- Steering Protein Family Design through Profile Bayesian Flow Protein family design emerges as a promising alternative by combining the advantages of de novo protein design and mutation-based directed evolution.In this paper, we propose ProfileBFN, the Profile Bayesian Flow Networks, for specifically generative modeling of protein families. ProfileBFN extends the discrete Bayesian Flow Network from an MSA profile perspective, which can be trained on single protein sequences by regarding it as a degenerate profile, thereby achieving efficient protein family design by avoiding large-scale MSA data construction and training. Empirical results show that ProfileBFN has a profound understanding of proteins. When generating diverse and novel family proteins, it can accurately capture the structural characteristics of the family. The enzyme produced by this method is more likely than the previous approach to have the corresponding function, offering better odds of generating diverse proteins with the desired functionality. 10 authors · Feb 11
- De novo design of high-affinity protein binders with AlphaProteo Computational design of protein-binding proteins is a fundamental capability with broad utility in biomedical research and biotechnology. Recent methods have made strides against some target proteins, but on-demand creation of high-affinity binders without multiple rounds of experimental testing remains an unsolved challenge. This technical report introduces AlphaProteo, a family of machine learning models for protein design, and details its performance on the de novo binder design problem. With AlphaProteo, we achieve 3- to 300-fold better binding affinities and higher experimental success rates than the best existing methods on seven target proteins. Our results suggest that AlphaProteo can generate binders "ready-to-use" for many research applications using only one round of medium-throughput screening and no further optimization. 32 authors · Sep 12, 2024