. Our experimental results demonstrate that DARA fine-tuned on LLMs (e.g. Llama-2-7B, Mistral) outperforms both in-context learning-based agents with GPT-4 and alternative fine-tuned agents, across different benchmarks in zero-shot evaluation, making such models more accessible for real-life applications. We also show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.
Collaborative Reasoning on Multi-Modal Semantic Graphs for Video-Grounded Dialogue Generation
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video. The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs) which presents obstacles to exploiting the power of large-scale pre-training; and (2) the necessity of taking into account the complementarity of various modalities throughout the reasoning process. Although having made remarkable progress in video-grounded dialogue generation, existing methods still fall short when it comes to integrating with PLMs in a way that allows information from different modalities to complement each other. To alleviate these issues, we first propose extracting pertinent information from videos and turning it into reasoning paths that are acceptable to PLMs. Additionally, we propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities (i.e., video and dialogue context). Empirical experiment results on two public datasets indicate that the proposed model can significantly outperform state-of-the-art models by large margins on both automatic and human evaluations.
KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs
Large language models (LLMs) have demonstrated remarkable capabilities in various complex tasks, yet they still suffer from hallucinations. Introducing external knowledge, such as knowledge graph, can enhance the LLMs' ability to provide factual answers. LLMs have the ability to interactively explore knowledge graphs. However, most approaches have been affected by insufficient internal knowledge excavation in LLMs, limited generation of trustworthy knowledge reasoning paths, and a vague integration between internal and external knowledge. Therefore, we propose KnowPath, a knowledge-enhanced large model framework driven by the collaboration of internal and external knowledge. It relies on the internal knowledge of the LLM to guide the exploration of interpretable directed subgraphs in external knowledge graphs, better integrating the two knowledge sources for more accurate reasoning. Extensive experiments on multiple real-world datasets confirm the superiority of KnowPath.
QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering
The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate our model on QA benchmarks in the commonsense (CommonsenseQA, OpenBookQA) and biomedical (MedQA-USMLE) domains. QA-GNN outperforms existing LM and LM+KG models, and exhibits capabilities to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.
Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs
Large Language Models (LLMs) have exhibited impressive proficiency in various natural language processing (NLP) tasks, which involve increasingly complex reasoning. Knowledge reasoning, a primary type of reasoning, aims at deriving new knowledge from existing one.While it has been widely studied in the context of knowledge graphs (KGs), knowledge reasoning in LLMs remains underexplored. In this paper, we introduce Chain-of-Knowledge, a comprehensive framework for knowledge reasoning, including methodologies for both dataset construction and model learning. For dataset construction, we create KnowReason via rule mining on KGs. For model learning, we observe rule overfitting induced by naive training. Hence, we enhance CoK with a trial-and-error mechanism that simulates the human process of internal knowledge exploration. We conduct extensive experiments with KnowReason. Our results show the effectiveness of CoK in refining LLMs in not only knowledge reasoning, but also general reasoning benchmarkms.
Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) results in complex systems with numerous hyperparameters that directly affect performance. While such systems are increasingly common in retrieval-augmented generation, the role of systematic hyperparameter optimization remains underexplored. In this paper, we study this problem in the context of Cognee, a modular framework for end-to-end KG construction and retrieval. Using three multi-hop QA benchmarks (HotPotQA, TwoWikiMultiHop, and MuSiQue) we optimize parameters related to chunking, graph construction, retrieval, and prompting. Each configuration is scored using established metrics (exact match, F1, and DeepEval's LLM-based correctness metric). Our results demonstrate that meaningful gains can be achieved through targeted tuning. While the gains are consistent, they are not uniform, with performance varying across datasets and metrics. This variability highlights both the value of tuning and the limitations of standard evaluation measures. While demonstrating the immediate potential of hyperparameter tuning, we argue that future progress will depend not only on architectural advances but also on clearer frameworks for optimization and evaluation in complex, modular systems.
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs
Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code will be publicly available.
HyDRA: A Hybrid-Driven Reasoning Architecture for Verifiable Knowledge Graphs
The synergy between symbolic knowledge, often represented by Knowledge Graphs (KGs), and the generative capabilities of neural networks is central to advancing neurosymbolic AI. A primary bottleneck in realizing this potential is the difficulty of automating KG construction, which faces challenges related to output reliability, consistency, and verifiability. These issues can manifest as structural inconsistencies within the generated graphs, such as the formation of disconnected isolated islands of data or the inaccurate conflation of abstract classes with specific instances. To address these challenges, we propose HyDRA, a Hybrid-Driven Reasoning Architecture designed for verifiable KG automation. Given a domain or an initial set of documents, HyDRA first constructs an ontology via a panel of collaborative neurosymbolic agents. These agents collaboratively agree on a set of competency questions (CQs) that define the scope and requirements the ontology must be able to answer. Given these CQs, we build an ontology graph that subsequently guides the automated extraction of triplets for KG generation from arbitrary documents. Inspired by design-by-contracts (DbC) principles, our method leverages verifiable contracts as the primary control mechanism to steer the generative process of Large Language Models (LLMs). To verify the output of our approach, we extend beyond standard benchmarks and propose an evaluation framework that assesses the functional correctness of the resulting KG by leveraging symbolic verifications as described by the neurosymbolic AI framework, SymbolicAI. This work contributes a hybrid-driven architecture for improving the reliability of automated KG construction and the exploration of evaluation methods for measuring the functional integrity of its output. The code is publicly available.
Graph of Verification: Structured Verification of LLM Reasoning with Directed Acyclic Graphs
Verifying the reliability of complex, multi-step reasoning in Large Language Models (LLMs) remains a fundamental challenge, as existing methods often lack both faithfulness and precision. To address this issue, we propose the Graph of Verification (GoV) framework. GoV offers three key contributions: First, it explicitly models the underlying deductive process as a directed acyclic graph (DAG), whether this structure is implicit or explicitly constructed. Second, it enforces a topological order over the DAG to guide stepwise verification. Third, GoV introduces the notion of customizable node blocks, which flexibly define the verification granularity, from atomic propositions to full paragraphs, while ensuring that all requisite premises derived from the graph are provided as contextual input for each verification unit. We evaluate GoV on the Number Triangle Summation task and the ProcessBench benchmark with varying levels of reasoning complexity. Experimental results show that GoV substantially improves verification accuracy, faithfulness, and error localization when compared to conventional end-to-end verification approaches. Our code and data are available at https://github.com/Frevor/Graph-of-Verification.
Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs
To deduce new facts on a knowledge graph (KG), a link predictor learns from the graph structure and collects local evidence to find the answer to a given query. However, existing methods suffer from a severe scalability problem due to the utilization of the whole KG for prediction, which hinders their promise on large scale KGs and cannot be directly addressed by vanilla sampling methods. In this work, we propose the one-shot-subgraph link prediction to achieve efficient and adaptive prediction. The design principle is that, instead of directly acting on the whole KG, the prediction procedure is decoupled into two steps, i.e., (i) extracting only one subgraph according to the query and (ii) predicting on this single, query dependent subgraph. We reveal that the non-parametric and computation-efficient heuristics Personalized PageRank (PPR) can effectively identify the potential answers and supporting evidence. With efficient subgraph-based prediction, we further introduce the automated searching of the optimal configurations in both data and model spaces. Empirically, we achieve promoted efficiency and leading performances on five large-scale benchmarks. The code is publicly available at: https://github.com/tmlr-group/one-shot-subgraph.
GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.
RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs
Answering complex real-world questions often requires accurate retrieval from textual knowledge graphs (TKGs). The scarcity of annotated data, along with intricate topological structures, makes this task particularly challenging. As the nature of relational path information could enhance the inference ability of Large Language Models (LLMs), efficiently retrieving more complex relational path information from TKGs presents another key challenge. To tackle these challenges, we first develop a Dataset for LLMs Complex Reasoning over Textual Knowledge Graphs (RiTeK) with a broad topological structure coverage.We synthesize realistic user queries that integrate diverse topological structures, relational information, and complex textual descriptions. We conduct rigorous expert evaluation to validate the quality of our synthesized queries. And then, we introduce an enhanced Monte Carlo Tree Search (MCTS) method, Relational MCTS, to automatically extract relational path information from textual graphs for specific queries. Our dataset mainly covers the medical domain as the relation types and entity are complex and publicly available. Experimental results indicate that RiTeK poses significant challenges for current retrieval and LLM systems, while the proposed Relational MCTS method enhances LLM inference ability and achieves state-of-the-art performance on RiTeK.
Topologies of Reasoning: Demystifying Chains, Trees, and Graphs of Thoughts
The field of natural language processing (NLP) has witnessed significant progress in recent years, with a notable focus on improving large language models' (LLM) performance through innovative prompting techniques. Among these, prompt engineering coupled with structures has emerged as a promising paradigm, with designs such as Chain-of-Thought, Tree of Thoughts, or Graph of Thoughts, in which the overall LLM reasoning is guided by a structure such as a graph. As illustrated with numerous examples, this paradigm significantly enhances the LLM's capability to solve numerous tasks, ranging from logical or mathematical reasoning to planning or creative writing. To facilitate the understanding of this growing field and pave the way for future developments, we devise a general blueprint for effective and efficient LLM reasoning schemes. For this, we conduct an in-depth analysis of the prompt execution pipeline, clarifying and clearly defining different concepts. We then build the first taxonomy of structure-enhanced LLM reasoning schemes. We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these structures, algorithms executed with these structures, and many others. We refer to these structures as reasoning topologies, because their representation becomes to a degree spatial, as they are contained within the LLM context. Our study compares existing prompting schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost. We also outline theoretical underpinnings, relationships between prompting and others parts of the LLM ecosystem such as knowledge bases, and the associated research challenges. Our work will help to advance future prompt engineering techniques.
Improving LLMs' Generalized Reasoning Abilities by Graph Problems
Large Language Models (LLMs) have made remarkable strides in reasoning tasks, yet their performance often falters on novel and complex problems. Domain-specific continued pretraining (CPT) methods, such as those tailored for mathematical reasoning, have shown promise but lack transferability to broader reasoning tasks. In this work, we pioneer the use of Graph Problem Reasoning (GPR) to enhance the general reasoning capabilities of LLMs. GPR tasks, spanning pathfinding, network analysis, numerical computation, and topological reasoning, require sophisticated logical and relational reasoning, making them ideal for teaching diverse reasoning patterns. To achieve this, we introduce GraphPile, the first large-scale corpus specifically designed for CPT using GPR data. Spanning 10.9 billion tokens across 23 graph tasks, the dataset includes chain-of-thought, program-of-thought, trace of execution, and real-world graph data. Using GraphPile, we train GraphMind on popular base models Llama 3 and 3.1, as well as Gemma 2, achieving up to 4.9 percent higher accuracy in mathematical reasoning and up to 21.2 percent improvement in non-mathematical reasoning tasks such as logical and commonsense reasoning. By being the first to harness GPR for enhancing reasoning patterns and introducing the first dataset of its kind, our work bridges the gap between domain-specific pretraining and universal reasoning capabilities, advancing the adaptability and robustness of LLMs.
KisMATH: Do LLMs Have Knowledge of Implicit Structures in Mathematical Reasoning?
Chain-of-thought traces have been shown to improve performance of large language models in a plethora of reasoning tasks, yet there is no consensus on the mechanism through which this performance boost is achieved. To shed more light on this, we introduce Causal CoT Graphs (CCGs), which are directed acyclic graphs automatically extracted from reasoning traces that model fine-grained causal dependencies in the language model output. A collection of 1671 mathematical reasoning problems from MATH500, GSM8K and AIME, and their associated CCGs are compiled into our dataset -- KisMATH. Our detailed empirical analysis with 15 open-weight LLMs shows that (i) reasoning nodes in the CCG are mediators for the final answer, a condition necessary for reasoning; and (ii) LLMs emphasise reasoning paths given by the CCG, indicating that models internally realise structures akin to our graphs. KisMATH enables controlled, graph-aligned interventions and opens up avenues for further investigation into the role of chain-of-thought in LLM reasoning.
Reasoning about concepts with LLMs: Inconsistencies abound
The ability to summarize and organize knowledge into abstract concepts is key to learning and reasoning. Many industrial applications rely on the consistent and systematic use of concepts, especially when dealing with decision-critical knowledge. However, we demonstrate that, when methodically questioned, large language models (LLMs) often display and demonstrate significant inconsistencies in their knowledge. Computationally, the basic aspects of the conceptualization of a given domain can be represented as Is-A hierarchies in a knowledge graph (KG) or ontology, together with a few properties or axioms that enable straightforward reasoning. We show that even simple ontologies can be used to reveal conceptual inconsistencies across several LLMs. We also propose strategies that domain experts can use to evaluate and improve the coverage of key domain concepts in LLMs of various sizes. In particular, we have been able to significantly enhance the performance of LLMs of various sizes with openly available weights using simple knowledge-graph (KG) based prompting strategies.
Towards Foundation Models for Knowledge Graph Reasoning
Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable representations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap. The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies. In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions. Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph. Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance.
GraphText: Graph Reasoning in Text Space
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both humans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
Reasoning in Large Language Models: A Geometric Perspective
The advancement of large language models (LLMs) for real-world applications hinges critically on enhancing their reasoning capabilities. In this work, we explore the reasoning abilities of large language models (LLMs) through their geometrical understanding. We establish a connection between the expressive power of LLMs and the density of their self-attention graphs. Our analysis demonstrates that the density of these graphs defines the intrinsic dimension of the inputs to the MLP blocks. We demonstrate through theoretical analysis and toy examples that a higher intrinsic dimension implies a greater expressive capacity of the LLM. We further provide empirical evidence linking this geometric framework to recent advancements in methods aimed at enhancing the reasoning capabilities of LLMs.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning
Knowledge Graphs (KGs) represent human-crafted factual knowledge in the form of triplets (head, relation, tail), which collectively form a graph. Question Answering over KGs (KGQA) is the task of answering natural questions grounding the reasoning to the information provided by the KG. Large Language Models (LLMs) are the state-of-the-art models for QA tasks due to their remarkable ability to understand natural language. On the other hand, Graph Neural Networks (GNNs) have been widely used for KGQA as they can handle the complex graph information stored in the KG. In this work, we introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style. First, a GNN reasons over a dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in the KG that connect question entities and answer candidates are extracted to represent KG reasoning paths. The extracted paths are verbalized and given as input for LLM reasoning with RAG. In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information, while the LLM leverages its natural language processing ability for ultimate KGQA. Furthermore, we develop a retrieval augmentation (RA) technique to further boost KGQA performance with GNN-RAG. Experimental results show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG excels on multi-hop and multi-entity questions outperforming competing approaches by 8.9--15.5% points at answer F1.
Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive results in various tasks but struggle with hallucination problems and lack of relevant knowledge, especially in deep complex reasoning and knowledge-intensive tasks. Knowledge Graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. However, existing KG-based LLM reasoning methods face challenges like handling multi-hop reasoning, multi-entity questions, and effectively utilizing graph structures. To address these issues, we propose Paths-over-Graph (PoG), a novel method that enhances LLM reasoning by integrating knowledge reasoning paths from KGs, improving the interpretability and faithfulness of LLM outputs. PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration, which combines the inherent knowledge of LLMs with factual knowledge from KGs. In order to improve the efficiency, PoG prunes irrelevant information from the graph exploration first and introduces efficient three-step pruning techniques that incorporate graph structures, LLM prompting, and a pre-trained language model (e.g., SBERT) to effectively narrow down the explored candidate paths. This ensures all reasoning paths contain highly relevant information captured from KGs, making the reasoning faithful and interpretable in problem-solving. PoG innovatively utilizes graph structure to prune the irrelevant noise and represents the first method to implement multi-entity deep path detection on KGs for LLM reasoning tasks. Comprehensive experiments on five benchmark KGQA datasets demonstrate PoG outperforms the state-of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving an average accuracy improvement of 18.9%. Notably, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T^2RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T^2RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T^2RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
K-Paths: Reasoning over Graph Paths for Drug Repurposing and Drug Interaction Prediction
Drug discovery is a complex and time-intensive process that requires identifying and validating new therapeutic candidates. Computational approaches using large-scale biomedical knowledge graphs (KGs) offer a promising solution to accelerate this process. However, extracting meaningful insights from large-scale KGs remains challenging due to the complexity of graph traversal. Existing subgraph-based methods are tailored to graph neural networks (GNNs), making them incompatible with other models, such as large language models (LLMs). We introduce K-Paths, a retrieval framework that extracts structured, diverse, and biologically meaningful paths from KGs. Integrating these paths enables LLMs and GNNs to effectively predict unobserved drug-drug and drug-disease interactions. Unlike traditional path-ranking approaches, K-Paths retrieves and transforms paths into a structured format that LLMs can directly process, facilitating explainable reasoning. K-Paths employs a diversity-aware adaptation of Yen's algorithm to retrieve the K shortest loopless paths between entities in an interaction query, prioritizing biologically relevant and diverse relationships. Our experiments on benchmark datasets show that K-Paths improves the zero-shot performance of Llama 8.1B's F1-score by 12.45 points on drug repurposing and 13.42 points on interaction severity prediction. We also show that Llama 70B achieves F1-score gains of 6.18 and 8.46 points, respectively. K-Paths also improves the supervised training efficiency of EmerGNN, a state-of-the-art GNN, by reducing KG size by 90% while maintaining strong predictive performance. Beyond its scalability and efficiency, K-Paths uniquely bridges the gap between KGs and LLMs, providing explainable rationales for predicted interactions. These capabilities show that K-Paths is a valuable tool for efficient data-driven drug discovery.
A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
Query Embedding on Hyper-relational Knowledge Graphs
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.
Spatial Dual-Modality Graph Reasoning for Key Information Extraction
Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.
Learning to Represent Programs with Heterogeneous Graphs
Program source code contains complex structure information, which can be represented in structured data forms like trees or graphs. To acquire the structural information in source code, most existing researches use abstract syntax trees (AST). A group of works add additional edges to ASTs to convert source code into graphs and use graph neural networks to learn representations for program graphs. Although these works provide additional control or data flow information to ASTs for downstream tasks, they neglect an important aspect of structure information in AST itself: the different types of nodes and edges. In ASTs, different nodes contain different kinds of information like variables or control flow, and the relation between a node and all its children can also be different. To address the information of node and edge types, we bring the idea of heterogeneous graphs to learning on source code and present a new formula of building heterogeneous program graphs from ASTs with additional type information for nodes and edges. We use the ASDL grammar of programming language to define the node and edge types of program graphs. Then we use heterogeneous graph neural networks to learn on these graphs. We evaluate our approach on two tasks: code comment generation and method naming. Both tasks require reasoning on the semantics of complete code snippets. Experiment results show that our approach outperforms baseline models, including homogeneous graph-based models, showing that leveraging the type information of nodes and edges in program graphs can help in learning program semantics.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
Integrating Graphs with Large Language Models: Methods and Prospects
Large language models (LLMs) such as GPT-4 have emerged as frontrunners, showcasing unparalleled prowess in diverse applications, including answering queries, code generation, and more. Parallelly, graph-structured data, an intrinsic data type, is pervasive in real-world scenarios. Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest. This paper bifurcates such integrations into two predominant categories. The first leverages LLMs for graph learning, where LLMs can not only augment existing graph algorithms but also stand as prediction models for various graph tasks. Conversely, the second category underscores the pivotal role of graphs in advancing LLMs. Mirroring human cognition, we solve complex tasks by adopting graphs in either reasoning or collaboration. Integrating with such structures can significantly boost the performance of LLMs in various complicated tasks. We also discuss and propose open questions for integrating LLMs with graph-structured data for the future direction of the field.
CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models
The need to analyze graphs is ubiquitous across various fields, from social networks to biological research and recommendation systems. Therefore, enabling the ability of large language models (LLMs) to process graphs is an important step toward more advanced general intelligence. However, current LLM benchmarks on graph analysis require models to directly reason over the prompts describing graph topology, and are thus limited to small graphs with only a few dozens of nodes. In contrast, human experts typically write programs based on popular libraries for task solving, and can thus handle graphs with different scales. To this end, a question naturally arises: can LLMs analyze graphs like professionals? In this paper, we introduce ProGraph, a manually crafted benchmark containing 3 categories of graph tasks. The benchmark expects solutions based on programming instead of directly reasoning over raw inputs. Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy. To bridge this gap, we propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries. By augmenting closed-source LLMs with document retrieval and fine-tuning open-source ones on the codes, we show 11-32% absolute improvements in their accuracies. Our results underscore that the capabilities of LLMs in handling structured data are still under-explored, and show the effectiveness of LLM4Graph in enhancing LLMs' proficiency of graph analysis. The benchmark, datasets and enhanced open-source models are available at https://github.com/BUPT-GAMMA/ProGraph.
ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs
The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM's analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation that enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis
Large Language Models (LLMs) have garnered considerable interest within both academic and industrial. Yet, the application of LLMs to graph data remains under-explored. In this study, we evaluate the capabilities of four LLMs in addressing several analytical problems with graph data. We employ four distinct evaluation metrics: Comprehension, Correctness, Fidelity, and Rectification. Our results show that: 1) LLMs effectively comprehend graph data in natural language and reason with graph topology. 2) GPT models can generate logical and coherent results, outperforming alternatives in correctness. 3) All examined LLMs face challenges in structural reasoning, with techniques like zero-shot chain-of-thought and few-shot prompting showing diminished efficacy. 4) GPT models often produce erroneous answers in multi-answer tasks, raising concerns in fidelity. 5) GPT models exhibit elevated confidence in their outputs, potentially hindering their rectification capacities. Notably, GPT-4 has demonstrated the capacity to rectify responses from GPT-3.5-turbo and its own previous iterations. The code is available at: https://github.com/Ayame1006/LLMtoGraph.
EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs
A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.
Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering
Recent works integrating Knowledge Graphs (KGs) have led to promising improvements in enhancing the reasoning accuracy of Large Language Models (LLMs). However, current benchmarks focus mainly on closed-ended tasks, leaving a gap in the assessment of more complex real-world scenarios. This gap has also obscured the evaluation of KGs' potential to mitigate the problem of hallucination in LLMs. To fill the gap, we introduce OKGQA, a new benchmark specifically designed to assess LLMs enhanced with KGs under open-ended, real-world question answering scenarios. OKGQA is designed to closely reflect the complexities of practical applications using questions from different types, and incorporates specific metrics to measure both hallucination ratio and the enhancement in reasoning capabilities. To consider the scenario in which KGs may have varying levels of mistakes, we propose another benchmark variant OKGQA-P to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated. OKGQA aims to (1) explore whether KGs can make LLMs more trustworthy in an open-ended setting, and (2) conduct a comparative analysis to shed light on method design. We believe that this study can facilitate a more complete performance comparison and encourage continuous improvement in integrating KGs with LLMs to reduce hallucination.
Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation
To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at http://moma-llm.cs.uni-freiburg.de.
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Verifying a question's validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VISREAS, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VISREAS contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, LOGIC2VISION that reasons by producing and executing pseudocode without any external modules to generate the answer. LOGIC2VISION outperforms generative models in VISREAS (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Transformers have achieved great success in numerous NLP tasks but continue to exhibit notable gaps in multi-step factual reasoning, especially when real-world knowledge is sparse. Recent advances in grokking have demonstrated that neural networks can transition from memorizing to perfectly generalizing once they detect underlying logical patterns - yet these studies have primarily used small, synthetic tasks. In this paper, for the first time, we extend grokking to real-world factual data and address the challenge of dataset sparsity by augmenting existing knowledge graphs with carefully designed synthetic data to raise the ratio phi_r of inferred facts to atomic facts above the threshold required for grokking. Surprisingly, we find that even factually incorrect synthetic data can strengthen emergent reasoning circuits rather than degrade accuracy, as it forces the model to rely on relational structure rather than memorization. When evaluated on multi-hop reasoning benchmarks, our approach achieves up to 95-100% accuracy on 2WikiMultiHopQA - substantially improving over strong baselines and matching or exceeding current state-of-the-art results. We further provide an in-depth analysis of how increasing phi_r drives the formation of generalizing circuits inside Transformers. Our findings suggest that grokking-based data augmentation can unlock implicit multi-hop reasoning capabilities, opening the door to more robust and interpretable factual reasoning in large-scale language models.
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
Scaling Reasoning can Improve Factuality in Large Language Models
Recent studies on large language model (LLM) reasoning capabilities have demonstrated promising improvements in model performance by leveraging a lengthy thinking process and additional computational resources during inference, primarily in tasks involving mathematical reasoning (Muennighoff et al., 2025). However, it remains uncertain if longer reasoning chains inherently enhance factual accuracy, particularly beyond mathematical contexts. In this work, we thoroughly examine LLM reasoning within complex open-domain question-answering (QA) scenarios. We initially distill reasoning traces from advanced, large-scale reasoning models (QwQ-32B and DeepSeek-R1-671B), then fine-tune a variety of models ranging from smaller, instruction-tuned variants to larger architectures based on Qwen2.5. To enrich reasoning traces, we introduce factual information from knowledge graphs in the form of paths into our reasoning traces. Our experimental setup includes four baseline approaches and six different instruction-tuned models evaluated across a benchmark of six datasets, encompassing over 22.6K questions. Overall, we carry out 168 experimental runs and analyze approximately 1.7 million reasoning traces. Our findings indicate that, within a single run, smaller reasoning models achieve noticeable improvements in factual accuracy compared to their original instruction-tuned counterparts. Moreover, our analysis demonstrates that adding test-time compute and token budgets factual accuracy consistently improves by 2-8%, further confirming the effectiveness of test-time scaling for enhancing performance and consequently improving reasoning accuracy in open-domain QA tasks. We release all the experimental artifacts for further research.
Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge. In contrast, knowledge graphs encompass extensive, multi-relational structures that store a vast array of symbolic facts. Consequently, integrating LLMs with knowledge graphs has been extensively explored, with Knowledge Graph Question Answering (KGQA) serving as a critical touchstone for the integration. This task requires LLMs to answer natural language questions by retrieving relevant triples from knowledge graphs. However, existing methods face two significant challenges: excessively long reasoning paths distracting from the answer generation, and false-positive relations hindering the path refinement. In this paper, we propose an iterative interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG). Specifically, DoG employs a subgraph-focusing mechanism, allowing LLMs to perform answer trying after each reasoning step, thereby mitigating the impact of lengthy reasoning paths. On the other hand, DoG utilizes a multi-role debate team to gradually simplify complex questions, reducing the influence of false-positive relations. This debate mechanism ensures the reliability of the reasoning process. Experimental results on five public datasets demonstrate the effectiveness and superiority of our architecture. Notably, DoG outperforms the state-of-the-art method ToG by 23.7\% and 9.1\% in accuracy on WebQuestions and GrailQA, respectively. Furthermore, the integration experiments with various LLMs on the mentioned datasets highlight the flexibility of DoG. Code is available at https://github.com/reml-group/DoG.
Large Language Models Can Learn Temporal Reasoning
Large language models (LLMs) learn temporal concepts from the co-occurrence of related tokens in a sequence. Compared with conventional text generation, temporal reasoning, which reaches a conclusion based on mathematical, logical and commonsense knowledge, is more challenging. In this paper, we propose TempGraph-LLM, a new paradigm towards text-based temporal reasoning. To be specific, we first teach LLMs to translate the context into a temporal graph. A synthetic dataset, which is fully controllable and requires minimal supervision, is constructed for pre-training on this task. We prove in experiments that LLMs benefit from the pre-training on other tasks. On top of that, we guide LLMs to perform symbolic reasoning with the strategies of Chain of Thoughts (CoTs) bootstrapping and special data augmentation. We observe that CoTs with symbolic reasoning bring more consistent and reliable results than those using free text.
Exploiting Reasoning Chains for Multi-hop Science Question Answering
We propose a novel Chain Guided Retriever-reader ({\tt CGR}) framework to model the reasoning chain for multi-hop Science Question Answering. Our framework is capable of performing explainable reasoning without the need of any corpus-specific annotations, such as the ground-truth reasoning chain, or human-annotated entity mentions. Specifically, we first generate reasoning chains from a semantic graph constructed by Abstract Meaning Representation of retrieved evidence facts. A Chain-aware loss, concerning both local and global chain information, is also designed to enable the generated chains to serve as distant supervision signals for training the retriever, where reinforcement learning is also adopted to maximize the utility of the reasoning chains. Our framework allows the retriever to capture step-by-step clues of the entire reasoning process, which is not only shown to be effective on two challenging multi-hop Science QA tasks, namely OpenBookQA and ARC-Challenge, but also favors explainability.
Towards Explainable Temporal Reasoning in Large Language Models: A Structure-Aware Generative Framework
While large language models (LLMs) show great potential in temporal reasoning, most existing work focuses heavily on enhancing performance, often neglecting the explainable reasoning processes underlying the results. To address this gap, we introduce a comprehensive benchmark covering a wide range of temporal granularities, designed to systematically evaluate LLMs' capabilities in explainable temporal reasoning. Furthermore, our findings reveal that LLMs struggle to deliver convincing explanations when relying solely on textual information. To address challenge, we propose GETER, a novel structure-aware generative framework that integrates Graph structures with text for Explainable TEmporal Reasoning. Specifically, we first leverage temporal knowledge graphs to develop a temporal encoder that captures structural information for the query. Subsequently, we introduce a structure-text prefix adapter to map graph structure features into the text embedding space. Finally, LLMs generate explanation text by seamlessly integrating the soft graph token with instruction-tuning prompt tokens. Experimental results indicate that GETER achieves state-of-the-art performance while also demonstrating its effectiveness as well as strong generalization capabilities. Our dataset and code are available at https://github.com/carryTatum/GETER.
MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models
High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a MAthematical data Selection framework using the Skill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs' spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. % Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning. Spatial-MM benchmark is available at: https://github.com/FatemehShiri/Spatial-MM
Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph
Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``LLMotimesKG'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
ORGAN: Observation-Guided Radiology Report Generation via Tree Reasoning
This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planning-based methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an observation-guided radiology report generation framework (ORGAN). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multi-formats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy
Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models
With the widespread use of large language models (LLMs) in NLP tasks, researchers have discovered the potential of Chain-of-thought (CoT) to assist LLMs in accomplishing complex reasoning tasks by generating intermediate steps. However, human thought processes are often non-linear, rather than simply sequential chains of thoughts. Therefore, we propose Graph-of-Thought (GoT) reasoning, which models human thought processes not only as a chain but also as a graph. By representing thought units as nodes and connections between them as edges, our approach captures the non-sequential nature of human thinking and allows for a more realistic modeling of thought processes. Similar to Multimodal-CoT, we modeled GoT reasoning as a two-stage framework, generating rationales first and then producing the final answer. Specifically, we employ an additional graph-of-thoughts encoder for GoT representation learning and fuse the GoT representation with the original input representation through a gated fusion mechanism. We implement a GoT reasoning model on the T5 pre-trained model and evaluate its performance on a text-only reasoning task (GSM8K) and a multimodal reasoning task (ScienceQA). Our model achieves significant improvement over the strong CoT baseline with 3.41% and 5.08% on the GSM8K test set with T5-base and T5-large architectures, respectively. Additionally, our model boosts accuracy from 84.91% to 91.54% using the T5-base model and from 91.68% to 92.77% using the T5-large model over the state-of-the-art Multimodal-CoT on the ScienceQA test set. Experiments have shown that GoT achieves comparable results to Multimodal-CoT(large) with over 700M parameters, despite having fewer than 250M backbone model parameters, demonstrating the effectiveness of GoT.
3DGraphLLM: Combining Semantic Graphs and Large Language Models for 3D Scene Understanding
A 3D scene graph represents a compact scene model, storing information about the objects and the semantic relationships between them, making its use promising for robotic tasks. When interacting with a user, an embodied intelligent agent should be capable of responding to various queries about the scene formulated in natural language. Large Language Models (LLMs) are beneficial solutions for user-robot interaction due to their natural language understanding and reasoning abilities. Recent methods for creating learnable representations of 3D scenes have demonstrated the potential to improve the quality of LLMs responses by adapting to the 3D world. However, the existing methods do not explicitly utilize information about the semantic relationships between objects, limiting themselves to information about their coordinates. In this work, we propose a method 3DGraphLLM for constructing a learnable representation of a 3D scene graph. The learnable representation is used as input for LLMs to perform 3D vision-language tasks. In our experiments on popular ScanRefer, RIORefer, Multi3DRefer, ScanQA, Sqa3D, and Scan2cap datasets, we demonstrate the advantage of this approach over baseline methods that do not use information about the semantic relationships between objects. The code is publicly available at https://github.com/CognitiveAISystems/3DGraphLLM.
Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities
Large language models (LLMs) have demonstrated remarkable performance on question-answering (QA) tasks because of their superior capabilities in natural language understanding and generation. However, LLM-based QA struggles with complex QA tasks due to poor reasoning capacity, outdated knowledge, and hallucinations. Several recent works synthesize LLMs and knowledge graphs (KGs) for QA to address the above challenges. In this survey, we propose a new structured taxonomy that categorizes the methodology of synthesizing LLMs and KGs for QA according to the categories of QA and the KG's role when integrating with LLMs. We systematically survey state-of-the-art advances in synthesizing LLMs and KGs for QA and compare and analyze these approaches in terms of strength, limitations, and KG requirements. We then align the approaches with QA and discuss how these approaches address the main challenges of different complex QA. Finally, we summarize the advancements, evaluation metrics, and benchmark datasets and highlight open challenges and opportunities.
Large Language Models on Graphs: A Comprehensive Survey
Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are paired with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a systematic review of scenarios and techniques related to large language models on graphs. We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-rich graphs, and text-paired graphs. We then discuss detailed techniques for utilizing LLMs on graphs, including LLM as Predictor, LLM as Encoder, and LLM as Aligner, and compare the advantages and disadvantages of different schools of models. Furthermore, we mention the real-world applications of such methods and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future research directions in this fast-growing field. The related source can be found at https://github.com/PeterGriffinJin/Awesome-Language-Model-on-Graphs.
When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.
Hydra: Structured Cross-Source Enhanced Large Language Model Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present Hydra, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. Hydra handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, Hydra uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, Hydra fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that Hydra achieves overall state-of-the-art results on all benchmarks with GPT-3.5, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, Hydra enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Prometheus: Unified Knowledge Graphs for Issue Resolution in Multilingual Codebases
Language model (LM) agents, such as SWE-agent and OpenHands, have made progress toward automated issue resolution. However, existing approaches are often limited to Python-only issues and rely on pre-constructed containers in SWE-bench with reproduced issues, restricting their applicability to real-world and work for multi-language repositories. We present Prometheus, designed to resolve real-world issues beyond benchmark settings. Prometheus is a multi-agent system that transforms an entire code repository into a unified knowledge graph to guide context retrieval for issue resolution. Prometheus encodes files, abstract syntax trees, and natural language text into a graph of typed nodes and five general edge types to support multiple programming languages. Prometheus uses Neo4j for graph persistence, enabling scalable and structured reasoning over large codebases. Integrated by the DeepSeek-V3 model, Prometheus resolves 28.67% and 13.7% of issues on SWE-bench Lite and SWE-bench Multilingual, respectively, with an average API cost of 0.23 and 0.38 per issue. Prometheus resolves 10 unique issues not addressed by prior work and is the first to demonstrate effectiveness across seven programming languages. Moreover, it shows the ability to resolve real-world GitHub issues in the LangChain and OpenHands repositories. We have open-sourced Prometheus at: https://github.com/Pantheon-temple/Prometheus
Compile Scene Graphs with Reinforcement Learning
Next token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. Given the structured nature of scene graphs, we design a graph-centric reward function that integrates node-level rewards, edge-level rewards, and a format consistency reward. Our experiments demonstrate that rule-based RL substantially enhances model performance in the SGG task, achieving a zero failure rate--unlike supervised fine-tuning (SFT), which struggles to generalize effectively. Our code is available at https://github.com/gpt4vision/R1-SGG.
EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
How to Mitigate Information Loss in Knowledge Graphs for GraphRAG: Leveraging Triple Context Restoration and Query-Driven Feedback
Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.
Plan-on-Graph: Self-Correcting Adaptive Planning of Large Language Model on Knowledge Graphs
Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
A Picture Is Worth a Graph: A Blueprint Debate Paradigm for Multimodal Reasoning
This paper presents a pilot study aimed at introducing multi-agent debate into multimodal reasoning. The study addresses two key challenges: the trivialization of opinions resulting from excessive summarization and the diversion of focus caused by distractor concepts introduced from images. These challenges stem from the inductive (bottom-up) nature of existing debating schemes. To address the issue, we propose a deductive (top-down) debating approach called Blueprint Debate on Graphs (BDoG). In BDoG, debates are confined to a blueprint graph to prevent opinion trivialization through world-level summarization. Moreover, by storing evidence in branches within the graph, BDoG mitigates distractions caused by frequent but irrelevant concepts. Extensive experiments validate that BDoG is able to achieve state-of-the-art results in ScienceQA and MMBench with significant improvements over previous methods. The source code can be accessed at https://github.com/thecharm/BDoG.
MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over Time-Involved Document
The facts and time in the document are intricately intertwined, making temporal reasoning over documents challenging. Previous work models time implicitly, making it difficult to handle such complex relationships. To address this issue, we propose MTGER, a novel Multi-view Temporal Graph Enhanced Temporal Reasoning framework for temporal reasoning over time-involved documents. Concretely, MTGER explicitly models the temporal relationships among facts by multi-view temporal graphs. On the one hand, the heterogeneous temporal graphs explicitly model the temporal and discourse relationships among facts; on the other hand, the multi-view mechanism captures both time-focused and fact-focused information, allowing the two views to complement each other through adaptive fusion. To further improve the implicit reasoning capability of the model, we design a self-supervised time-comparing objective. Extensive experimental results demonstrate the effectiveness of our method on the TimeQA and SituatedQA datasets. Furthermore, MTGER gives more consistent answers under question perturbations.
Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
The causal capabilities of large language models (LLMs) are a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We conduct a "behavorial" study of LLMs to benchmark their capability in generating causal arguments. Across a wide range of tasks, we find that LLMs can generate text corresponding to correct causal arguments with high probability, surpassing the best-performing existing methods. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain) and event causality (86% accuracy in determining necessary and sufficient causes in vignettes). We perform robustness checks across tasks and show that the capabilities cannot be explained by dataset memorization alone, especially since LLMs generalize to novel datasets that were created after the training cutoff date. That said, LLMs exhibit unpredictable failure modes, and we discuss the kinds of errors that may be improved and what are the fundamental limits of LLM-based answers. Overall, by operating on the text metadata, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. As a result, LLMs may be used by human domain experts to save effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. Given that LLMs ignore the actual data, our results also point to a fruitful research direction of developing algorithms that combine LLMs with existing causal techniques. Code and datasets are available at https://github.com/py-why/pywhy-llm.
Triggering Multi-Hop Reasoning for Question Answering in Language Models using Soft Prompts and Random Walks
Despite readily memorizing world knowledge about entities, pre-trained language models (LMs) struggle to compose together two or more facts to perform multi-hop reasoning in question-answering tasks. In this work, we propose techniques that improve upon this limitation by relying on random walks over structured knowledge graphs. Specifically, we use soft prompts to guide LMs to chain together their encoded knowledge by learning to map multi-hop questions to random walk paths that lead to the answer. Applying our methods on two T5 LMs shows substantial improvements over standard tuning approaches in answering questions that require 2-hop reasoning.
ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning
For robots to perform a wide variety of tasks, they require a 3D representation of the world that is semantically rich, yet compact and efficient for task-driven perception and planning. Recent approaches have attempted to leverage features from large vision-language models to encode semantics in 3D representations. However, these approaches tend to produce maps with per-point feature vectors, which do not scale well in larger environments, nor do they contain semantic spatial relationships between entities in the environment, which are useful for downstream planning. In this work, we propose ConceptGraphs, an open-vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association. The resulting representations generalize to novel semantic classes, without the need to collect large 3D datasets or finetune models. We demonstrate the utility of this representation through a number of downstream planning tasks that are specified through abstract (language) prompts and require complex reasoning over spatial and semantic concepts. (Project page: https://concept-graphs.github.io/ Explainer video: https://youtu.be/mRhNkQwRYnc )
In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning
Structure reasoning is a fundamental capability of large language models (LLMs), enabling them to reason about structured commonsense and answer multi-hop questions. However, existing benchmarks for structure reasoning mainly focus on horizontal and coordinate structures (e.g. graphs), overlooking the hierarchical relationships within them. Hierarchical structure reasoning is crucial for human cognition, particularly in memory organization and problem-solving. It also plays a key role in various real-world tasks, such as information extraction and decision-making. To address this gap, we propose HiBench, the first framework spanning from initial structure generation to final proficiency assessment, designed to benchmark the hierarchical reasoning capabilities of LLMs systematically. HiBench encompasses six representative scenarios, covering both fundamental and practical aspects, and consists of 30 tasks with varying hierarchical complexity, totaling 39,519 queries. To evaluate LLMs comprehensively, we develop five capability dimensions that depict different facets of hierarchical structure understanding. Through extensive evaluation of 20 LLMs from 10 model families, we reveal key insights into their capabilities and limitations: 1) existing LLMs show proficiency in basic hierarchical reasoning tasks; 2) they still struggle with more complex structures and implicit hierarchical representations, especially in structural modification and textual reasoning. Based on these findings, we create a small yet well-designed instruction dataset, which enhances LLMs' performance on HiBench by an average of 88.84\% (Llama-3.1-8B) and 31.38\% (Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit are available here, https://github.com/jzzzzh/HiBench, to encourage evaluation.
SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.
G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning
Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erd\~os, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erd\~os, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully.
3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning
Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.
Systematic Relational Reasoning With Epistemic Graph Neural Networks
Developing models that can learn to reason is a notoriously challenging problem. We focus on reasoning in relational domains, where the use of Graph Neural Networks (GNNs) seems like a natural choice. However, previous work has shown that regular GNNs lack the ability to systematically generalize from training examples on test graphs requiring longer inference chains, which fundamentally limits their reasoning abilities. A common solution relies on neuro-symbolic methods that systematically reason by learning rules, but their scalability is often limited and they tend to make unrealistically strong assumptions, e.g.\ that the answer can always be inferred from a single relational path. We propose the Epistemic GNN (EpiGNN), a novel parameter-efficient and scalable GNN architecture with an epistemic inductive bias for systematic reasoning. Node embeddings in EpiGNNs are treated as epistemic states, and message passing is implemented accordingly. We show that EpiGNNs achieve state-of-the-art results on link prediction tasks that require systematic reasoning. Furthermore, for inductive knowledge graph completion, EpiGNNs rival the performance of state-of-the-art specialized approaches. Finally, we introduce two new benchmarks that go beyond standard relational reasoning by requiring the aggregation of information from multiple paths. Here, existing neuro-symbolic approaches fail, yet EpiGNNs learn to reason accurately. Code and datasets are available at https://github.com/erg0dic/gnn-sg.
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning
Planning is a fundamental property of human intelligence. Reasoning about asynchronous plans is challenging since it requires sequential and parallel planning to optimize time costs. Can large language models (LLMs) succeed at this task? Here, we present the first large-scale study investigating this question. We find that a representative set of closed and open-source LLMs, including GPT-4 and LLaMA-2, behave poorly when not supplied with illustrations about the task-solving process in our benchmark AsyncHow. We propose a novel technique called Plan Like a Graph (PLaG) that combines graphs with natural language prompts and achieves state-of-the-art results. We show that although PLaG can boost model performance, LLMs still suffer from drastic degradation when task complexity increases, highlighting the limits of utilizing LLMs for simulating digital devices. We see our study as an exciting step towards using LLMs as efficient autonomous agents. Our code and data are available at https://github.com/fangru-lin/graph-llm-asynchow-plan.
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning that goes beyond simple one-hop link prediction and solves a far more complex task of multi-hop logical reasoning over massive, potentially incomplete graphs in a latent space. The task received a significant traction in the community; numerous works expanded the field along theoretical and practical axes to tackle different types of complex queries and graph modalities with efficient systems. In this paper, we provide a holistic survey of CLQA with a detailed taxonomy studying the field from multiple angles, including graph types (modality, reasoning domain, background semantics), modeling aspects (encoder, processor, decoder), supported queries (operators, patterns, projected variables), datasets, evaluation metrics, and applications. Refining the CLQA task, we introduce the concept of Neural Graph Databases (NGDBs). Extending the idea of graph databases (graph DBs), NGDB consists of a Neural Graph Storage and a Neural Graph Engine. Inside Neural Graph Storage, we design a graph store, a feature store, and further embed information in a latent embedding store using an encoder. Given a query, Neural Query Engine learns how to perform query planning and execution in order to efficiently retrieve the correct results by interacting with the Neural Graph Storage. Compared with traditional graph DBs, NGDBs allow for a flexible and unified modeling of features in diverse modalities using the embedding store. Moreover, when the graph is incomplete, they can provide robust retrieval of answers which a normal graph DB cannot recover. Finally, we point out promising directions, unsolved problems and applications of NGDB for future research.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
Dynamic graph learning methods have recently emerged as powerful tools for modelling relational data evolving through time. However, despite extensive benchmarking efforts, it remains unclear whether current Temporal Graph Neural Networks (TGNNs) effectively capture core temporal patterns such as periodicity, cause-and-effect, and long-range dependencies. In this work, we introduce the Temporal Graph Reasoning Benchmark (T-GRAB), a comprehensive set of synthetic tasks designed to systematically probe the capabilities of TGNNs to reason across time. T-GRAB provides controlled, interpretable tasks that isolate key temporal skills: counting/memorizing periodic repetitions, inferring delayed causal effects, and capturing long-range dependencies over both spatial and temporal dimensions. We evaluate 11 temporal graph learning methods on these tasks, revealing fundamental shortcomings in their ability to generalize temporal patterns. Our findings offer actionable insights into the limitations of current models, highlight challenges hidden by traditional real-world benchmarks, and motivate the development of architectures with stronger temporal reasoning abilities. The code for T-GRAB can be found at: https://github.com/alirezadizaji/T-GRAB.
EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States
Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains a challenging task for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning, which requires multi-hop reasoning about characters' beliefs. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured representations of entity states, which construct spatial scene graphs -- leveraging spatial information as an inductive bias -- for belief tracking of various ToM orders and enhancing events with fine-grained entity state details. Experimental results on multiple benchmarks, including ToMi, HiToM, and FANToM, show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
Multi-modal Situated Reasoning in 3D Scenes
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding are limited in data modality, diversity, scale, and task scope. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated question-answering pairs across 9 distinct question categories, covering complex scenarios within 3D scenes. We introduce a novel interleaved multi-modal input setting in our benchmark to provide text, image, and point cloud for situation and question description, resolving ambiguity in previous single-modality convention (e.g., text). Additionally, we devise the Multi-modal Situated Next-step Navigation (MSNN) benchmark to evaluate models' situated reasoning for navigation. Comprehensive evaluations on MSQA and MSNN highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and cross-domain transfer further demonstrate the efficacy of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models.
CLadder: Assessing Causal Reasoning in Language Models
The ability to perform causal reasoning is widely considered a core feature of intelligence. In this work, we investigate whether large language models (LLMs) can coherently reason about causality. Much of the existing work in natural language processing (NLP) focuses on evaluating commonsense causal reasoning in LLMs, thus failing to assess whether a model can perform causal inference in accordance with a set of well-defined formal rules. To address this, we propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al. We compose a large dataset, CLadder, with 10K samples: based on a collection of causal graphs and queries (associational, interventional, and counterfactual), we obtain symbolic questions and ground-truth answers, through an oracle causal inference engine. These are then translated into natural language. We evaluate multiple LLMs on our dataset, and we introduce and evaluate a bespoke chain-of-thought prompting strategy, CausalCoT. We show that our task is highly challenging for LLMs, and we conduct an in-depth analysis to gain deeper insights into the causal reasoning abilities of LLMs. Our data is open-sourced at https://huggingface.co/datasets/causalNLP/cladder, and our code can be found at https://github.com/causalNLP/cladder.
Not All Large Language Models (LLMs) Succumb to the "Reversal Curse": A Comparative Study of Deductive Logical Reasoning in BERT and GPT Models
The "Reversal Curse" refers to the scenario where auto-regressive decoder large language models (LLMs), such as ChatGPT, trained on "A is B" fail to learn "B is A", demonstrating a basic failure of logical deduction. This raises a red flag in the use of GPT models for certain general tasks such as constructing knowledge graphs, considering their adherence to this symmetric principle. In our study, we examined a bidirectional LLM, BERT, and found that it is immune to the reversal curse. Driven by ongoing efforts to construct biomedical knowledge graphs with LLMs, we also embarked on evaluating more complex but essential deductive reasoning capabilities. This process included first training encoder and decoder language models to master the intersection (cap) and union (cup) operations on two sets and then moving on to assess their capability to infer different combinations of union (cup) and intersection (cap) operations on three newly created sets. The findings showed that while both encoder and decoder language models, trained for tasks involving two sets (union/intersection), were proficient in such scenarios, they encountered difficulties when dealing with operations that included three sets (various combinations of union and intersection). Our research highlights the distinct characteristics of encoder and decoder models in simple and complex logical reasoning. In practice, the choice between BERT and GPT should be guided by the specific requirements and nature of the task at hand, leveraging their respective strengths in bidirectional context comprehension and sequence prediction.
GraphLLM: Boosting Graph Reasoning Ability of Large Language Model
The advancement of Large Language Models (LLMs) has remarkably pushed the boundaries towards artificial general intelligence (AGI), with their exceptional ability on understanding diverse types of information, including but not limited to images and audio. Despite this progress, a critical gap remains in empowering LLMs to proficiently understand and reason on graph data. Recent studies underscore LLMs' underwhelming performance on fundamental graph reasoning tasks. In this paper, we endeavor to unearth the obstacles that impede LLMs in graph reasoning, pinpointing the common practice of converting graphs into natural language descriptions (Graph2Text) as a fundamental bottleneck. To overcome this impediment, we introduce GraphLLM, a pioneering end-to-end approach that synergistically integrates graph learning models with LLMs. This synergy equips LLMs with the ability to proficiently interpret and reason on graph data, harnessing the superior expressive power of graph learning models. Our empirical evaluations across four fundamental graph reasoning tasks validate the effectiveness of GraphLLM. The results exhibit a substantial average accuracy enhancement of 54.44%, alongside a noteworthy context reduction of 96.45% across various graph reasoning tasks.
LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and Reasoning
Current high-performance semantic segmentation models are purely data-driven sub-symbolic approaches and blind to the structured nature of the visual world. This is in stark contrast to human cognition which abstracts visual perceptions at multiple levels and conducts symbolic reasoning with such structured abstraction. To fill these fundamental gaps, we devise LOGICSEG, a holistic visual semantic parser that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge. In particular, the semantic concepts of interest are structured as a hierarchy, from which a set of constraints are derived for describing the symbolic relations and formalized as first-order logic rules. After fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training. During inference, logical constraints are packaged into an iterative process and injected into the network in a form of several matrix multiplications, so as to achieve hierarchy-coherent prediction with logic reasoning. These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models. Extensive experiments over four datasets with various segmentation models and backbones verify the effectiveness and generality of LOGICSEG. We believe this study opens a new avenue for visual semantic parsing.
Explanation Graph Generation via Generative Pre-training over Synthetic Graphs
The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy between unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.
A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Inductive Logical Query Answering in Knowledge Graphs
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph
Multi-hop logical reasoning over knowledge graph (KG) plays a fundamental role in many artificial intelligence tasks. Recent complex query embedding (CQE) methods for reasoning focus on static KGs, while temporal knowledge graphs (TKGs) have not been fully explored. Reasoning over TKGs has two challenges: 1. The query should answer entities or timestamps; 2. The operators should consider both set logic on entity set and temporal logic on timestamp set. To bridge this gap, we define the multi-hop logical reasoning problem on TKGs. With generated three datasets, we propose the first temporal CQE named Temporal Feature-Logic Embedding framework (TFLEX) to answer the temporal complex queries. We utilize vector logic to compute the logic part of Temporal Feature-Logic embeddings, thus naturally modeling all First-Order Logic (FOL) operations on entity set. In addition, our framework extends vector logic on timestamp set to cope with three extra temporal operators (After, Before and Between). Experiments on numerous query patterns demonstrate the effectiveness of our method.
Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts
Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.
COPA-SSE: Semi-structured Explanations for Commonsense Reasoning
We present Semi-Structured Explanations for COPA (COPA-SSE), a new crowdsourced dataset of 9,747 semi-structured, English common sense explanations for Choice of Plausible Alternatives (COPA) questions. The explanations are formatted as a set of triple-like common sense statements with ConceptNet relations but freely written concepts. This semi-structured format strikes a balance between the high quality but low coverage of structured data and the lower quality but high coverage of free-form crowdsourcing. Each explanation also includes a set of human-given quality ratings. With their familiar format, the explanations are geared towards commonsense reasoners operating on knowledge graphs and serve as a starting point for ongoing work on improving such systems. The dataset is available at https://github.com/a-brassard/copa-sse.
Toward Adaptive Reasoning in Large Language Models with Thought Rollback
Large language models (LLMs) have been routinely used to solve various tasks using step-by-step reasoning. However, the structure of intermediate reasoning steps, or thoughts, is rigid and unidirectional, such as chains, trees, or acyclic-directed graphs. Consequently, the resulting inflexible and forward-only reasoning may not address challenging tasks and fail when the LLM frequently gives false responses, i.e., ``hallucinations''. This paper proposes a new reasoning framework, called Thought Rollback (TR), allowing LLMs to adaptively build thought structure while maintaining effective reasoning toward problem-solving under ``hallucinations''. The core mechanism of TR is rolling back thoughts, which allows LLMs to perform error analysis on thoughts, and thus roll back to any previously mistaken thought for revision. Subsequently, by including such trial-and-error in the prompt to guide the LLM, each rollback leads to one more reliable reasoning path. Therefore, starting with a simple prompt without human annotations, LLM with TR adaptively and gradually explores thoughts for a correct solution. Comprehensive experiments on mathematical problems and multi-task reasoning demonstrate the state-of-the-art performance of TR in terms of problem-solving rate and interaction cost. For instance, the solving rate of GPT-4 with TR outperforms the current best by 9% on the MATH dataset.
Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
Mobility VLA: Multimodal Instruction Navigation with Long-Context VLMs and Topological Graphs
An elusive goal in navigation research is to build an intelligent agent that can understand multimodal instructions including natural language and image, and perform useful navigation. To achieve this, we study a widely useful category of navigation tasks we call Multimodal Instruction Navigation with demonstration Tours (MINT), in which the environment prior is provided through a previously recorded demonstration video. Recent advances in Vision Language Models (VLMs) have shown a promising path in achieving this goal as it demonstrates capabilities in perceiving and reasoning about multimodal inputs. However, VLMs are typically trained to predict textual output and it is an open research question about how to best utilize them in navigation. To solve MINT, we present Mobility VLA, a hierarchical Vision-Language-Action (VLA) navigation policy that combines the environment understanding and common sense reasoning power of long-context VLMs and a robust low-level navigation policy based on topological graphs. The high-level policy consists of a long-context VLM that takes the demonstration tour video and the multimodal user instruction as input to find the goal frame in the tour video. Next, a low-level policy uses the goal frame and an offline constructed topological graph to generate robot actions at every timestep. We evaluated Mobility VLA in a 836m^2 real world environment and show that Mobility VLA has a high end-to-end success rates on previously unsolved multimodal instructions such as "Where should I return this?" while holding a plastic bin.
Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs
Large language models (LLMs), such as ChatGPT and GPT-4, are versatile and can solve different tasks due to their emergent ability and generalizability. However, LLMs sometimes lack domain-specific knowledge to perform tasks, which would also cause hallucination during inference. In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases, aiming to mitigate the problem of lacking domain-specific knowledge. However, incorporating additional modules: 1) would need retraining additional modules when encountering novel domains; 2) would become a bottleneck since LLMs' strong abilities are not fully utilized for retrieval. In this paper, we propose a paradigm, termed Knowledge Solver (KSL), to teach LLMs to search for essential knowledge from external knowledge bases by harnessing their own strong generalizability. Specifically, we design a simple yet effective prompt to transform retrieval into a multi-hop decision sequence, which empowers LLMs with searching knowledge ability in zero-shot manner. Additionally, KSL is able to provide complete retrieval paths and therefore increase explainability of LLMs' reasoning processes. We conduct experiments on three datasets: CommonsenseQA, OpenbookQA, and MedQA-USMLE, and found that our approach improves LLM baseline performance by a relatively large margin.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study
Recent advances in natural language processing highlight two key factors for improving reasoning in large language models (LLMs): (i) allocating more test-time compute tends to help on harder problems but often introduces redundancy in the reasoning trace, and (ii) compute is most effective when reasoning is systematic and incremental, forming structured chains of thought (CoTs) akin to human problem-solving. To study these factors in isolation, we introduce a controlled setting based on shortest-path tasks in layered graphs. We train decoder-only transformers on question-trace-answer triples using a custom tokenizer, comparing models trained on optimal bottom-up dynamic programming traces with those trained on longer, valid traces involving backtracking. Surprisingly, with the same training-token budget, models trained on inefficient traces generalize better to unseen graphs. This benefit is not due to length alone-injecting arbitrary redundancy into reasoning traces fails to help and can even hurt performance. Instead, we find that generalization correlates with the model's confidence in next-token prediction, suggesting that long, coherent, and locally incremental traces make the training signal easier to optimize.
Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps
Autonomous driving for urban and highway driving applications often requires High Definition (HD) maps to generate a navigation plan. Nevertheless, various challenges arise when generating and maintaining HD maps at scale. While recent online mapping methods have started to emerge, their performance especially for longer ranges is limited by heavy occlusion in dynamic environments. With these considerations in mind, our work focuses on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations. We first examine the integration of prototypical rasterized SD map representations into various online mapping architectures. Furthermore, to identify lightweight strategies, we extend the OpenLane-V2 dataset with OpenStreetMaps and evaluate the benefits of graphical SD map representations. A key finding from designing SD map integration components is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders. Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP). Furthermore, we show that the introduction of the SD maps leads to a reduction of the number of parameters in the perception and reasoning task by leveraging SD map graphs while improving the overall performance. Project Page: https://henryzhangzhy.github.io/sdhdmap/.
SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
Automatic Generation of Contrast Sets from Scene Graphs: Probing the Compositional Consistency of GQA
Recent works have shown that supervised models often exploit data artifacts to achieve good test scores while their performance severely degrades on samples outside their training distribution. Contrast sets (Gardneret al., 2020) quantify this phenomenon by perturbing test samples in a minimal way such that the output label is modified. While most contrast sets were created manually, requiring intensive annotation effort, we present a novel method which leverages rich semantic input representation to automatically generate contrast sets for the visual question answering task. Our method computes the answer of perturbed questions, thus vastly reducing annotation cost and enabling thorough evaluation of models' performance on various semantic aspects (e.g., spatial or relational reasoning). We demonstrate the effectiveness of our approach on the GQA dataset and its semantic scene graph image representation. We find that, despite GQA's compositionality and carefully balanced label distribution, two high-performing models drop 13-17% in accuracy compared to the original test set. Finally, we show that our automatic perturbation can be applied to the training set to mitigate the degradation in performance, opening the door to more robust models.
WIQA: A dataset for "What if..." reasoning over procedural text
We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of "What if...?" multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
CLEVR-Dialog: A Diagnostic Dataset for Multi-Round Reasoning in Visual Dialog
Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolation on large, real datasets is infeasible as it requires prohibitively-expensive complete annotation of the 'state' of all images and dialogs. We develop CLEVR-Dialog, a large diagnostic dataset for studying multi-round reasoning in visual dialog. Specifically, we construct a dialog grammar that is grounded in the scene graphs of the images from the CLEVR dataset. This combination results in a dataset where all aspects of the visual dialog are fully annotated. In total, CLEVR-Dialog contains 5 instances of 10-round dialogs for about 85k CLEVR images, totaling to 4.25M question-answer pairs. We use CLEVR-Dialog to benchmark performance of standard visual dialog models; in particular, on visual coreference resolution (as a function of the coreference distance). This is the first analysis of its kind for visual dialog models that was not possible without this dataset. We hope the findings from CLEVR-Dialog will help inform the development of future models for visual dialog. Our dataset and code are publicly available.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
Learning Iterative Reasoning through Energy Diffusion
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks by formulating reasoning and decision-making problems with energy-based optimization. IRED learns energy functions to represent the constraints between input conditions and desired outputs. After training, IRED adapts the number of optimization steps during inference based on problem difficulty, enabling it to solve problems outside its training distribution -- such as more complex Sudoku puzzles, matrix completion with large value magnitudes, and pathfinding in larger graphs. Key to our method's success is two novel techniques: learning a sequence of annealed energy landscapes for easier inference and a combination of score function and energy landscape supervision for faster and more stable training. Our experiments show that IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks, particularly in more challenging scenarios. Code and visualizations at https://energy-based-model.github.io/ired/
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue Systems
Users interacting with voice assistants today need to phrase their requests in a very specific manner to elicit an appropriate response. This limits the user experience, and is partly due to the lack of reasoning capabilities of dialogue platforms and the hand-crafted rules that require extensive labor. One possible way to improve user experience and relieve the manual efforts of designers is to build an end-to-end dialogue system that can do reasoning itself while perceiving user's utterances. In this work, we propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner. Our proposed method allows a single transformer model to directly walk on a large-scale knowledge graph to generate responses. To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs. We investigate the reasoning abilities of the proposed method on both task-oriented and domain-specific chit-chat dialogues. Empirical results show that this method can effectively and efficiently incorporate a knowledge graph into a dialogue system with fully-interpretable reasoning paths.
Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model
Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: https://github.com/zwq2018/Multi-modal-Self-instruct.
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph
In this paper, we aim to improve the reasoning ability of large language models (LLMs) over knowledge graphs (KGs) to answer complex questions. Inspired by existing methods that design the interaction strategy between LLMs and KG, we propose an autonomous LLM-based agent framework, called KG-Agent, which enables a small LLM to actively make decisions until finishing the reasoning process over KGs. In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory, and develop an iteration mechanism that autonomously selects the tool then updates the memory for reasoning over KG. To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG, and synthesize a code-based instruction dataset to fine-tune the base LLM. Extensive experiments demonstrate that only using 10K samples for tuning LLaMA-7B can outperform state-of-the-art methods using larger LLMs or more data, on both in-domain and out-domain datasets. Our code and data will be publicly released.
ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning
Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks
Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns are raised about potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a general and flexible protocol for dynamic evaluation of LLMs. Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4. Experiments show that LLMs perform worse in DyVal-generated evaluation samples with different complexities, highlighting the significance of dynamic evaluation. We also analyze the failure cases and results of different prompting methods. Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks. We hope that DyVal can shed light on future evaluation research of LLMs. Code is available at: https://github.com/microsoft/promptbench.
OmniCellTOSG: The First Cell Text-Omic Signaling Graphs Dataset for Joint LLM and GNN Modeling
Complex cell signaling systems -- governed by varying protein abundances and interactions -- generate diverse cell types across organs. These systems evolve under influences such as age, sex, diet, environmental exposures, and diseases, making them challenging to decode given the involvement of tens of thousands of genes and proteins. Recently, hundreds of millions of single-cell omics data have provided a robust foundation for understanding these signaling networks within various cell subpopulations and conditions. Inspired by the success of large foundation models (for example, large language models and large vision models) pre-trained on massive datasets, we introduce OmniCellTOSG, the first dataset of cell text-omic signaling graphs (TOSGs). Each TOSG represents the signaling network of an individual or meta-cell and is labeled with information such as organ, disease, sex, age, and cell subtype. OmniCellTOSG offers two key contributions. First, it introduces a novel graph model that integrates human-readable annotations -- such as biological functions, cellular locations, signaling pathways, related diseases, and drugs -- with quantitative gene and protein abundance data, enabling graph reasoning to decode cell signaling. This approach calls for new joint models combining large language models and graph neural networks. Second, the dataset is built from single-cell RNA sequencing data of approximately 120 million cells from diverse tissues and conditions (healthy and diseased) and is fully compatible with PyTorch. This facilitates the development of innovative cell signaling models that could transform research in life sciences, healthcare, and precision medicine. The OmniCellTOSG dataset is continuously expanding and will be updated regularly. The dataset and code are available at https://github.com/FuhaiLiAiLab/OmniCellTOSG.
CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge
Knowledge graph question answering (KGQA) is a well-established field that seeks to provide factual answers to natural language (NL) questions by leveraging knowledge graphs (KGs). However, existing KGQA datasets suffer from two significant limitations: (1) no existing KGQA dataset requires commonsense reasoning to arrive at an answer and (2) existing KGQA datasets focus on popular entities for which large language models (LLMs) can directly answer without hallucinating and without leveraging the KG. In this work, we seek a novel KGQA dataset that supports commonsense reasoning and focuses on long-tail entities (e.g., non-mainstream and recent entities) where LLMs frequently hallucinate, and thus create the need for novel methodologies that leverage the KG for factual and attributable commonsense inference. We create a novel Commonsense Reasoning (CR) and Long-Tail (LT) KGQA dataset with two subtasks -- question answering and claim verification -- that address both limitations (1) and (2). We construct CR-LT-KGQA by building extensions to existing reasoning datasets StrategyQA and CREAK over Wikidata. While existing KGQA methods are not applicable due to their lack of commonsense inference support, baseline evaluation of LLMs on CR-LT KGQA demonstrate a high rate of hallucination. Thus, CR-LT KGQA poses significant challenges for hallucination-prone LLMs, hence paving the way for future commonsense KGQA research to provide accurate and factual answers for long-tail entities in the era of LLMs.
DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models
The rapid advancements in Vision-Language Models (VLMs) have shown great potential in tackling mathematical reasoning tasks that involve visual context. Unlike humans who can reliably apply solution steps to similar problems with minor modifications, we found that SOTA VLMs like GPT-4o can consistently fail in these scenarios, revealing limitations in their mathematical reasoning capabilities. In this paper, we investigate the mathematical reasoning robustness in VLMs and evaluate how well these models perform under different variants of the same question, such as changes in visual numerical values or function graphs. While several vision-based math benchmarks have been developed to assess VLMs' problem-solving capabilities, these benchmarks contain only static sets of problems and cannot easily evaluate mathematical reasoning robustness. To fill this gap, we introduce DynaMath, a dynamic visual math benchmark designed for in-depth assessment of VLMs. DynaMath includes 501 high-quality, multi-topic seed questions, each represented as a Python program. Those programs are carefully designed and annotated to enable the automatic generation of a much larger set of concrete questions, including many different types of visual and textual variations. DynaMath allows us to evaluate the generalization ability of VLMs, by assessing their performance under varying input conditions of a seed question. We evaluated 14 SOTA VLMs with 5,010 generated concrete questions. Our results show that the worst-case model accuracy, defined as the percentage of correctly answered seed questions in all 10 variants, is significantly lower than the average-case accuracy. Our analysis emphasizes the need to study the robustness of VLMs' reasoning abilities, and DynaMath provides valuable insights to guide the development of more reliable models for mathematical reasoning.
STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks. We have released datasets, and code will be available.
Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT
In this paper, we aim to develop a large language model (LLM) with the reasoning ability on complex graph data. Currently, LLMs have achieved very impressive performance on various natural language learning tasks, extensions of which have also been applied to study the vision tasks with multi-modal data. However, when it comes to the graph learning tasks, existing LLMs present very serious flaws due to their several inherited weaknesses in performing {multi-step logic reasoning}, {precise mathematical calculation} and {perception about the spatial and temporal factors}. To address such challenges, in this paper, we will investigate the principles, methodologies and algorithms to empower existing LLMs with graph reasoning ability, which will have tremendous impacts on the current research of both LLMs and graph learning. Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer (Graph Reasoning oriented Toolformer) framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools. Specifically, we will investigate to teach Graph-ToolFormer to handle various graph data reasoning tasks in this paper, including both (1) very basic graph data loading and graph property reasoning tasks, ranging from simple graph order and size to the graph diameter and periphery, and (2) more advanced reasoning tasks on real-world graph data, such as bibliographic networks, protein molecules, sequential recommender systems, social networks and knowledge graphs.
Language Models of Code are Few-Shot Commonsense Learners
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
Visualizing Thought: Conceptual Diagrams Enable Robust Planning in LMMs
Human reasoning relies on constructing and manipulating mental models-simplified internal representations of situations that we use to understand and solve problems. Conceptual diagrams (for example, sketches drawn by humans to aid reasoning) externalize these mental models, abstracting irrelevant details to efficiently capture relational and spatial information. In contrast, Large Language Models (LLMs) and Large Multimodal Models (LMMs) predominantly reason through textual representations, limiting their effectiveness in complex multi-step combinatorial and planning tasks. In this paper, we propose a zero-shot fully automatic framework that enables LMMs to reason through multiple chains of self-generated intermediate conceptual diagrams, significantly enhancing their combinatorial planning capabilities. Our approach does not require any human initialization beyond a natural language description of the task. It integrates both textual and diagrammatic reasoning within an optimized graph-of-thought inference framework, enhanced by beam search and depth-wise backtracking. Evaluated on multiple challenging PDDL planning domains, our method substantially improves GPT-4o's performance (for example, from 35.5% to 90.2% in Blocksworld). On more difficult planning domains with solution depths up to 40, our approach outperforms even the o1-preview reasoning model (for example, over 13% improvement in Parking). These results highlight the value of conceptual diagrams as a complementary reasoning medium in LMMs.
Can Language Models Solve Graph Problems in Natural Language?
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question. The NLGraph benchmark and evaluation code are available at https://github.com/Arthur-Heng/NLGraph.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Reasoning with Language Model Prompting: A Survey
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
GraphWiz: An Instruction-Following Language Model for Graph Problems
Large language models (LLMs) have achieved impressive success across several fields, but their proficiency in understanding and resolving complex graph problems is less explored. To bridge this gap, we introduce GraphInstruct, a novel and comprehensive instruction-tuning dataset designed to equip language models with the ability to tackle a broad spectrum of graph problems using explicit reasoning paths. Utilizing GraphInstruct, we build GraphWiz, an open-source language model capable of resolving various graph problem types while generating clear reasoning processes. To enhance the model's capability and reliability, we incorporate the Direct Preference Optimization (DPO) framework into the graph problem-solving context. The enhanced model, GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with different complexity levels, surpassing GPT-4 which has an average accuracy of 43.8%. Moreover, our research delves into the delicate balance between training data volume and model performance, highlighting the potential for overfitting with increased data. We also explore the transferability of the model's reasoning ability across different graph tasks, indicating the model's adaptability and practical application potential. Our investigation offers a new blueprint and valuable insights for developing LLMs specialized in graph reasoning and problem-solving.
Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection
Extensive research has investigated the integration of large language models (LLMs) with knowledge graphs to enhance the reasoning process. However, understanding how models perform reasoning utilizing structured graph knowledge remains underexplored. Most existing approaches rely on LLMs or retrievers to make binary judgments regarding the utilization of knowledge, which is too coarse. Meanwhile, there is still a lack of feedback mechanisms for reflection and correction throughout the entire reasoning path. This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG, introducing for the first time an end-to-end training approach to achieve iterative reasoning grounded on structured graphs. Within the framework, the model leverages special tokens to actively determine whether knowledge retrieval is necessary, performs reflective critique based on the retrieved knowledge, and iteratively reasons over the knowledge graph. The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge. Ultimately, the proposed model achieves outstanding results compared to existing baselines in knowledge graph reasoning tasks.
On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.
Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning
Evaluating the performance of visual language models (VLMs) in graphic reasoning tasks has become an important research topic. However, VLMs still show obvious deficiencies in simulating human-level graphic reasoning capabilities, especially in complex graphic reasoning and abstract problem solving, which are less studied and existing studies only focus on simple graphics. To evaluate the performance of VLMs in complex graphic reasoning, we propose ReasonBench, the first evaluation benchmark focused on structured graphic reasoning tasks, which includes 1,613 questions from real-world intelligence tests. ReasonBench covers reasoning dimensions related to location, attribute, quantity, and multi-element tasks, providing a comprehensive evaluation of the performance of VLMs in spatial, relational, and abstract reasoning capabilities. We benchmark 11 mainstream VLMs (including closed-source and open-source models) and reveal significant limitations of current models. Based on these findings, we propose a dual optimization strategy: Diagrammatic Reasoning Chain (DiaCoT) enhances the interpretability of reasoning by decomposing layers, and ReasonTune enhances the task adaptability of model reasoning through training, all of which improves VLM performance by 33.5\%. All experimental data and code are in the repository: https://huggingface.co/datasets/cistine/ReasonBench.
A Fully Spectral Neuro-Symbolic Reasoning Architecture with Graph Signal Processing as the Computational Backbone
We propose a fully spectral, neuro\-symbolic reasoning architecture that leverages Graph Signal Processing (GSP) as the primary computational backbone for integrating symbolic logic and neural inference. Unlike conventional reasoning models that treat spectral graph methods as peripheral components, our approach formulates the entire reasoning pipeline in the graph spectral domain. Logical entities and relationships are encoded as graph signals, processed via learnable spectral filters that control multi-scale information propagation, and mapped into symbolic predicates for rule-based inference. We present a complete mathematical framework for spectral reasoning, including graph Fourier transforms, band-selective attention, and spectral rule grounding. Experiments on benchmark reasoning datasets (ProofWriter, EntailmentBank, bAbI, CLUTRR, and ARC-Challenge) demonstrate improvements in logical consistency, interpretability, and computational efficiency over state\-of\-the\-art neuro\-symbolic models. Our results suggest that GSP provides a mathematically grounded and computationally efficient substrate for robust and interpretable reasoning systems.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time https://github.com/zzli2022/Awesome-Slow-Reason-System{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
Measuring Compositional Consistency for Video Question Answering
Recent video question answering benchmarks indicate that state-of-the-art models struggle to answer compositional questions. However, it remains unclear which types of compositional reasoning cause models to mispredict. Furthermore, it is difficult to discern whether models arrive at answers using compositional reasoning or by leveraging data biases. In this paper, we develop a question decomposition engine that programmatically deconstructs a compositional question into a directed acyclic graph of sub-questions. The graph is designed such that each parent question is a composition of its children. We present AGQA-Decomp, a benchmark containing 2.3M question graphs, with an average of 11.49 sub-questions per graph, and 4.55M total new sub-questions. Using question graphs, we evaluate three state-of-the-art models with a suite of novel compositional consistency metrics. We find that models either cannot reason correctly through most compositions or are reliant on incorrect reasoning to reach answers, frequently contradicting themselves or achieving high accuracies when failing at intermediate reasoning steps.
BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering
Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text.
Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph
The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.
ChartQA: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning
Charts are very popular for analyzing data. When exploring charts, people often ask a variety of complex reasoning questions that involve several logical and arithmetic operations. They also commonly refer to visual features of a chart in their questions. However, most existing datasets do not focus on such complex reasoning questions as their questions are template-based and answers come from a fixed-vocabulary. In this work, we present a large-scale benchmark covering 9.6K human-written questions as well as 23.1K questions generated from human-written chart summaries. To address the unique challenges in our benchmark involving visual and logical reasoning over charts, we present two transformer-based models that combine visual features and the data table of the chart in a unified way to answer questions. While our models achieve the state-of-the-art results on the previous datasets as well as on our benchmark, the evaluation also reveals several challenges in answering complex reasoning questions.
Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset
Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models' commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.
GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
In this paper, we presented GraphOmni, a comprehensive benchmark framework for systematically evaluating the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types, serialization formats, and prompt schemes, we provided extensive insights into the strengths and limitations of current LLMs. Our empirical findings emphasize that no single serialization or prompting strategy consistently outperforms others. Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings, resulting in significant accuracy improvements. GraphOmni's modular and extensible design establishes a robust foundation for future research, facilitating advancements toward general-purpose graph reasoning models.
Perovskite-LLM: Knowledge-Enhanced Large Language Models for Perovskite Solar Cell Research
The rapid advancement of perovskite solar cells (PSCs) has led to an exponential growth in research publications, creating an urgent need for efficient knowledge management and reasoning systems in this domain. We present a comprehensive knowledge-enhanced system for PSCs that integrates three key components. First, we develop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research papers, containing 23,789 entities and 22,272 relationships. Second, we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-quality question-answer pairs generated through a novel multi-agent framework, and Perovskite-Reasoning, containing 2,217 carefully curated materials science problems. Third, we introduce two specialized large language models: Perovskite-Chat-LLM for domain-specific knowledge assistance and Perovskite-Reasoning-LLM for scientific reasoning tasks. Experimental results demonstrate that our system significantly outperforms existing models in both domain-specific knowledge retrieval and scientific reasoning tasks, providing researchers with effective tools for literature review, experimental design, and complex problem-solving in PSC research.
Faith and Fate: Limits of Transformers on Compositionality
Transformer large language models (LLMs) have sparked admiration for their exceptional performance on tasks that demand intricate multi-step reasoning. Yet, these models simultaneously show failures on surprisingly trivial problems. This begs the question: Are these errors incidental, or do they signal more substantial limitations? In an attempt to demystify Transformers, we investigate the limits of these models across three representative compositional tasks -- multi-digit multiplication, logic grid puzzles, and a classic dynamic programming problem. These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer. We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures. Our empirical findings suggest that Transformers solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching, without necessarily developing systematic problem-solving skills. To round off our empirical study, we provide theoretical arguments on abstract multi-step reasoning problems that highlight how Transformers' performance will rapidly decay with increased task complexity.
MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models
LLMs usually exhibit limitations in their ability to incorporate new knowledge, the generation of hallucinations, and the transparency of their decision-making process. In this paper, we explore how to prompt LLMs with knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date knowledge and elicit the reasoning pathways from LLMs. Specifically, we build a prompting pipeline that endows LLMs with the capability of comprehending KG inputs and inferring with a combined implicit knowledge and the retrieved external knowledge. In addition, we investigate eliciting the mind map on which LLMs perform the reasoning and generate the answers. It is identified that the produced mind map exhibits the reasoning pathways of LLMs grounded on the ontology of knowledge, hence bringing the prospects of probing and gauging LLM inference in production. The experiments on three question & answering datasets also show that MindMap prompting leads to a striking empirical gain. For instance, prompting a GPT-3.5 with MindMap yields an overwhelming performance over GPT-4 consistently. We also demonstrate that with structured facts retrieved from KG, MindMap can outperform a series of prompting-with-document-retrieval methods, benefiting from more accurate, concise, and comprehensive knowledge from KGs. To reproduce our results and extend the framework further, we make our codebase available at https://github.com/wyl.willing/MindMap.
Bottom-up Domain-specific Superintelligence: A Reliable Knowledge Graph is What We Need
Language models traditionally used for cross-domain generalization have recently demonstrated task-specific reasoning. However, their top-down training approach on general corpora is insufficient for acquiring abstractions needed for deep domain expertise. This may require a bottom-up approach that acquires expertise by learning to compose simple domain concepts into more complex ones. A knowledge graph (KG) provides this compositional structure, where domain primitives are represented as head-relation-tail edges and their paths encode higher-level concepts. We present a task generation pipeline that synthesizes tasks directly from KG primitives, enabling models to acquire and compose them for reasoning. We fine-tune language models on the resultant KG-grounded curriculum to demonstrate domain-specific superintelligence. While broadly applicable, we validate our approach in medicine, where reliable KGs exist. Using a medical KG, we curate 24,000 reasoning tasks paired with thinking traces derived from diverse medical primitives. We fine-tune the QwQ-32B model on this curriculum to obtain QwQ-Med-3 that takes a step towards medical superintelligence. We also introduce ICD-Bench, an evaluation suite to quantify reasoning abilities across 15 medical domains. Our experiments demonstrate that QwQ-Med-3 significantly outperforms state-of-the-art reasoning models on ICD-Bench categories. Further analysis reveals that QwQ-Med-3 utilizes acquired primitives to widen the performance gap on the hardest tasks of ICD-Bench. Finally, evaluation on medical question-answer benchmarks shows that QwQ-Med-3 transfers acquired expertise to enhance the base model's performance. While the industry's approach to artificial general intelligence (AGI) emphasizes broad expertise, we envision a future in which AGI emerges from the composable interaction of efficient domain-specific superintelligent agents.
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by 2.66%-20.34%, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present LEGO-GraphRAG, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.
MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce the right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method -- MindStar (M*). This method formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning
Retrieval-Augmented Generation (RAG) mitigates hallucination in LLMs by incorporating external knowledge, but relies on chunk-based retrieval that lacks structural semantics. GraphRAG methods improve RAG by modeling knowledge as entity-relation graphs, but still face challenges in high construction cost, fixed one-time retrieval, and reliance on long-context reasoning and prompt design. To address these challenges, we propose Graph-R1, an agentic GraphRAG framework via end-to-end reinforcement learning (RL). It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction, and optimizes the agent process via an end-to-end reward mechanism. Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose the Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini, while reducing costs by over 36x compared to GPT-4o. Improvements for recent reasoning models are similar, e.g., 36% and 37.5% for Qwen2.5-32B and Deepseek-R1-70B, respectively. KGoT offers a scalable, affordable, and high-performing solution for AI assistants.
RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation
Retrieval-augmented language models often struggle with knowledge-intensive tasks due to inefficient retrieval, unstructured knowledge integration, and single-pass architectures. We present Retrieval-And-Structuring (RAS), a novel framework that dynamically constructs and reasons over query-specific knowledge graphs through iterative retrieval and structuring. RAS introduces four key technical innovations: (1) a themescoped retrieval mechanism that efficiently narrows the search space while maintaining retrieval quality, (2) an action planning module that determines knowledge needs and generates focused sub-queries, (3) a dynamic knowledge structuring approach that converts retrieved text into an evolving knowledge graph, and (4) a graph-augmented answering component that leverages the accumulated structured information. Our framework achieves state-of-the-art performance, surpassing leading baselines by 6.4% with open-source language models and 7.0% with proprietary models on seven knowledge-intensive generation datasets across all evaluation metrics. Detailed ablation studies verify the contribution of each technical component to the overall system performance.
Plan-over-Graph: Towards Parallelable LLM Agent Schedule
Large Language Models (LLMs) have demonstrated exceptional abilities in reasoning for task planning. However, challenges remain under-explored for parallel schedules. This paper introduces a novel paradigm, plan-over-graph, in which the model first decomposes a real-life textual task into executable subtasks and constructs an abstract task graph. The model then understands this task graph as input and generates a plan for parallel execution. To enhance the planning capability of complex, scalable graphs, we design an automated and controllable pipeline to generate synthetic graphs and propose a two-stage training scheme. Experimental results show that our plan-over-graph method significantly improves task performance on both API-based LLMs and trainable open-sourced LLMs. By normalizing complex tasks as graphs, our method naturally supports parallel execution, demonstrating global efficiency. The code and data are available at https://github.com/zsq259/Plan-over-Graph.
Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
Unsupervised Task Graph Generation from Instructional Video Transcripts
This work explores the problem of generating task graphs of real-world activities. Different from prior formulations, we consider a setting where text transcripts of instructional videos performing a real-world activity (e.g., making coffee) are provided and the goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps. We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components to generate accurate task graphs in a completely unsupervised manner. We show that the proposed approach generates more accurate task graphs compared to a supervised learning approach on tasks from the ProceL and CrossTask datasets.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
ASTRA: Autonomous Spatial-Temporal Red-teaming for AI Software Assistants
AI coding assistants like GitHub Copilot are rapidly transforming software development, but their safety remains deeply uncertain-especially in high-stakes domains like cybersecurity. Current red-teaming tools often rely on fixed benchmarks or unrealistic prompts, missing many real-world vulnerabilities. We present ASTRA, an automated agent system designed to systematically uncover safety flaws in AI-driven code generation and security guidance systems. ASTRA works in three stages: (1) it builds structured domain-specific knowledge graphs that model complex software tasks and known weaknesses; (2) it performs online vulnerability exploration of each target model by adaptively probing both its input space, i.e., the spatial exploration, and its reasoning processes, i.e., the temporal exploration, guided by the knowledge graphs; and (3) it generates high-quality violation-inducing cases to improve model alignment. Unlike prior methods, ASTRA focuses on realistic inputs-requests that developers might actually ask-and uses both offline abstraction guided domain modeling and online domain knowledge graph adaptation to surface corner-case vulnerabilities. Across two major evaluation domains, ASTRA finds 11-66% more issues than existing techniques and produces test cases that lead to 17% more effective alignment training, showing its practical value for building safer AI systems.
CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly enhanced large language models (LLMs) in knowledge-intensive tasks by incorporating external knowledge retrieval. However, existing RAG frameworks primarily rely on semantic similarity and correlation-driven retrieval, limiting their ability to distinguish true causal relationships from spurious associations. This results in responses that may be factually grounded but fail to establish cause-and-effect mechanisms, leading to incomplete or misleading insights. To address this issue, we introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG), a framework designed to improve causal consistency, factual accuracy, and explainability in generative reasoning. CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources. Additionally, it validates responses against causal pathways, ensuring logically coherent and factually grounded outputs. We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods. Our code is publicly available at https://github.com/ elakhatibi/CDF-RAG.
Graph Neural Prompting with Large Language Models
Large Language Models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. In addition, how to leverage the pre-trained LLMs and avoid training a customized model from scratch remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings.
DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation
Domain-specific QA systems require not just generative fluency but high factual accuracy grounded in structured expert knowledge. While recent Retrieval-Augmented Generation (RAG) frameworks improve context recall, they struggle with integrating heterogeneous data and maintaining reasoning consistency. To address these challenges, we propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval. Our system employs a novel agentic chain-of-thought architecture to extract structured relationships from unstructured, multimodal documents, constructing dynamic knowledge graphs that enhance retrieval precision. At query time, DO-RAG fuses graph and vector retrieval results to generate context-aware responses, followed by hallucination mitigation via grounded refinement. Experimental evaluations in the database and electrical domains show near-perfect recall and over 94% answer relevancy, with DO-RAG outperforming baseline frameworks by up to 33.38%. By combining traceability, adaptability, and performance efficiency, DO-RAG offers a reliable foundation for multi-domain, high-precision QA at scale.
PyReason: Software for Open World Temporal Logic
The growing popularity of neuro symbolic reasoning has led to the adoption of various forms of differentiable (i.e., fuzzy) first order logic. We introduce PyReason, a software framework based on generalized annotated logic that both captures the current cohort of differentiable logics and temporal extensions to support inference over finite periods of time with capabilities for open world reasoning. Further, PyReason is implemented to directly support reasoning over graphical structures (e.g., knowledge graphs, social networks, biological networks, etc.), produces fully explainable traces of inference, and includes various practical features such as type checking and a memory-efficient implementation. This paper reviews various extensions of generalized annotated logic integrated into our implementation, our modern, efficient Python-based implementation that conducts exact yet scalable deductive inference, and a suite of experiments. PyReason is available at: github.com/lab-v2/pyreason.
MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning
Logical reasoning is of vital importance to natural language understanding. Previous studies either employ graph-based models to incorporate prior knowledge about logical relations, or introduce symbolic logic into neural models through data augmentation. These methods, however, heavily depend on annotated training data, and thus suffer from over-fitting and poor generalization problems due to the dataset sparsity. To address these two problems, in this paper, we propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text, to perform self-supervised pre-training on abundant unlabeled text data. Two novel strategies serve as indispensable components of our method. In particular, a strategy based on meta-path is devised to discover the logical structure in natural texts, followed by a counterfactual data augmentation strategy to eliminate the information shortcut induced by pre-training. The experimental results on two challenging logical reasoning benchmarks, i.e., ReClor and LogiQA, demonstrate that our method outperforms the SOTA baselines with significant improvements.
Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths
Advanced models such as OpenAI o1 exhibit impressive problem-solving capabilities through step-by-step reasoning. However, they may still falter on more complex problems, making errors that disrupt their reasoning paths. We attribute this to the expansive solution space, where each step has the risk of diverging into mistakes. To enhance language model reasoning, we introduce a specialized training framework called Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths. Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance. Reasoning Paths Optimization does not rely on large-scale human-annotated rationales or outputs from closed-source models, making it scalable and data-efficient. We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions. The experiments demonstrate that our framework significantly enhances the reasoning performance of large language models, with up to 3.1% and 4.3% improvement on GSM8K and MMLU (STEM) respectively. Our data and code can be found at https://reasoning-paths.github.io.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation
The recently developed retrieval-augmented generation (RAG) technology has enabled the efficient construction of domain-specific applications. However, it also has limitations, including the gap between vector similarity and the relevance of knowledge reasoning, as well as insensitivity to knowledge logic, such as numerical values, temporal relations, expert rules, and others, which hinder the effectiveness of professional knowledge services. In this work, we introduce a professional domain knowledge service framework called Knowledge Augmented Generation (KAG). KAG is designed to address the aforementioned challenges with the motivation of making full use of the advantages of knowledge graph(KG) and vector retrieval, and to improve generation and reasoning performance by bidirectionally enhancing large language models (LLMs) and KGs through five key aspects: (1) LLM-friendly knowledge representation, (2) mutual-indexing between knowledge graphs and original chunks, (3) logical-form-guided hybrid reasoning engine, (4) knowledge alignment with semantic reasoning, and (5) model capability enhancement for KAG. We compared KAG with existing RAG methods in multihop question answering and found that it significantly outperforms state-of-theart methods, achieving a relative improvement of 19.6% on 2wiki and 33.5% on hotpotQA in terms of F1 score. We have successfully applied KAG to two professional knowledge Q&A tasks of Ant Group, including E-Government Q&A and E-Health Q&A, achieving significant improvement in professionalism compared to RAG methods.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models
Humans draw to facilitate reasoning: we draw auxiliary lines when solving geometry problems; we mark and circle when reasoning on maps; we use sketches to amplify our ideas and relieve our limited-capacity working memory. However, such actions are missing in current multimodal language models (LMs). Current chain-of-thought and tool-use paradigms only use text as intermediate reasoning steps. In this work, we introduce Sketchpad, a framework that gives multimodal LMs a visual sketchpad and tools to draw on the sketchpad. The LM conducts planning and reasoning according to the visual artifacts it has drawn. Different from prior work, which uses text-to-image models to enable LMs to draw, Sketchpad enables LMs to draw with lines, boxes, marks, etc., which is closer to human sketching and better facilitates reasoning. Sketchpad can also use specialist vision models during the sketching process (e.g., draw bounding boxes with object detection models, draw masks with segmentation models), to further enhance visual perception and reasoning. We experiment with a wide range of math tasks (including geometry, functions, graphs, and chess) and complex visual reasoning tasks. Sketchpad substantially improves performance on all tasks over strong base models with no sketching, yielding an average gain of 12.7% on math tasks, and 8.6% on vision tasks. GPT-4o with Sketchpad sets a new state of the art on all tasks, including V*Bench (80.3%), BLINK spatial reasoning (83.9%), and visual correspondence (80.8%). All codes and data are in https://visualsketchpad.github.io/.
GTR-CoT: Graph Traversal as Visual Chain of Thought for Molecular Structure Recognition
Optical Chemical Structure Recognition (OCSR) is crucial for digitizing chemical knowledge by converting molecular images into machine-readable formats. While recent vision-language models (VLMs) have shown potential in this task, their image-captioning approach often struggles with complex molecular structures and inconsistent annotations. To overcome these challenges, we introduce GTR-Mol-VLM, a novel framework featuring two key innovations: (1) the Graph Traversal as Visual Chain of Thought mechanism that emulates human reasoning by incrementally parsing molecular graphs through sequential atom-bond predictions, and (2) the data-centric principle of Faithfully Recognize What You've Seen, which addresses the mismatch between abbreviated structures in images and their expanded annotations. To support model development, we constructed GTR-CoT-1.3M, a large-scale instruction-tuning dataset with meticulously corrected annotations, and introduced MolRec-Bench, the first benchmark designed for a fine-grained evaluation of graph-parsing accuracy in OCSR. Comprehensive experiments demonstrate that GTR-Mol-VLM achieves superior results compared to specialist models, chemistry-domain VLMs, and commercial general-purpose VLMs. Notably, in scenarios involving molecular images with functional group abbreviations, GTR-Mol-VLM outperforms the second-best baseline by approximately 14 percentage points, both in SMILES-based and graph-based metrics. We hope that this work will drive OCSR technology to more effectively meet real-world needs, thereby advancing the fields of cheminformatics and AI for Science. We will release GTR-CoT at https://github.com/opendatalab/GTR-CoT.
Scaling Large-Language-Model-based Multi-Agent Collaboration
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration, demonstrating that collective intelligence can surpass the capabilities of each individual. Inspired by the neural scaling law, which posits that increasing neurons leads to emergent abilities, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration. Technically, we propose multi-agent collaboration networks (MacNet), which utilize directed acyclic graphs to organize agents and streamline their interactive reasoning via topological ordering, with solutions derived from their dialogues. Extensive experiments show that MacNet consistently outperforms baseline models, enabling effective agent collaboration across various network topologies and supporting cooperation among more than a thousand agents. Notably, we observed a small-world collaboration phenomenon, where topologies resembling small-world properties achieved superior performance. Additionally, we identified a collaborative scaling law, indicating that normalized solution quality follows a logistic growth pattern as scaling agents, with collaborative emergence occurring much earlier than previously observed instances of neural emergence. The code and data will be available at https://github.com/OpenBMB/ChatDev.
Synthetic Visual Genome
Reasoning over visual relationships-spatial, functional, interactional, social, etc.-is considered to be a fundamental component of human cognition. Yet, despite the major advances in visual comprehension in multimodal language models (MLMs), precise reasoning over relationships and their generations remains a challenge. We introduce ROBIN: an MLM instruction-tuned with densely annotated relationships capable of constructing high-quality dense scene graphs at scale. To train ROBIN, we curate SVG, a synthetic scene graph dataset by completing the missing relations of selected objects in existing scene graphs using a teacher MLM and a carefully designed filtering process to ensure high-quality. To generate more accurate and rich scene graphs at scale for any image, we introduce SG-EDIT: a self-distillation framework where GPT-4o further refines ROBIN's predicted scene graphs by removing unlikely relations and/or suggesting relevant ones. In total, our dataset contains 146K images and 5.6M relationships for 2.6M objects. Results show that our ROBIN-3B model, despite being trained on less than 3 million instances, outperforms similar-size models trained on over 300 million instances on relationship understanding benchmarks, and even surpasses larger models up to 13B parameters. Notably, it achieves state-of-the-art performance in referring expression comprehension with a score of 88.9, surpassing the previous best of 87.4. Our results suggest that training on the refined scene graph data is crucial to maintaining high performance across diverse visual reasoning task.
Graph-KV: Breaking Sequence via Injecting Structural Biases into Large Language Models
Modern large language models (LLMs) are inherently auto-regressive, requiring input to be serialized into flat sequences regardless of their structural dependencies. This serialization hinders the model's ability to leverage structural inductive biases, especially in tasks such as retrieval-augmented generation (RAG) and reasoning on data with native graph structures, where inter-segment dependencies are crucial. We introduce Graph-KV with the potential to overcome this limitation. Graph-KV leverages the KV-cache of text segments as condensed representations and governs their interaction through structural inductive biases. In this framework, 'target' segments selectively attend only to the KV-caches of their designated 'source' segments, rather than all preceding segments in a serialized sequence. This approach induces a graph-structured block mask, sparsifying attention and enabling a message-passing-like step within the LLM. Furthermore, strategically allocated positional encodings for source and target segments reduce positional bias and context window consumption. We evaluate Graph-KV across three scenarios: (1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and long-document understanding; (2) Arxiv-QA, a novel academic paper QA task with full-text scientific papers structured as citation ego-graphs; and (3) paper topic classification within a citation network. By effectively reducing positional bias and harnessing structural inductive biases, Graph-KV substantially outperforms baselines, including standard costly sequential encoding, across various settings. Code and the Graph-KV data are publicly available.
UKP-SQuARE v2: Explainability and Adversarial Attacks for Trustworthy QA
Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model's prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on https://square.ukp-lab.de.