new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 11

Med3D: Transfer Learning for 3D Medical Image Analysis

The performance on deep learning is significantly affected by volume of training data. Models pre-trained from massive dataset such as ImageNet become a powerful weapon for speeding up training convergence and improving accuracy. Similarly, models based on large dataset are important for the development of deep learning in 3D medical images. However, it is extremely challenging to build a sufficiently large dataset due to difficulty of data acquisition and annotation in 3D medical imaging. We aggregate the dataset from several medical challenges to build 3DSeg-8 dataset with diverse modalities, target organs, and pathologies. To extract general medical three-dimension (3D) features, we design a heterogeneous 3D network called Med3D to co-train multi-domain 3DSeg-8 so as to make a series of pre-trained models. We transfer Med3D pre-trained models to lung segmentation in LIDC dataset, pulmonary nodule classification in LIDC dataset and liver segmentation on LiTS challenge. Experiments show that the Med3D can accelerate the training convergence speed of target 3D medical tasks 2 times compared with model pre-trained on Kinetics dataset, and 10 times compared with training from scratch as well as improve accuracy ranging from 3% to 20%. Transferring our Med3D model on state-the-of-art DenseASPP segmentation network, in case of single model, we achieve 94.6\% Dice coefficient which approaches the result of top-ranged algorithms on the LiTS challenge.

Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset

To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. The LIDC-IDRI dataset, one of the largest publicly available CT database, was exploited for study. A total of 1556 nodules from 694 patients were involved in statistical analysis, where nodules with average scorings <3 and >3 were respectively denoted as benign and malignant. Besides, 339 nodules from 113 patients with diagnosis ground-truth were independently evaluated. Computer algorithms were developed to segment pulmonary structures and quantify the distances to pleural surface, airways and vessels, as well as the counting number and normalized volume of airways and vessels near a nodule. Odds ratio (OR) and Chi-square (\chi^2) testing were performed to demonstrate the correlation between features of surrounding structures and nodule malignancy. A non-parametric receiver operating characteristic (ROC) analysis was conducted in logistic regression to evaluate discrimination ability of each structure. For benign and malignant groups, the average distances from nodules to pleural surface, airways and vessels are respectively (6.56, 5.19), (37.08, 26.43) and (1.42, 1.07) mm. The correlation between nodules and the counting number of airways and vessels that contact or project towards nodules are respectively (OR=22.96, \chi^2=105.04) and (OR=7.06, \chi^2=290.11). The correlation between nodules and the volume of airways and vessels are (OR=9.19, \chi^2=159.02) and (OR=2.29, \chi^2=55.89). The areas-under-curves (AUCs) for pleurae, airways and vessels are respectively 0.5202, 0.6943 and 0.6529. Our results show that malignant nodules are often surrounded by more pulmonary structures compared with benign ones, suggesting that features of these structures could be viewed as lung cancer biomarkers.

Reliable Tuberculosis Detection using Chest X-ray with Deep Learning, Segmentation and Visualization

Tuberculosis (TB) is a chronic lung disease that occurs due to bacterial infection and is one of the top 10 leading causes of death. Accurate and early detection of TB is very important, otherwise, it could be life-threatening. In this work, we have detected TB reliably from the chest X-ray images using image pre-processing, data augmentation, image segmentation, and deep-learning classification techniques. Several public databases were used to create a database of 700 TB infected and 3500 normal chest X-ray images for this study. Nine different deep CNNs (ResNet18, ResNet50, ResNet101, ChexNet, InceptionV3, Vgg19, DenseNet201, SqueezeNet, and MobileNet), which were used for transfer learning from their pre-trained initial weights and trained, validated and tested for classifying TB and non-TB normal cases. Three different experiments were carried out in this work: segmentation of X-ray images using two different U-net models, classification using X-ray images, and segmented lung images. The accuracy, precision, sensitivity, F1-score, specificity in the detection of tuberculosis using X-ray images were 97.07 %, 97.34 %, 97.07 %, 97.14 % and 97.36 % respectively. However, segmented lungs for the classification outperformed than whole X-ray image-based classification and accuracy, precision, sensitivity, F1-score, specificity were 99.9 %, 99.91 %, 99.9 %, 99.9 %, and 99.52 % respectively. The paper also used a visualization technique to confirm that CNN learns dominantly from the segmented lung regions results in higher detection accuracy. The proposed method with state-of-the-art performance can be useful in the computer-aided faster diagnosis of tuberculosis.

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases

The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. Data download link: https://nihcc.app.box.com/v/ChestXray-NIHCC

Deep Neural Network Based Respiratory Pathology Classification Using Cough Sounds

Intelligent systems are transforming the world, as well as our healthcare system. We propose a deep learning-based cough sound classification model that can distinguish between children with healthy versus pathological coughs such as asthma, upper respiratory tract infection (URTI), and lower respiratory tract infection (LRTI). In order to train a deep neural network model, we collected a new dataset of cough sounds, labelled with clinician's diagnosis. The chosen model is a bidirectional long-short term memory network (BiLSTM) based on Mel Frequency Cepstral Coefficients (MFCCs) features. The resulting trained model when trained for classifying two classes of coughs -- healthy or pathology (in general or belonging to a specific respiratory pathology), reaches accuracy exceeding 84\% when classifying cough to the label provided by the physicians' diagnosis. In order to classify subject's respiratory pathology condition, results of multiple cough epochs per subject were combined. The resulting prediction accuracy exceeds 91\% for all three respiratory pathologies. However, when the model is trained to classify and discriminate among the four classes of coughs, overall accuracy dropped: one class of pathological coughs are often misclassified as other. However, if one consider the healthy cough classified as healthy and pathological cough classified to have some kind of pathologies, then the overall accuracy of four class model is above 84\%. A longitudinal study of MFCC feature space when comparing pathological and recovered coughs collected from the same subjects revealed the fact that pathological cough irrespective of the underlying conditions occupy the same feature space making it harder to differentiate only using MFCC features.

Automated Chest X-Ray Report Generator Using Multi-Model Deep Learning Approach

Reading and interpreting chest X-ray images is one of the most radiologist's routines. However, it still can be challenging, even for the most experienced ones. Therefore, we proposed a multi-model deep learning-based automated chest X-ray report generator system designed to assist radiologists in their work. The basic idea of the proposed system is by utilizing multi binary-classification models for detecting multi abnormalities, with each model responsible for detecting one abnormality, in a single image. In this study, we limited the radiology abnormalities detection to only cardiomegaly, lung effusion, and consolidation. The system generates a radiology report by performing the following three steps: image pre-processing, utilizing deep learning models to detect abnormalities, and producing a report. The aim of the image pre-processing step is to standardize the input by scaling it to 128x128 pixels and slicing it into three segments, which covers the upper, lower, and middle parts of the lung. After pre-processing, each corresponding model classifies the image, resulting in a 0 (zero) for no abnormality detected and a 1 (one) for the presence of an abnormality. The prediction outputs of each model are then concatenated to form a 'result code'. The 'result code' is used to construct a report by selecting the appropriate pre-determined sentence for each detected abnormality in the report generation step. The proposed system is expected to reduce the workload of radiologists and increase the accuracy of chest X-ray diagnosis.

Fairness and Robustness of CLIP-Based Models for Chest X-rays

Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness

Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56

Meta-information-aware Dual-path Transformer for Differential Diagnosis of Multi-type Pancreatic Lesions in Multi-phase CT

Pancreatic cancer is one of the leading causes of cancer-related death. Accurate detection, segmentation, and differential diagnosis of the full taxonomy of pancreatic lesions, i.e., normal, seven major types of lesions, and other lesions, is critical to aid the clinical decision-making of patient management and treatment. However, existing works focus on segmentation and classification for very specific lesion types (PDAC) or groups. Moreover, none of the previous work considers using lesion prevalence-related non-imaging patient information to assist the differential diagnosis. To this end, we develop a meta-information-aware dual-path transformer and exploit the feasibility of classification and segmentation of the full taxonomy of pancreatic lesions. Specifically, the proposed method consists of a CNN-based segmentation path (S-path) and a transformer-based classification path (C-path). The S-path focuses on initial feature extraction by semantic segmentation using a UNet-based network. The C-path utilizes both the extracted features and meta-information for patient-level classification based on stacks of dual-path transformer blocks that enhance the modeling of global contextual information. A large-scale multi-phase CT dataset of 3,096 patients with pathology-confirmed pancreatic lesion class labels, voxel-wise manual annotations of lesions from radiologists, and patient meta-information, was collected for training and evaluations. Our results show that our method can enable accurate classification and segmentation of the full taxonomy of pancreatic lesions, approaching the accuracy of the radiologist's report and significantly outperforming previous baselines. Results also show that adding the common meta-information, i.e., gender and age, can boost the model's performance, thus demonstrating the importance of meta-information for aiding pancreatic disease diagnosis.

Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding

As lung cancer evolves, the presence of enlarged and potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy. Following the clinical guidelines, estimation of short-axis diameter and mediastinum station are paramount for correct diagnosis. A method for accurate and automatic segmentation is hence decisive for quantitatively describing lymph nodes. In this study, the use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated. Furthermore, the potential impact from simple ensemble strategies is considered. As lymph nodes have similar attenuation values to nearby anatomical structures, we suggest using the knowledge of other organs as prior information to guide the segmentation task. To assess the segmentation and instance detection performances, a 5-fold cross-validation strategy was followed over a dataset of 120 contrast-enhanced CT volumes. For the 1178 lymph nodes with a short-axis diameter geq10 mm, our best performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5, and a segmentation overlap of 80.5%. The method performs similarly well across all stations. Fusing a slab-wise and a full volume approach within an ensemble scheme generated the best performances. The anatomical priors guiding strategy is promising, yet a larger set than four organs appears needed to generate an optimal benefit. A larger dataset is also mandatory, given the wide range of expressions a lymph node can exhibit (i.e., shape, location, and attenuation), and contrast uptake variations.

Ugly Ducklings or Swans: A Tiered Quadruplet Network with Patient-Specific Mining for Improved Skin Lesion Classification

An ugly duckling is an obviously different skin lesion from surrounding lesions of an individual, and the ugly duckling sign is a criterion used to aid in the diagnosis of cutaneous melanoma by differentiating between highly suspicious and benign lesions. However, the appearance of pigmented lesions, can change drastically from one patient to another, resulting in difficulties in visual separation of ugly ducklings. Hence, we propose DMT-Quadruplet - a deep metric learning network to learn lesion features at two tiers - patient-level and lesion-level. We introduce a patient-specific quadruplet mining approach together with a tiered quadruplet network, to drive the network to learn more contextual information both globally and locally between the two tiers. We further incorporate a dynamic margin within the patient-specific mining to allow more useful quadruplets to be mined within individuals. Comprehensive experiments show that our proposed method outperforms traditional classifiers, achieving 54% higher sensitivity than a baseline ResNet18 CNN and 37% higher than a naive triplet network in classifying ugly duckling lesions. Visualisation of the data manifold in the metric space further illustrates that DMT-Quadruplet is capable of classifying ugly duckling lesions in both patient-specific and patient-agnostic manner successfully.

Breast Tumor Classification Using EfficientNet Deep Learning Model

Precise breast cancer classification on histopathological images has the potential to greatly improve the diagnosis and patient outcome in oncology. The data imbalance problem largely stems from the inherent imbalance within medical image datasets, where certain tumor subtypes may appear much less frequently. This constitutes a considerable limitation in biased model predictions that can overlook critical but rare classes. In this work, we adopted EfficientNet, a state-of-the-art convolutional neural network (CNN) model that balances high accuracy with computational cost efficiency. To address data imbalance, we introduce an intensive data augmentation pipeline and cost-sensitive learning, improving representation and ensuring that the model does not overly favor majority classes. This approach provides the ability to learn effectively from rare tumor types, improving its robustness. Additionally, we fine-tuned the model using transfer learning, where weights in the beginning trained on a binary classification task were adopted to multi-class classification, improving the capability to detect complex patterns within the BreakHis dataset. Our results underscore significant improvements in the binary classification performance, achieving an exceptional recall increase for benign cases from 0.92 to 0.95, alongside an accuracy enhancement from 97.35 % to 98.23%. Our approach improved the performance of multi-class tasks from 91.27% with regular augmentation to 94.54% with intensive augmentation, reaching 95.04% with transfer learning. This framework demonstrated substantial gains in precision in the minority classes, such as Mucinous carcinoma and Papillary carcinoma, while maintaining high recall consistently across these critical subtypes, as further confirmed by confusion matrix analysis.

Mask of truth: model sensitivity to unexpected regions of medical images

The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge. Our code is available at https://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundus

UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography

Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL

AeroPath: An airway segmentation benchmark dataset with challenging pathology

To improve the prognosis of patients suffering from pulmonary diseases, such as lung cancer, early diagnosis and treatment are crucial. The analysis of CT images is invaluable for diagnosis, whereas high quality segmentation of the airway tree are required for intervention planning and live guidance during bronchoscopy. Recently, the Multi-domain Airway Tree Modeling (ATM'22) challenge released a large dataset, both enabling training of deep-learning based models and bringing substantial improvement of the state-of-the-art for the airway segmentation task. However, the ATM'22 dataset includes few patients with severe pathologies affecting the airway tree anatomy. In this study, we introduce a new public benchmark dataset (AeroPath), consisting of 27 CT images from patients with pathologies ranging from emphysema to large tumors, with corresponding trachea and bronchi annotations. Second, we present a multiscale fusion design for automatic airway segmentation. Models were trained on the ATM'22 dataset, tested on the AeroPath dataset, and further evaluated against competitive open-source methods. The same performance metrics as used in the ATM'22 challenge were used to benchmark the different considered approaches. Lastly, an open web application is developed, to easily test the proposed model on new data. The results demonstrated that our proposed architecture predicted topologically correct segmentations for all the patients included in the AeroPath dataset. The proposed method is robust and able to handle various anomalies, down to at least the fifth airway generation. In addition, the AeroPath dataset, featuring patients with challenging pathologies, will contribute to development of new state-of-the-art methods. The AeroPath dataset and the web application are made openly available.

A Natural Language Processing Pipeline of Chinese Free-text Radiology Reports for Liver Cancer Diagnosis

Despite the rapid development of natural language processing (NLP) implementation in electronic medical records (EMRs), Chinese EMRs processing remains challenging due to the limited corpus and specific grammatical characteristics, especially for radiology reports. In this study, we designed an NLP pipeline for the direct extraction of clinically relevant features from Chinese radiology reports, which is the first key step in computer-aided radiologic diagnosis. The pipeline was comprised of named entity recognition, synonyms normalization, and relationship extraction to finally derive the radiological features composed of one or more terms. In named entity recognition, we incorporated lexicon into deep learning model bidirectional long short-term memory-conditional random field (BiLSTM-CRF), and the model finally achieved an F1 score of 93.00%. With the extracted radiological features, least absolute shrinkage and selection operator and machine learning methods (support vector machine, random forest, decision tree, and logistic regression) were used to build the classifiers for liver cancer prediction. For liver cancer diagnosis, random forest had the highest predictive performance in liver cancer diagnosis (F1 score 86.97%, precision 87.71%, and recall 86.25%). This work was a comprehensive NLP study focusing on Chinese radiology reports and the application of NLP in cancer risk prediction. The proposed NLP pipeline for the radiological feature extraction could be easily implemented in other kinds of Chinese clinical texts and other disease predictive tasks.

Classification of Brain Tumours in MR Images using Deep Spatiospatial Models

A brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning and magnetic resonance imaging is the principal imaging modality for diagnostic of brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models on, and the improvements in the model architectures yielding better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating the slice spatial dimension separately, spatiotemporal models can be employed as spatiospatial models for this task. These models have the capabilities of learning specific spatial and temporal relationship, while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.93 and a test accuracy of 96.98\%, while at the same time being the model with the least computational cost.

Robust and Interpretable Medical Image Classifiers via Concept Bottleneck Models

Medical image classification is a critical problem for healthcare, with the potential to alleviate the workload of doctors and facilitate diagnoses of patients. However, two challenges arise when deploying deep learning models to real-world healthcare applications. First, neural models tend to learn spurious correlations instead of desired features, which could fall short when generalizing to new domains (e.g., patients with different ages). Second, these black-box models lack interpretability. When making diagnostic predictions, it is important to understand why a model makes a decision for trustworthy and safety considerations. In this paper, to address these two limitations, we propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts. Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model. We systematically evaluate our method on eight medical image classification datasets to verify its effectiveness. On challenging datasets with strong confounding factors, our method can mitigate spurious correlations thus substantially outperform standard visual encoders and other baselines. Finally, we show how classification with a small number of concepts brings a level of interpretability for understanding model decisions through case studies in real medical data.

Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification

Deep learning models have shown their potential for several applications. However, most of the models are opaque and difficult to trust due to their complex reasoning - commonly known as the black-box problem. Some fields, such as medicine, require a high degree of transparency to accept and adopt such technologies. Consequently, creating explainable/interpretable models or applying post-hoc methods on classifiers to build trust in deep learning models are required. Moreover, deep learning methods can be used for segmentation tasks, which typically require hard-to-obtain, time-consuming manually-annotated segmentation labels for training. This paper introduces three inherently-explainable classifiers to tackle both of these problems as one. The localisation heatmaps provided by the networks -- representing the models' focus areas and being used in classification decision-making -- can be directly interpreted, without requiring any post-hoc methods to derive information for model explanation. The models are trained by using the input image and only the classification labels as ground-truth in a supervised fashion - without using any information about the location of the region of interest (i.e. the segmentation labels), making the segmentation training of the models weakly-supervised through classification labels. The final segmentation is obtained by thresholding these heatmaps. The models were employed for the task of multi-class brain tumour classification using two different datasets, resulting in the best F1-score of 0.93 for the supervised classification task while securing a median Dice score of 0.67pm0.08 for the weakly-supervised segmentation task. Furthermore, the obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7\% accuracy.

Development and evaluation of intraoperative ultrasound segmentation with negative image frames and multiple observer labels

When developing deep neural networks for segmenting intraoperative ultrasound images, several practical issues are encountered frequently, such as the presence of ultrasound frames that do not contain regions of interest and the high variance in ground-truth labels. In this study, we evaluate the utility of a pre-screening classification network prior to the segmentation network. Experimental results demonstrate that such a classifier, minimising frame classification errors, was able to directly impact the number of false positive and false negative frames. Importantly, the segmentation accuracy on the classifier-selected frames, that would be segmented, remains comparable to or better than those from standalone segmentation networks. Interestingly, the efficacy of the pre-screening classifier was affected by the sampling methods for training labels from multiple observers, a seemingly independent problem. We show experimentally that a previously proposed approach, combining random sampling and consensus labels, may need to be adapted to perform well in our application. Furthermore, this work aims to share practical experience in developing a machine learning application that assists highly variable interventional imaging for prostate cancer patients, to present robust and reproducible open-source implementations, and to report a set of comprehensive results and analysis comparing these practical, yet important, options in a real-world clinical application.

SHISRCNet: Super-resolution And Classification Network For Low-resolution Breast Cancer Histopathology Image

The rapid identification and accurate diagnosis of breast cancer, known as the killer of women, have become greatly significant for those patients. Numerous breast cancer histopathological image classification methods have been proposed. But they still suffer from two problems. (1) These methods can only hand high-resolution (HR) images. However, the low-resolution (LR) images are often collected by the digital slide scanner with limited hardware conditions. Compared with HR images, LR images often lose some key features like texture, which deeply affects the accuracy of diagnosis. (2) The existing methods have fixed receptive fields, so they can not extract and fuse multi-scale features well for images with different magnification factors. To fill these gaps, we present a Single Histopathological Image Super-Resolution Classification network (SHISRCNet), which consists of two modules: Super-Resolution (SR) and Classification (CF) modules. SR module reconstructs LR images into SR ones. CF module extracts and fuses the multi-scale features of SR images for classification. In the training stage, we introduce HR images into the CF module to enhance SHISRCNet's performance. Finally, through the joint training of these two modules, super-resolution and classified of LR images are integrated into our model. The experimental results demonstrate that the effects of our method are close to the SOTA methods with taking HR images as inputs.

Cell nuclei classification in histopathological images using hybrid OLConvNet

Computer-aided histopathological image analysis for cancer detection is a major research challenge in the medical domain. Automatic detection and classification of nuclei for cancer diagnosis impose a lot of challenges in developing state of the art algorithms due to the heterogeneity of cell nuclei and data set variability. Recently, a multitude of classification algorithms has used complex deep learning models for their dataset. However, most of these methods are rigid and their architectural arrangement suffers from inflexibility and non-interpretability. In this research article, we have proposed a hybrid and flexible deep learning architecture OLConvNet that integrates the interpretability of traditional object-level features and generalization of deep learning features by using a shallower Convolutional Neural Network (CNN) named as CNN_{3L}. CNN_{3L} reduces the training time by training fewer parameters and hence eliminating space constraints imposed by deeper algorithms. We used F1-score and multiclass Area Under the Curve (AUC) performance parameters to compare the results. To further strengthen the viability of our architectural approach, we tested our proposed methodology with state of the art deep learning architectures AlexNet, VGG16, VGG19, ResNet50, InceptionV3, and DenseNet121 as backbone networks. After a comprehensive analysis of classification results from all four architectures, we observed that our proposed model works well and perform better than contemporary complex algorithms.

SC-MIL: Supervised Contrastive Multiple Instance Learning for Imbalanced Classification in Pathology

Multiple Instance learning (MIL) models have been extensively used in pathology to predict biomarkers and risk-stratify patients from gigapixel-sized images. Machine learning problems in medical imaging often deal with rare diseases, making it important for these models to work in a label-imbalanced setting. In pathology images, there is another level of imbalance, where given a positively labeled Whole Slide Image (WSI), only a fraction of pixels within it contribute to the positive label. This compounds the severity of imbalance and makes imbalanced classification in pathology challenging. Furthermore, these imbalances can occur in out-of-distribution (OOD) datasets when the models are deployed in the real-world. We leverage the idea that decoupling feature and classifier learning can lead to improved decision boundaries for label imbalanced datasets. To this end, we investigate the integration of supervised contrastive learning with multiple instance learning (SC-MIL). Specifically, we propose a joint-training MIL framework in the presence of label imbalance that progressively transitions from learning bag-level representations to optimal classifier learning. We perform experiments with different imbalance settings for two well-studied problems in cancer pathology: subtyping of non-small cell lung cancer and subtyping of renal cell carcinoma. SC-MIL provides large and consistent improvements over other techniques on both in-distribution (ID) and OOD held-out sets across multiple imbalanced settings.

SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting

Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8980 (95% CI: 0.8820-0.9132). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.

When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method

Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.

Enhancing Instance-Level Image Classification with Set-Level Labels

Instance-level image classification tasks have traditionally relied on single-instance labels to train models, e.g., few-shot learning and transfer learning. However, set-level coarse-grained labels that capture relationships among instances can provide richer information in real-world scenarios. In this paper, we present a novel approach to enhance instance-level image classification by leveraging set-level labels. We provide a theoretical analysis of the proposed method, including recognition conditions for fast excess risk rate, shedding light on the theoretical foundations of our approach. We conducted experiments on two distinct categories of datasets: natural image datasets and histopathology image datasets. Our experimental results demonstrate the effectiveness of our approach, showcasing improved classification performance compared to traditional single-instance label-based methods. Notably, our algorithm achieves 13% improvement in classification accuracy compared to the strongest baseline on the histopathology image classification benchmarks. Importantly, our experimental findings align with the theoretical analysis, reinforcing the robustness and reliability of our proposed method. This work bridges the gap between instance-level and set-level image classification, offering a promising avenue for advancing the capabilities of image classification models with set-level coarse-grained labels.

A multi-reconstruction study of breast density estimation using Deep Learning

Breast density estimation is one of the key tasks in recognizing individuals predisposed to breast cancer. It is often challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Most of the time, the breast density is estimated manually where a radiologist assigns one of the four density categories decided by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts in the direction of automating a breast density classification pipeline. Breast density estimation is one of the key tasks performed during a screening exam. Dense breasts are more susceptible to breast cancer. The density estimation is challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Traditional mammograms are being replaced by tomosynthesis and its other low radiation dose variants (for example Hologic' Intelligent 2D and C-View). Because of the low-dose requirement, increasingly more screening centers are favoring the Intelligent 2D view and C-View. Deep-learning studies for breast density estimation use only a single modality for training a neural network. However, doing so restricts the number of images in the dataset. In this paper, we show that a neural network trained on all the modalities at once performs better than a neural network trained on any single modality. We discuss these results using the area under the receiver operator characteristics curves.

Uncertainty quantification for improving radiomic-based models in radiation pneumonitis prediction

Background and Objective: Radiation pneumonitis (RP) is a side effect of thoracic radiation therapy. Recently, Machine learning (ML) models enhanced with radiomic and dosiomic features provide better predictions by incorporating spatial information beyond DVHs. However, to improve the clinical decision process, we propose to use uncertainty quantification (UQ) to improve the confidence in model prediction. This study evaluates the impact of post hoc UQ methods on the discriminative performance and calibration of ML models for RP prediction. Methods: This study evaluated four ML models: logistic regression (LR), support vector machines (SVM), extreme gradient boosting (XGB), and random forest (RF), using radiomic, dosiomic, and dosimetric features to predict RP. We applied UQ methods, including Patt scaling, isotonic regression, Venn-ABERS predictor, and Conformal Prediction, to quantify uncertainty. Model performance was assessed through Area Under the Receiver Operating Characteristic curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), and Adaptive Calibration Error (ACE) using Leave-One-Out Cross-Validation (LOO-CV). Results: UQ methods enhanced predictive performance, particularly for high-certainty predictions, while also improving calibration. Radiomic and dosiomic features increased model accuracy but introduced calibration challenges, especially for non-linear models like XGB and RF. Performance gains from UQ methods were most noticeable at higher certainty thresholds. Conclusion: Integrating UQ into ML models with radiomic and dosiomic features improves both predictive accuracy and calibration, supporting more reliable clinical decision-making. The findings emphasize the value of UQ methods in enhancing applicability of predictive models for RP in healthcare settings.

Brain Tumor Detection and Classification based on Hybrid Ensemble Classifier

To improve patient survival and treatment outcomes, early diagnosis of brain tumors is an essential task. It is a difficult task to evaluate the magnetic resonance imaging (MRI) images manually. Thus, there is a need for digital methods for tumor diagnosis with better accuracy. However, it is still a very challenging task in assessing their shape, volume, boundaries, tumor detection, size, segmentation, and classification. In this proposed work, we propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method. It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant. In the beginning, segmentation is done by using Otsu's Threshold method. Feature Extraction is done by using Stationary Wavelet Transform (SWT), Principle Component Analysis (PCA), and Gray Level Co-occurrence Matrix (GLCM), which gives thirteen features for classification. The classification is done by hybrid ensemble classifier (KNN-RF-DT) based on the Majority Voting method. Overall it aimed at improving the performance by traditional classifiers instead of going to deep learning. Traditional classifiers have an advantage over deep learning algorithms because they require small datasets for training and have low computational time complexity, low cost to the users, and can be easily adopted by less skilled people. Overall, our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.

Equiangular Basis Vectors

We propose Equiangular Basis Vectors (EBVs) for classification tasks. In deep neural networks, models usually end with a k-way fully connected layer with softmax to handle different classification tasks. The learning objective of these methods can be summarized as mapping the learned feature representations to the samples' label space. While in metric learning approaches, the main objective is to learn a transformation function that maps training data points from the original space to a new space where similar points are closer while dissimilar points become farther apart. Different from previous methods, our EBVs generate normalized vector embeddings as "predefined classifiers" which are required to not only be with the equal status between each other, but also be as orthogonal as possible. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. Various experiments on the ImageNet-1K dataset and other downstream tasks demonstrate that our method outperforms the general fully connected classifier while it does not introduce huge additional computation compared with classical metric learning methods. Our EBVs won the first place in the 2022 DIGIX Global AI Challenge, and our code is open-source and available at https://github.com/NJUST-VIPGroup/Equiangular-Basis-Vectors.

Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound Image Analysis

Controlling the COVID-19 pandemic largely hinges upon the existence of fast, safe, and highly-available diagnostic tools. Ultrasound, in contrast to CT or X-Ray, has many practical advantages and can serve as a globally-applicable first-line examination technique. We provide the largest publicly available lung ultrasound (US) dataset for COVID-19 consisting of 106 videos from three classes (COVID-19, bacterial pneumonia, and healthy controls); curated and approved by medical experts. On this dataset, we perform an in-depth study of the value of deep learning methods for differential diagnosis of COVID-19. We propose a frame-based convolutional neural network that correctly classifies COVID-19 US videos with a sensitivity of 0.98+-0.04 and a specificity of 0.91+-08 (frame-based sensitivity 0.93+-0.05, specificity 0.87+-0.07). We further employ class activation maps for the spatio-temporal localization of pulmonary biomarkers, which we subsequently validate for human-in-the-loop scenarios in a blindfolded study with medical experts. Aiming for scalability and robustness, we perform ablation studies comparing mobile-friendly, frame- and video-based architectures and show reliability of the best model by aleatoric and epistemic uncertainty estimates. We hope to pave the road for a community effort toward an accessible, efficient and interpretable screening method and we have started to work on a clinical validation of the proposed method. Data and code are publicly available.

Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions

Visual Language Models (VLMs) have demonstrated impressive capabilities in visual grounding tasks. However, their effectiveness in the medical domain, particularly for abnormality detection and localization within medical images, remains underexplored. A major challenge is the complex and abstract nature of medical terminology, which makes it difficult to directly associate pathological anomaly terms with their corresponding visual features. In this work, we introduce a novel approach to enhance VLM performance in medical abnormality detection and localization by leveraging decomposed medical knowledge. Instead of directly prompting models to recognize specific abnormalities, we focus on breaking down medical concepts into fundamental attributes and common visual patterns. This strategy promotes a stronger alignment between textual descriptions and visual features, improving both the recognition and localization of abnormalities in medical images.We evaluate our method on the 0.23B Florence-2 base model and demonstrate that it achieves comparable performance in abnormality grounding to significantly larger 7B LLaVA-based medical VLMs, despite being trained on only 1.5% of the data used for such models. Experimental results also demonstrate the effectiveness of our approach in both known and previously unseen abnormalities, suggesting its strong generalization capabilities.

Current Pathology Foundation Models are unrobust to Medical Center Differences

Pathology Foundation Models (FMs) hold great promise for healthcare. Before they can be used in clinical practice, it is essential to ensure they are robust to variations between medical centers. We measure whether pathology FMs focus on biological features like tissue and cancer type, or on the well known confounding medical center signatures introduced by staining procedure and other differences. We introduce the Robustness Index. This novel robustness metric reflects to what degree biological features dominate confounding features. Ten current publicly available pathology FMs are evaluated. We find that all current pathology foundation models evaluated represent the medical center to a strong degree. Significant differences in the robustness index are observed. Only one model so far has a robustness index greater than one, meaning biological features dominate confounding features, but only slightly. A quantitative approach to measure the influence of medical center differences on FM-based prediction performance is described. We analyze the impact of unrobustness on classification performance of downstream models, and find that cancer-type classification errors are not random, but specifically attributable to same-center confounders: images of other classes from the same medical center. We visualize FM embedding spaces, and find these are more strongly organized by medical centers than by biological factors. As a consequence, the medical center of origin is predicted more accurately than the tissue source and cancer type. The robustness index introduced here is provided with the aim of advancing progress towards clinical adoption of robust and reliable pathology FMs.

Variational Autoencoders for Feature Exploration and Malignancy Prediction of Lung Lesions

Lung cancer is responsible for 21% of cancer deaths in the UK and five-year survival rates are heavily influenced by the stage the cancer was identified at. Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans. However, this evidence has not translated into clinical practice with one barrier being a lack of interpretable models. This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions. Proposed models were trained on lesions extracted from 3D CT scans in the LIDC-IDRI public dataset. Latent vector representations of 2D slices produced by the VAEs were explored through clustering to justify their quality and used in an MLP classifier model for lung cancer diagnosis, the best model achieved state-of-the-art metrics of AUC 0.98 and 93.1% accuracy. Cluster analysis shows the VAE latent space separates the dataset of malignant and benign lesions based on meaningful feature components including tumour size, shape, patient and malignancy class. We also include a comparative analysis of the standard Gaussian VAE (GVAE) and the more recent Dirichlet VAE (DirVAE), which replaces the prior with a Dirichlet distribution to encourage a more explainable latent space with disentangled feature representation. Finally, we demonstrate the potential for latent space traversals corresponding to clinically meaningful feature changes.

AutoPaint: A Self-Inpainting Method for Unsupervised Anomaly Detection

Robust and accurate detection and segmentation of heterogenous tumors appearing in different anatomical organs with supervised methods require large-scale labeled datasets covering all possible types of diseases. Due to the unavailability of such rich datasets and the high cost of annotations, unsupervised anomaly detection (UAD) methods have been developed aiming to detect the pathologies as deviation from the normality by utilizing the unlabeled healthy image data. However, developed UAD models are often trained with an incomplete distribution of healthy anatomies and have difficulties in preserving anatomical constraints. This work intends to, first, propose a robust inpainting model to learn the details of healthy anatomies and reconstruct high-resolution images by preserving anatomical constraints. Second, we propose an autoinpainting pipeline to automatically detect tumors, replace their appearance with the learned healthy anatomies, and based on that segment the tumoral volumes in a purely unsupervised fashion. Three imaging datasets, including PET, CT, and PET-CT scans of lung tumors and head and neck tumors, are studied as benchmarks for evaluation. Experimental results demonstrate the significant superiority of the proposed method over a wide range of state-of-the-art UAD methods. Moreover, the unsupervised method we propose produces comparable results to a robust supervised segmentation method when applied to multimodal images.

Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers with Partially Annotated Ultrasound Images

Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automaticCAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation that limits the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to enhance diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the ROI-level labels are considered as coarse labels in the first training stage, and then a candidate selection mechanism is designed to identify optimallesion areas for both the fully and partially annotated samples. It refines the current ROI-level labels in the fully annotated images and the detected ROIs in the partially annotated samples with a weakly supervised manner under the guidance of class labels. In the second training stage, a self-distillation strategy further is further proposed to integrate the detection network and classification network into a unified framework as the final CAD model for joint optimization, which then further improves the diagnosis performance. The proposed TSDDNet is evaluated on a B-mode ultrasound dataset, and the experimental results show that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.

Geometry-Aware Adaptation for Pretrained Models

Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.

Varifocal-Net: A Chromosome Classification Approach using Deep Convolutional Networks

Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosome's type and polarity using deep convolutional networks. The approach consists of one global-scale network (G-Net) and one local-scale network (L-Net). It follows three stages. The first stage is to learn both global and local features. We extract global features and detect finer local regions via the G-Net. By proposing a varifocal mechanism, we zoom into local parts and extract local features via the L-Net. Residual learning and multi-task learning strategies are utilized to promote high-level feature extraction. The detection of discriminative local parts is fulfilled by a localization subnet of the G-Net, whose training process involves both supervised and weakly-supervised learning. The second stage is to build two multi-layer perceptron classifiers that exploit features of both two scales to boost classification performance. The third stage is to introduce a dispatch strategy of assigning each chromosome to a type within each patient case, by utilizing the domain knowledge of karyotyping. Evaluation results from 1909 karyotyping cases showed that the proposed Varifocal-Net achieved the highest accuracy per patient case (%) 99.2 for both type and polarity tasks. It outperformed state-of-the-art methods, demonstrating the effectiveness of our varifocal mechanism, multi-scale feature ensemble, and dispatch strategy. The proposed method has been applied to assist practical karyotype diagnosis.

Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia Classification in Diabetic Foot Ulcers

Diabetic foot ulcers are a common manifestation of lesions on the diabetic foot, a syndrome acquired as a long-term complication of diabetes mellitus. Accompanying neuropathy and vascular damage promote acquisition of pressure injuries and tissue death due to ischaemia. Affected areas are prone to infections, hindering the healing progress. The research at hand investigates an approach on classification of infection and ischaemia, conducted as part of the Diabetic Foot Ulcer Challenge (DFUC) 2021. Different models of the EfficientNet family are utilized in ensembles. An extension strategy for the training data is applied, involving pseudo-labeling for unlabeled images, and extensive generation of synthetic images via pix2pixHD to cope with severe class imbalances. The resulting extended training dataset features 8.68 times the size of the baseline and shows a real to synthetic image ratio of 1:3. Performances of models and ensembles trained on the baseline and extended training dataset are compared. Synthetic images featured a broad qualitative variety. Results show that models trained on the extended training dataset as well as their ensemble benefit from the large extension. F1-Scores for rare classes receive outstanding boosts, while those for common classes are either not harmed or boosted moderately. A critical discussion concretizes benefits and identifies limitations, suggesting improvements. The work concludes that classification performance of individual models as well as that of ensembles can be boosted utilizing synthetic images. Especially performance for rare classes benefits notably.

ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports

We present ReXGroundingCT, the first publicly available dataset to link free-text radiology findings with pixel-level segmentations in 3D chest CT scans that is manually annotated. While prior datasets have relied on structured labels or predefined categories, ReXGroundingCT captures the full expressiveness of clinical language represented in free text and grounds it to spatially localized 3D segmentation annotations in volumetric imaging. This addresses a critical gap in medical AI: the ability to connect complex, descriptive text, such as "3 mm nodule in the left lower lobe", to its precise anatomical location in three-dimensional space, a capability essential for grounded radiology report generation systems. The dataset comprises 3,142 non-contrast chest CT scans paired with standardized radiology reports from the CT-RATE dataset. Using a systematic three-stage pipeline, GPT-4 was used to extract positive lung and pleural findings, which were then manually segmented by expert annotators. A total of 8,028 findings across 16,301 entities were annotated, with quality control performed by board-certified radiologists. Approximately 79% of findings are focal abnormalities, while 21% are non-focal. The training set includes up to three representative segmentations per finding, while the validation and test sets contain exhaustive labels for each finding entity. ReXGroundingCT establishes a new benchmark for developing and evaluating sentence-level grounding and free-text medical segmentation models in chest CT. The dataset can be accessed at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.

Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction

Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.

REFUGE2 Challenge: A Treasure Trove for Multi-Dimension Analysis and Evaluation in Glaucoma Screening

With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets of CFPs in the ophthalmology community, large-scale datasets for screening only have labels of disease categories, and datasets with annotations of fundus structures are usually small in size. In addition, labeling standards are not uniform across datasets, and there is no clear information on the acquisition device. Here we release a multi-annotation, multi-quality, and multi-device color fundus image dataset for glaucoma analysis on an original challenge -- Retinal Fundus Glaucoma Challenge 2nd Edition (REFUGE2). The REFUGE2 dataset contains 2000 color fundus images with annotations of glaucoma classification, optic disc/cup segmentation, as well as fovea localization. Meanwhile, the REFUGE2 challenge sets three sub-tasks of automatic glaucoma diagnosis and fundus structure analysis and provides an online evaluation framework. Based on the characteristics of multi-device and multi-quality data, some methods with strong generalizations are provided in the challenge to make the predictions more robust. This shows that REFUGE2 brings attention to the characteristics of real-world multi-domain data, bridging the gap between scientific research and clinical application.

BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models

Lung diseases represent a significant global health challenge, with Chest X-Ray (CXR) being a key diagnostic tool due to their accessibility and affordability. Nonetheless, the detection of pulmonary lesions is often hindered by overlapping bone structures in CXR images, leading to potential misdiagnoses. To address this issue, we developed an end-to-end framework called BS-LDM, designed to effectively suppress bone in high-resolution CXR images. This framework is based on conditional latent diffusion models and incorporates a multi-level hybrid loss-constrained vector-quantized generative adversarial network which is crafted for perceptual compression, ensuring the preservation of details. To further enhance the framework's performance, we introduce offset noise and a temporal adaptive thresholding strategy. These additions help minimize discrepancies in generating low-frequency information, thereby improving the clarity of the generated soft tissue images. Additionally, we have compiled a high-quality bone suppression dataset named SZCH-X-Rays. This dataset includes 818 pairs of high-resolution CXR and dual-energy subtraction soft tissue images collected from a partner hospital. Moreover, we processed 241 data pairs from the JSRT dataset into negative images, which are more commonly used in clinical practice. Our comprehensive experimental and clinical evaluations reveal that BS-LDM excels in bone suppression, underscoring its significant clinical value.

Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports

Medical images and radiology reports are crucial for diagnosing medical conditions, highlighting the importance of quantitative analysis for clinical decision-making. However, the diversity and cross-source heterogeneity of these data challenge the generalizability of current data-mining methods. Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence (AGI) for computer vision, showcasing their potential in the biomedical domain. In this study, we evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets, including 5 medical imaging categories (dermatology, radiology, dentistry, ophthalmology, and endoscopy), and 3 radiology report datasets. The investigated tasks encompass disease classification, lesion segmentation, anatomical localization, disease diagnosis, report generation, and lesion detection. Our experimental results demonstrated that Gemini-series models excelled in report generation and lesion detection but faces challenges in disease classification and anatomical localization. Conversely, GPT-series models exhibited proficiency in lesion segmentation and anatomical localization but encountered difficulties in disease diagnosis and lesion detection. Additionally, both the Gemini series and GPT series contain models that have demonstrated commendable generation efficiency. While both models hold promise in reducing physician workload, alleviating pressure on limited healthcare resources, and fostering collaboration between clinical practitioners and artificial intelligence technologies, substantial enhancements and comprehensive validations remain imperative before clinical deployment.

ModernBERT is More Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology Reports

Objective: This study aims to evaluate and compare the performance of two Japanese language models-conventional Bidirectional Encoder Representations from Transformers (BERT) and the newer ModernBERT-in classifying findings from chest CT reports, with a focus on tokenization efficiency, processing time, and classification performance. Methods: We conducted a retrospective study using the CT-RATE-JPN dataset containing 22,778 training reports and 150 test reports. Both models were fine-tuned for multi-label classification of 18 common chest CT conditions. The training data was split in 18,222:4,556 for training and validation. Performance was evaluated using F1 scores for each condition and exact match accuracy across all 18 labels. Results: ModernBERT demonstrated superior tokenization efficiency, requiring 24.0% fewer tokens per document (258.1 vs. 339.6) compared to BERT Base. This translated to significant performance improvements, with ModernBERT completing training in 1877.67 seconds versus BERT's 3090.54 seconds (39% reduction). ModernBERT processed 38.82 samples per second during training (1.65x faster) and 139.90 samples per second during inference (1.66x faster). Despite these efficiency gains, classification performance remained comparable, with ModernBERT achieving superior F1 scores in 8 conditions, while BERT performed better in 4 conditions. Overall exact match accuracy was slightly higher for ModernBERT (74.67% vs. 72.67%), though this difference was not statistically significant (p=0.6291). Conclusion: ModernBERT offers substantial improvements in tokenization efficiency and training speed without sacrificing classification performance. These results suggest that ModernBERT is a promising candidate for clinical applications in Japanese radiology reports analysis.

SMOTE: Synthetic Minority Over-sampling Technique

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.

An efficient unsupervised classification model for galaxy morphology: Voting clustering based on coding from ConvNeXt large model

In this work, we update the unsupervised machine learning (UML) step by proposing an algorithm based on ConvNeXt large model coding to improve the efficiency of unlabeled galaxy morphology classifications. The method can be summarized into three key aspects as follows: (1) a convolutional autoencoder is used for image denoising and reconstruction and the rotational invariance of the model is improved by polar coordinate extension; (2) utilizing a pre-trained convolutional neural network (CNN) named ConvNeXt for encoding the image data. The features were further compressed via a principal component analysis (PCA) dimensionality reduction; (3) adopting a bagging-based multi-model voting classification algorithm to enhance robustness. We applied this model to I-band images of a galaxy sample with I_{rm mag}< 25 in the COSMOS field. Compared to the original unsupervised method, the number of clustering groups required by the new method is reduced from 100 to 20. Finally, we managed to classify about 53\% galaxies, significantly improving the classification efficiency. To verify the validity of the morphological classification, we selected massive galaxies with M(*)>10^{10}(M(sun)) for morphological parameter tests. The corresponding rules between the classification results and the physical properties of galaxies on multiple parameter surfaces are consistent with the existing evolution model. Our method has demonstrated the feasibility of using large model encoding to classify galaxy morphology, which not only improves the efficiency of galaxy morphology classification, but also saves time and manpower. Furthermore, in comparison to the original UML model, the enhanced classification performance is more evident in qualitative analysis and has successfully surpassed a greater number of parameter tests.

Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach

Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.

Towards General Purpose Vision Foundation Models for Medical Image Analysis: An Experimental Study of DINOv2 on Radiology Benchmarks

The integration of deep learning systems into the medical domain has been hindered by the resource-intensive process of data annotation and the inability of these systems to generalize to different data distributions. Foundation models, which are models pre-trained on large datasets, have emerged as a solution to reduce reliance on annotated data and enhance model generalizability and robustness. DINOv2, an open-source foundation model pre-trained with self-supervised learning on 142 million curated natural images, excels in extracting general-purpose visual representations, exhibiting promising capabilities across various vision tasks. Nevertheless, a critical question remains unanswered regarding DINOv2's adaptability to radiological imaging, and the clarity on whether its features are sufficiently general to benefit radiology image analysis is yet to be established. Therefore, this study comprehensively evaluates DINOv2 for radiology, conducting over 100 experiments across diverse modalities (X-ray, CT, and MRI). Tasks include disease classification and organ segmentation on both 2D and 3D images, evaluated under different settings like kNN, few-shot learning, linear-probing, end-to-end fine-tuning, and parameter-efficient fine-tuning, to measure the effectiveness and generalizability of the DINOv2 feature embeddings. Comparative analyses with established medical image analysis models, U-Net and TransUnet for segmentation, and CNN and ViT models pre-trained via supervised, weakly supervised, and self-supervised learning for classification, reveal DINOv2's superior performance in segmentation tasks and competitive results in disease classification. The findings contribute insights to potential avenues for optimizing pre-training strategies for medical imaging and enhancing the broader understanding of DINOv2's role in bridging the gap between natural and radiological image analysis.

Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification

The whole slide image (WSI) classification is often formulated as a multiple instance learning (MIL) problem. Since the positive tissue is only a small fraction of the gigapixel WSI, existing MIL methods intuitively focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting hard-to-classify instances. Some literature has revealed that hard examples are beneficial for modeling a discriminative boundary accurately. By applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which uses a Siamese structure (Teacher-Student) with a consistency constraint to explore the potential hard instances. With several instance masking strategies based on attention scores, MHIM-MIL employs a momentum teacher to implicitly mine hard instances for training the student model, which can be any attention-based MIL model. This counter-intuitive strategy essentially enables the student to learn a better discriminating boundary. Moreover, the student is used to update the teacher with an exponential moving average (EMA), which in turn identifies new hard instances for subsequent training iterations and stabilizes the optimization. Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that MHIM-MIL outperforms other latest methods in terms of performance and training cost. The code is available at: https://github.com/DearCaat/MHIM-MIL.

Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images

The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing infected patients. Medical imaging, such as X-ray and Computed Tomography (CT), combined with the potential of Artificial Intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2 and DenseNet161) and their ensemble, using majority voting have been used to classify COVID-19, pneumoni{\ae} and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods - occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT, and using a global technique - neuron activation profiles. The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.

ViDi: Descriptive Visual Data Clustering as Radiologist Assistant in COVID-19 Streamline Diagnostic

In the light of the COVID-19 pandemic, deep learning methods have been widely investigated in detecting COVID-19 from chest X-rays. However, a more pragmatic approach to applying AI methods to a medical diagnosis is designing a framework that facilitates human-machine interaction and expert decision making. Studies have shown that categorization can play an essential rule in accelerating real-world decision making. Inspired by descriptive document clustering, we propose a domain-independent explanatory clustering framework to group contextually related instances and support radiologists' decision making. While most descriptive clustering approaches employ domain-specific characteristics to form meaningful clusters, we focus on model-level explanation as a more general-purpose element of every learning process to achieve cluster homogeneity. We employ DeepSHAP to generate homogeneous clusters in terms of disease severity and describe the clusters using favorable and unfavorable saliency maps, which visualize the class discriminating regions of an image. These human-interpretable maps complement radiologist knowledge to investigate the whole cluster at once. Besides, as part of this study, we evaluate a model based on VGG-19, which can identify COVID and pneumonia cases with a positive predictive value of 95% and 97%, respectively, comparable to the recent explainable approaches for COVID diagnosis.

Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering

Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.

Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification

Clinical machine learning research and AI driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. We included 115,692 unstructured echocardiogram reports from the UMCU a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10\% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification.

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.

The Power Of Simplicity: Why Simple Linear Models Outperform Complex Machine Learning Techniques -- Case Of Breast Cancer Diagnosis

This research paper investigates the effectiveness of simple linear models versus complex machine learning techniques in breast cancer diagnosis, emphasizing the importance of interpretability and computational efficiency in the medical domain. We focus on Logistic Regression (LR), Decision Trees (DT), and Support Vector Machines (SVM) and optimize their performance using the UCI Machine Learning Repository dataset. Our findings demonstrate that the simpler linear model, LR, outperforms the more complex DT and SVM techniques, with a test score mean of 97.28%, a standard deviation of 1.62%, and a computation time of 35.56 ms. In comparison, DT achieved a test score mean of 93.73%, and SVM had a test score mean of 96.44%. The superior performance of LR can be attributed to its simplicity and interpretability, which provide a clear understanding of the relationship between input features and the outcome. This is particularly valuable in the medical domain, where interpretability is crucial for decision-making. Moreover, the computational efficiency of LR offers advantages in terms of scalability and real-world applicability. The results of this study highlight the power of simplicity in the context of breast cancer diagnosis and suggest that simpler linear models like LR can be more effective, interpretable, and computationally efficient than their complex counterparts, making them a more suitable choice for medical applications.

Empirical and Experimental Insights into Machine Learning-Based Defect Classification in Semiconductor Wafers

This survey paper offers a comprehensive review of methodologies utilizing machine learning (ML) classification techniques for identifying wafer defects in semiconductor manufacturing. Despite the growing body of research demonstrating the effectiveness of ML in wafer defect identification, there is a noticeable absence of comprehensive reviews on this subject. This survey attempts to fill this void by amalgamating available literature and providing an in-depth analysis of the advantages, limitations, and potential applications of various ML classification algorithms in the realm of wafer defect detection. An innovative taxonomy of methodologies that we present provides a detailed classification of algorithms into more refined categories and techniques. This taxonomy follows a three-tier structure, starting from broad methodology categories and ending with specific techniques. It aids researchers in comprehending the complex relationships between different algorithms and their techniques. We employ a rigorous empirical and experimental evaluation to rank these varying techniques. For the empirical evaluation, we assess techniques based on a set of five criteria. The experimental evaluation ranks the algorithms employing the same techniques, sub-categories, and categories. Also the paper illuminates the future prospects of ML classification techniques for wafer defect identification, underscoring potential advancements and opportunities for further research in this field

A slice classification neural network for automated classification of axial PET/CT slices from a multi-centric lymphoma dataset

Automated slice classification is clinically relevant since it can be incorporated into medical image segmentation workflows as a preprocessing step that would flag slices with a higher probability of containing tumors, thereby directing physicians attention to the important slices. In this work, we train a ResNet-18 network to classify axial slices of lymphoma PET/CT images (collected from two institutions) depending on whether the slice intercepted a tumor (positive slice) in the 3D image or if the slice did not (negative slice). Various instances of the network were trained on 2D axial datasets created in different ways: (i) slice-level split and (ii) patient-level split; inputs of different types were used: (i) only PET slices and (ii) concatenated PET and CT slices; and different training strategies were employed: (i) center-aware (CAW) and (ii) center-agnostic (CAG). Model performances were compared using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC), and various binary classification metrics. We observe and describe a performance overestimation in the case of slice-level split as compared to the patient-level split training. The model trained using patient-level split data with the network input containing only PET slices in the CAG training regime was the best performing/generalizing model on a majority of metrics. Our models were additionally more closely compared using the sensitivity metric on the positive slices from their respective test sets.

A General-Purpose Self-Supervised Model for Computational Pathology

Tissue phenotyping is a fundamental computational pathology (CPath) task in learning objective characterizations of histopathologic biomarkers in anatomic pathology. However, whole-slide imaging (WSI) poses a complex computer vision problem in which the large-scale image resolutions of WSIs and the enormous diversity of morphological phenotypes preclude large-scale data annotation. Current efforts have proposed using pretrained image encoders with either transfer learning from natural image datasets or self-supervised pretraining on publicly-available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using over 100 million tissue patches from over 100,000 diagnostic haematoxylin and eosin-stained WSIs across 20 major tissue types, and evaluated on 33 representative CPath clinical tasks in CPath of varying diagnostic difficulties. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree code classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient AI models that can generalize and transfer to a gamut of diagnostically-challenging tasks and clinical workflows in anatomic pathology.

CADICA: a new dataset for coronary artery disease detection by using invasive coronary angiography

Coronary artery disease (CAD) remains the leading cause of death globally and invasive coronary angiography (ICA) is considered the gold standard of anatomical imaging evaluation when CAD is suspected. However, risk evaluation based on ICA has several limitations, such as visual assessment of stenosis severity, which has significant interobserver variability. This motivates to development of a lesion classification system that can support specialists in their clinical procedures. Although deep learning classification methods are well-developed in other areas of medical imaging, ICA image classification is still at an early stage. One of the most important reasons is the lack of available and high-quality open-access datasets. In this paper, we reported a new annotated ICA images dataset, CADICA, to provide the research community with a comprehensive and rigorous dataset of coronary angiography consisting of a set of acquired patient videos and associated disease-related metadata. This dataset can be used by clinicians to train their skills in angiographic assessment of CAD severity and by computer scientists to create computer-aided diagnostic systems to help in such assessment. In addition, baseline classification methods are proposed and analyzed, validating the functionality of CADICA and giving the scientific community a starting point to improve CAD detection.

Segmentation variability and radiomics stability for predicting Triple-Negative Breast Cancer subtype using Magnetic Resonance Imaging

Most papers caution against using predictive models for disease stratification based on unselected radiomic features, as these features are affected by contouring variability. Instead, they advocate for the use of the Intraclass Correlation Coefficient (ICC) as a measure of stability for feature selection. However, the direct effect of segmentation variability on the predictive models is rarely studied. This study investigates the impact of segmentation variability on feature stability and predictive performance in radiomics-based prediction of Triple-Negative Breast Cancer (TNBC) subtype using Magnetic Resonance Imaging. A total of 244 images from the Duke dataset were used, with segmentation variability introduced through modifications of manual segmentations. For each mask, explainable radiomic features were selected using the Shapley Additive exPlanations method and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between feature stability and segmentation variability. Results indicate that segmentation accuracy does not significantly impact predictive performance. While incorporating peritumoral information may reduce feature reproducibility, it does not diminish feature predictive capability. Moreover, feature selection in predictive models is not inherently tied to feature stability with respect to segmentation, suggesting that an overreliance on ICC or reliability scores for feature selection might exclude valuable predictive features.

Breast Cancer Diagnosis Using Machine Learning Techniques

Breast cancer is one of the most threatening diseases in women's life; thus, the early and accurate diagnosis plays a key role in reducing the risk of death in a patient's life. Mammography stands as the reference technique for breast cancer screening; nevertheless, many countries still lack access to mammograms due to economic, social, and cultural issues. Latest advances in computational tools, infrared cameras and devices for bio-impedance quantification, have given a chance to emerge other reference techniques like thermography, infrared thermography, electrical impedance tomography and biomarkers found in blood tests, therefore being faster, reliable and cheaper than other methods. In the last two decades, the techniques mentioned above have been considered as parallel and extended approaches for breast cancer diagnosis, as well many authors concluded that false positives and false negatives rates are significantly reduced. Moreover, when a screening method works together with a computational technique, it generates a "computer-aided diagnosis" system. The present work aims to review the last breakthroughs about the three techniques mentioned earlier, suggested machine learning techniques to breast cancer diagnosis, thus, describing the benefits of some methods in relation with other ones, such as, logistic regression, decision trees, random forest, deep and convolutional neural networks. With this, we studied several hyperparameters optimization approaches with parzen tree optimizers to improve the performance of baseline models. An exploratory data analysis for each database and a benchmark of convolutional neural networks for the database of thermal images are presented. The benchmark process, reviews image classification techniques with convolutional neural networks, like, Resnet50, NasNetmobile, InceptionResnet and Xception.

VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge

Generalist vision language models (VLMs) have made significant strides in computer vision, but they fall short in specialized fields like healthcare, where expert knowledge is essential. In traditional computer vision tasks, creative or approximate answers may be acceptable, but in healthcare, precision is paramount.Current large multimodal models like Gemini and GPT-4o are insufficient for medical tasks due to their reliance on memorized internet knowledge rather than the nuanced expertise required in healthcare. VLMs are usually trained in three stages: vision pre-training, vision-language pre-training, and instruction fine-tuning (IFT). IFT has been typically applied using a mixture of generic and healthcare data. In contrast, we propose that for medical VLMs, a fourth stage of specialized IFT is necessary, which focuses on medical data and includes information from domain expert models. Domain expert models developed for medical use are crucial because they are specifically trained for certain clinical tasks, e.g. to detect tumors and classify abnormalities through segmentation and classification, which learn fine-grained features of medical data-features that are often too intricate for a VLM to capture effectively especially in radiology. This paper introduces a new framework, VILA-M3, for medical VLMs that utilizes domain knowledge via expert models. Through our experiments, we show an improved state-of-the-art (SOTA) performance with an average improvement of ~9% over the prior SOTA model Med-Gemini and ~6% over models trained on the specific tasks. Our approach emphasizes the importance of domain expertise in creating precise, reliable VLMs for medical applications.

MedGemma Technical Report

Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.

Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset

Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.

Comparing Rule-Based and Deep Learning Models for Patient Phenotyping

Objective: We investigate whether deep learning techniques for natural language processing (NLP) can be used efficiently for patient phenotyping. Patient phenotyping is a classification task for determining whether a patient has a medical condition, and is a crucial part of secondary analysis of healthcare data. We assess the performance of deep learning algorithms and compare them with classical NLP approaches. Materials and Methods: We compare convolutional neural networks (CNNs), n-gram models, and approaches based on cTAKES that extract pre-defined medical concepts from clinical notes and use them to predict patient phenotypes. The performance is tested on 10 different phenotyping tasks using 1,610 discharge summaries extracted from the MIMIC-III database. Results: CNNs outperform other phenotyping algorithms in all 10 tasks. The average F1-score of our model is 76 (PPV of 83, and sensitivity of 71) with our model having an F1-score up to 37 points higher than alternative approaches. We additionally assess the interpretability of our model by presenting a method that extracts the most salient phrases for a particular prediction. Conclusion: We show that NLP methods based on deep learning improve the performance of patient phenotyping. Our CNN-based algorithm automatically learns the phrases associated with each patient phenotype. As such, it reduces the annotation complexity for clinical domain experts, who are normally required to develop task-specific annotation rules and identify relevant phrases. Our method performs well in terms of both performance and interpretability, which indicates that deep learning is an effective approach to patient phenotyping based on clinicians' notes.

Supervised Dictionary Learning with Auxiliary Covariates

Supervised dictionary learning (SDL) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. The goal of SDL is to learn a class-discriminative dictionary, which is a set of latent feature vectors that can well-explain both the features as well as labels of observed data. In this paper, we provide a systematic study of SDL, including the theory, algorithm, and applications of SDL. First, we provide a novel framework that `lifts' SDL as a convex problem in a combined factor space and propose a low-rank projected gradient descent algorithm that converges exponentially to the global minimizer of the objective. We also formulate generative models of SDL and provide global estimation guarantees of the true parameters depending on the hyperparameter regime. Second, viewed as a nonconvex constrained optimization problem, we provided an efficient block coordinate descent algorithm for SDL that is guaranteed to find an varepsilon-stationary point of the objective in O(varepsilon^{-1}(log varepsilon^{-1})^{2}) iterations. For the corresponding generative model, we establish a novel non-asymptotic local consistency result for constrained and regularized maximum likelihood estimation problems, which may be of independent interest. Third, we apply SDL for imbalanced document classification by supervised topic modeling and also for pneumonia detection from chest X-ray images. We also provide simulation studies to demonstrate that SDL becomes more effective when there is a discrepancy between the best reconstructive and the best discriminative dictionaries.

Chest ImaGenome Dataset for Clinical Reasoning

Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe 242,072 images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) 1,256 combinations of relation annotations between 29 CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over 670,000 localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from 500 unique patients.

PRAD: Periapical Radiograph Analysis Dataset and Benchmark Model Development

Deep learning (DL), a pivotal technology in artificial intelligence, has recently gained substantial traction in the domain of dental auxiliary diagnosis. However, its application has predominantly been confined to imaging modalities such as panoramic radiographs and Cone Beam Computed Tomography, with limited focus on auxiliary analysis specifically targeting Periapical Radiographs (PR). PR are the most extensively utilized imaging modality in endodontics and periodontics due to their capability to capture detailed local lesions at a low cost. Nevertheless, challenges such as resolution limitations and artifacts complicate the annotation and recognition of PR, leading to a scarcity of publicly available, large-scale, high-quality PR analysis datasets. This scarcity has somewhat impeded the advancement of DL applications in PR analysis. In this paper, we present PRAD-10K, a dataset for PR analysis. PRAD-10K comprises 10,000 clinical periapical radiograph images, with pixel-level annotations provided by professional dentists for nine distinct anatomical structures, lesions, and artificial restorations or medical devices, We also include classification labels for images with typical conditions or lesions. Furthermore, we introduce a DL network named PRNet to establish benchmarks for PR segmentation tasks. Experimental results demonstrate that PRNet surpasses previous state-of-the-art medical image segmentation models on the PRAD-10K dataset. The codes and dataset will be made publicly available.

Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

A large-scale deep model pre-trained on massive labeled or unlabeled data transfers well to downstream tasks. Linear evaluation freezes parameters in the pre-trained model and trains a linear classifier separately, which is efficient and attractive for transfer. However, little work has investigated the classifier in linear evaluation except for the default logistic regression. Inspired by the statistical efficiency of naive Bayes, the paper revisits the classical topic on discriminative vs. generative classifiers. Theoretically, the paper considers the surrogate loss instead of the zero-one loss in analyses and generalizes the classical results from binary cases to multiclass ones. We show that, under mild assumptions, multiclass naive Bayes requires O(log n) samples to approach its asymptotic error while the corresponding multiclass logistic regression requires O(n) samples, where n is the feature dimension. To establish it, we present a multiclass H-consistency bound framework and an explicit bound for logistic loss, which are of independent interests. Simulation results on a mixture of Gaussian validate our theoretical findings. Experiments on various pre-trained deep vision models show that naive Bayes consistently converges faster as the number of data increases. Besides, naive Bayes shows promise in few-shot cases and we observe the "two regimes" phenomenon in pre-trained supervised models. Our code is available at https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers.

One Model is All You Need: Multi-Task Learning Enables Simultaneous Histology Image Segmentation and Classification

The recent surge in performance for image analysis of digitised pathology slides can largely be attributed to the advances in deep learning. Deep models can be used to initially localise various structures in the tissue and hence facilitate the extraction of interpretable features for biomarker discovery. However, these models are typically trained for a single task and therefore scale poorly as we wish to adapt the model for an increasing number of different tasks. Also, supervised deep learning models are very data hungry and therefore rely on large amounts of training data to perform well. In this paper, we present a multi-task learning approach for segmentation and classification of nuclei, glands, lumina and different tissue regions that leverages data from multiple independent data sources. While ensuring that our tasks are aligned by the same tissue type and resolution, we enable meaningful simultaneous prediction with a single network. As a result of feature sharing, we also show that the learned representation can be used to improve the performance of additional tasks via transfer learning, including nuclear classification and signet ring cell detection. As part of this work, we train our developed Cerberus model on a huge amount of data, consisting of over 600K objects for segmentation and 440K patches for classification. We use our approach to process 599 colorectal whole-slide images from TCGA, where we localise 377 million, 900K and 2.1 million nuclei, glands and lumina, respectively and make the results available to the community for downstream analysis.

Adaptive Multiscale Retinal Diagnosis: A Hybrid Trio-Model Approach for Comprehensive Fundus Multi-Disease Detection Leveraging Transfer Learning and Siamese Networks

WHO has declared that more than 2.2 billion people worldwide are suffering from visual disorders, such as media haze, glaucoma, and drusen. At least 1 billion of these cases could have been either prevented or successfully treated, yet they remain unaddressed due to poverty, a lack of specialists, inaccurate ocular fundus diagnoses by ophthalmologists, or the presence of a rare disease. To address this, the research has developed the Hybrid Trio-Network Model Algorithm for accurately diagnosing 12 distinct common and rare eye diseases. This algorithm utilized the RFMiD dataset of 3,200 fundus images and the Binary Relevance Method to detect diseases separately, ensuring expandability and avoiding incorrect correlations. Each detector, incorporating finely tuned hyperparameters to optimize performance, consisted of three feature components: A classical transfer learning CNN model, a two-stage CNN model, and a Siamese Network. The diagnosis was made using features extracted through this Trio-Model with Ensembled Machine Learning algorithms. The proposed model achieved an average accuracy of 97% and an AUC score of 0.96. Compared to past benchmark studies, an increase of over 10% in the F1-score was observed for most diseases. Furthermore, using the Siamese Network, the model successfully made predictions in diseases like optic disc pallor, which past studies failed to predict due to low confidence. This diagnostic tool presents a stable, adaptive, cost-effective, efficient, accessible, and fast solution for globalizing early detection of both common and rare diseases.

TransICD: Transformer Based Code-wise Attention Model for Explainable ICD Coding

International Classification of Disease (ICD) coding procedure which refers to tagging medical notes with diagnosis codes has been shown to be effective and crucial to the billing system in medical sector. Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors. Moreover, training skilled coders also requires time and human resources. Therefore, automating the ICD code determination process is an important task. With the advancement of artificial intelligence theory and computational hardware, machine learning approach has emerged as a suitable solution to automate this process. In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document. Finally, they are fed to separate dense layers for corresponding code prediction. Furthermore, to handle the imbalance in the code frequency of clinical datasets, we employ a label distribution aware margin (LDAM) loss function. The experimental results on the MIMIC-III dataset show that our proposed model outperforms other baselines by a significant margin. In particular, our best setting achieves a micro-AUC score of 0.923 compared to 0.868 of bidirectional recurrent neural networks. We also show that by using the code-wise attention mechanism, the model can provide more insights about its prediction, and thus it can support clinicians to make reliable decisions. Our code is available online (https://github.com/biplob1ly/TransICD)

Prompt as Knowledge Bank: Boost Vision-language model via Structural Representation for zero-shot medical detection

Zero-shot medical detection can further improve detection performance without relying on annotated medical images even upon the fine-tuned model, showing great clinical value. Recent studies leverage grounded vision-language models (GLIP) to achieve this by using detailed disease descriptions as prompts for the target disease name during the inference phase. However, these methods typically treat prompts as equivalent context to the target name, making it difficult to assign specific disease knowledge based on visual information, leading to a coarse alignment between images and target descriptions. In this paper, we propose StructuralGLIP, which introduces an auxiliary branch to encode prompts into a latent knowledge bank layer-by-layer, enabling more context-aware and fine-grained alignment. Specifically, in each layer, we select highly similar features from both the image representation and the knowledge bank, forming structural representations that capture nuanced relationships between image patches and target descriptions. These features are then fused across modalities to further enhance detection performance. Extensive experiments demonstrate that StructuralGLIP achieves a +4.1\% AP improvement over prior state-of-the-art methods across seven zero-shot medical detection benchmarks, and consistently improves fine-tuned models by +3.2\% AP on endoscopy image datasets.

CXR-LLaVA: Multimodal Large Language Model for Interpreting Chest X-ray Images

Purpose: Recent advancements in large language models (LLMs) have expanded their capabilities in a multimodal fashion, potentially replicating the image interpretation of human radiologists. This study aimed to develop open-source multimodal large language model for interpreting chest X-ray images (CXR-LLaVA). We also examined the effect of prompt engineering and model parameters such as temperature and nucleus sampling. Materials and Methods: For training, we collected 659,287 publicly available CXRs: 417,336 CXRs had labels for certain radiographic abnormalities (dataset 1); 241,951 CXRs provided free-text radiology reports (dataset 2). After pre-training the Resnet50 as an image encoder, the contrastive language-image pre-training was used to align CXRs and corresponding radiographic abnormalities. Then, the Large Language Model Meta AI-2 was fine-tuned using dataset 2, which were refined using GPT-4, with generating various question answering scenarios. The code can be found at https://github.com/ECOFRI/CXR_LLaVA. Results: In the test set, we observed that the model's performance fluctuated based on its parameters. On average, it achieved F1 score of 0.34 for five pathologic findings (atelectasis, cardiomegaly, consolidation, edema, and pleural effusion), which was improved to 0.46 through prompt engineering. In the independent set, the model achieved an average F1 score of 0.30 for the same pathologic findings. Notably, for the pediatric chest radiograph dataset, which was unseen during training, the model differentiated abnormal radiographs with an F1 score ranging from 0.84 to 0.85. Conclusion: CXR-LLaVA demonstrates promising potential in CXR interpretation. Both prompt engineering and model parameter adjustments can play pivotal roles in interpreting CXRs.