Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning
Large Language Models' (LLM) reasoning can be improved using test-time aggregation strategies, i.e., generating multiple samples and voting among generated samples. While these improve performance, they often reach a saturation point. Refinement offers an alternative by using LLM-generated feedback to improve solution quality. However, refinement introduces 3 key challenges: (1) Excessive refinement: Uniformly refining all instances can over-correct and reduce the overall performance. (2) Inability to localize and address errors: LLMs have a limited ability to self-correct and struggle to identify and correct their own mistakes. (3) Insufficient refinement: Deciding how many iterations of refinement are needed is non-trivial, and stopping too soon could leave errors unaddressed. To tackle these issues, we propose MAgICoRe, which avoids excessive refinement by categorizing problem difficulty as easy or hard, solving easy problems with coarse-grained aggregation and hard ones with fine-grained and iterative multi-agent refinement. To improve error localization, we incorporate external step-wise reward model (RM) scores. Moreover, to ensure effective refinement, we employ a multi-agent loop with three agents: Solver, Reviewer (which generates targeted feedback based on step-wise RM scores), and the Refiner (which incorporates feedback). To ensure sufficient refinement, we re-evaluate updated solutions, iteratively initiating further rounds of refinement. We evaluate MAgICoRe on Llama-3-8B and GPT-3.5 and show its effectiveness across 5 math datasets. Even one iteration of MAgICoRe beats Self-Consistency by 3.4%, Best-of-k by 3.2%, and Self-Refine by 4.0% while using less than half the samples. Unlike iterative refinement with baselines, MAgICoRe continues to improve with more iterations. Finally, our ablations highlight the importance of MAgICoRe's RMs and multi-agent communication.
Weak-to-Strong Reasoning
When large language models (LLMs) exceed human-level capabilities, it becomes increasingly challenging to provide full-scale and accurate supervisions for these models. Weak-to-strong learning, which leverages a less capable model to unlock the latent abilities of a stronger model, proves valuable in this context. Yet, the efficacy of this approach for complex reasoning tasks is still untested. Furthermore, tackling reasoning tasks under the weak-to-strong setting currently lacks efficient methods to avoid blindly imitating the weak supervisor including its errors. In this paper, we introduce a progressive learning framework that enables the strong model to autonomously refine its training data, without requiring input from either a more advanced model or human-annotated data. This framework begins with supervised fine-tuning on a selective small but high-quality dataset, followed by preference optimization on contrastive samples identified by the strong model itself. Extensive experiments on the GSM8K and MATH datasets demonstrate that our method significantly enhances the reasoning capabilities of Llama2-70b using three separate weak models. This method is further validated in a forward-looking experimental setup, where Llama3-8b-instruct effectively supervises Llama3-70b on the highly challenging OlympicArena dataset. This work paves the way for a more scalable and sophisticated strategy to enhance AI reasoning powers. All relevant code and resources are available in https://github.com/GAIR-NLP/weak-to-strong-reasoning.
Unlocking Recursive Thinking of LLMs: Alignment via Refinement
The OpenAI o1-series models have demonstrated that leveraging long-form Chain of Thought (CoT) can substantially enhance performance. However, the recursive thinking capabilities of Large Language Models (LLMs) remain limited, particularly in the absence of expert-curated data for distillation. In this paper, we propose AvR: Alignment via Refinement, a novel method aimed at unlocking the potential of LLMs for recursive reasoning through long-form CoT. AvR introduces a refinement process that integrates criticism and improvement actions, guided by differentiable learning techniques to optimize refinement-aware rewards. As a result, the synthesized multi-round data can be organized as a long refinement thought, further enabling test-time scaling. Experimental results show that AvR significantly outperforms conventional preference optimization methods. Notably, with only 3k synthetic samples, our method boosts the performance of the LLaMA-3-8B-Instruct model by over 20\% in win rate on AlpacaEval 2.0. Our code is available at Github (https://github.com/Banner-Z/AvR.git).
GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements
State-of-the-art language models can exhibit impressive reasoning refinement capabilities on math, science or coding tasks. However, recent work demonstrates that even the best models struggle to identify when and where to refine without access to external feedback. Outcome-based Reward Models (ORMs), trained to predict correctness of the final answer indicating when to refine, offer one convenient solution for deciding when to refine. Process Based Reward Models (PRMs), trained to predict correctness of intermediate steps, can then be used to indicate where to refine. But they are expensive to train, requiring extensive human annotations. In this paper, we propose Stepwise ORMs (SORMs) which are trained, only on synthetic data, to approximate the expected future reward of the optimal policy or V^{star}. More specifically, SORMs are trained to predict the correctness of the final answer when sampling the current policy many times (rather than only once as in the case of ORMs). Our experiments show that SORMs can more accurately detect incorrect reasoning steps compared to ORMs, thus improving downstream accuracy when doing refinements. We then train global refinement models, which take only the question and a draft solution as input and predict a corrected solution, and local refinement models which also take as input a critique indicating the location of the first reasoning error. We generate training data for both models synthetically by reusing data used to train the SORM. We find combining global and local refinements, using the ORM as a reranker, significantly outperforms either one individually, as well as a best of three sample baseline. With this strategy we can improve the accuracy of a LLaMA-2 13B model (already fine-tuned with RL) on GSM8K from 53\% to 65\% when greedily sampled.
Lyra: Orchestrating Dual Correction in Automated Theorem Proving
Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.
Generating refactored code accurately using reinforcement learning
Automated source code refactoring, particularly extract method refactoring, is a crucial and frequently employed technique during software development. Despite its importance and frequent use by practitioners, current automated techniques face significant limitations. These approaches often rely on developers to identify the precise bounds of refactoring opportunities in terms of source code statements. Also, they often do not capture the semantic context, resulting in offering no automated means to suggest meaningful method name, for instance. To address these challenges, we propose a novel reinforcement learning-based approach for fine-tuning and aligning code language models to perform automated, intelligent extract method refactoring on Java source code. Our approach fine-tunes sequence-to-sequence generative models and aligns them using the Proximal Policy Optimization (PPO) algorithm. We utilize code compilation and presence of the refactoring in the generated code as reward signals, providing a code-centric optimization process. Our experiments demonstrate that our approach significantly enhances the performance of large language models in code refactoring, as evidenced by both quantitative evaluation metrics such as BLEU, ROUGE, and CodeBLEU, and qualitative measures including syntactical and functional correctness. The supervised fine-tuned model, further aligned with PPO, surpasses traditional supervised fine-tuning by 11.96% and 16.45% in terms of BLEU and CodeBLEU scores, respectively. When subjected to a suite of 122 unit tests, the number of successful tests increased from 41 to 66 for the reinforcement learning aligned fine-tuned Code-T5 model, highlighting the effectiveness of our approach in producing functionally correct refactorings.
Table-Critic: A Multi-Agent Framework for Collaborative Criticism and Refinement in Table Reasoning
Despite the remarkable capabilities of large language models (LLMs) in various reasoning tasks, they still struggle with table reasoning tasks, particularly in maintaining consistency throughout multi-step reasoning processes. While existing approaches have explored various decomposition strategies, they often lack effective mechanisms to identify and correct errors in intermediate reasoning steps, leading to cascading error propagation. To address these issues, we propose Table-Critic, a novel multi-agent framework that facilitates collaborative criticism and iterative refinement of the reasoning process until convergence to correct solutions. Our framework consists of four specialized agents: a Judge for error identification, a Critic for comprehensive critiques, a Refiner for process improvement, and a Curator for pattern distillation. To effectively deal with diverse and unpredictable error types, we introduce a self-evolving template tree that systematically accumulates critique knowledge through experience-driven learning and guides future reflections. Extensive experiments have demonstrated that Table-Critic achieves substantial improvements over existing methods, achieving superior accuracy and error correction rates while maintaining computational efficiency and lower solution degradation rate.
ProgCo: Program Helps Self-Correction of Large Language Models
Self-Correction aims to enable large language models (LLMs) to self-verify and self-refine their initial responses without external feedback. However, LLMs often fail to effectively self-verify and generate correct feedback, further misleading refinement and leading to the failure of self-correction, especially in complex reasoning tasks. In this paper, we propose Program-driven Self-Correction (ProgCo). First, program-driven verification (ProgVe) achieves complex verification logic and extensive validation through self-generated, self-executing verification pseudo-programs. Then, program-driven refinement (ProgRe) receives feedback from ProgVe, conducts dual reflection and refinement on both responses and verification programs to mitigate misleading of incorrect feedback in complex reasoning tasks. Experiments on three instruction-following and mathematical benchmarks indicate that ProgCo achieves effective self-correction, and can be further enhance performance when combined with real program tools.
ProRefine: Inference-time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
ReFeed: Multi-dimensional Summarization Refinement with Reflective Reasoning on Feedback
Summarization refinement faces challenges when extending to multi-dimension. In this paper, we introduce ReFeed, a powerful summarization refinement pipeline that enhances multiple dimensions through reflective reasoning on feedback. To achieve this, we release SumFeed-CoT, a large-scale Long-CoT-based dataset optimized for training a lightweight model with reflective reasoning. Our experiments reveal how the number of dimensions, feedback exposure, and reasoning policy influence refinement performance, highlighting reflective reasoning and simultaneously addressing multiple feedback is crucial to mitigate trade-off between dimensions. Furthermore, ReFeed is robust to noisy feedback and feedback order. Lastly, our finding emphasizes that creating data with a proper goal and guideline constitutes a fundamental pillar of effective reasoning. The dataset and model will be released.
Outcome-Refining Process Supervision for Code Generation
Large Language Models have demonstrated remarkable capabilities in code generation, yet they often struggle with complex programming tasks that require deep algorithmic reasoning. While process supervision through learned reward models shows promise in guiding reasoning steps, it requires expensive training data and suffers from unreliable evaluation. We propose Outcome-Refining Process Supervision, a novel paradigm that treats outcome refinement itself as the process to be supervised. Our framework leverages concrete execution signals to ground the supervision of reasoning steps, while using tree-structured exploration to maintain multiple solution trajectories simultaneously. Experiments demonstrate that our approach enables even smaller models to achieve high success accuracy and performance metrics on competitive programming tasks, creates more reliable verification than traditional reward models without requiring training PRMs. Our approach achieves significant improvements across 5 models and 3 datasets: an average of 26.9% increase in correctness and 42.2% in efficiency. The results suggest that providing structured reasoning space with concrete verification signals is crucial for solving complex programming tasks. We open-source all our code and data at: https://github.com/zhuohaoyu/ORPS
Self-Knowledge Distillation with Progressive Refinement of Targets
The generalization capability of deep neural networks has been substantially improved by applying a wide spectrum of regularization methods, e.g., restricting function space, injecting randomness during training, augmenting data, etc. In this work, we propose a simple yet effective regularization method named progressive self-knowledge distillation (PS-KD), which progressively distills a model's own knowledge to soften hard targets (i.e., one-hot vectors) during training. Hence, it can be interpreted within a framework of knowledge distillation as a student becomes a teacher itself. Specifically, targets are adjusted adaptively by combining the ground-truth and past predictions from the model itself. We show that PS-KD provides an effect of hard example mining by rescaling gradients according to difficulty in classifying examples. The proposed method is applicable to any supervised learning tasks with hard targets and can be easily combined with existing regularization methods to further enhance the generalization performance. Furthermore, it is confirmed that PS-KD achieves not only better accuracy, but also provides high quality of confidence estimates in terms of calibration as well as ordinal ranking. Extensive experimental results on three different tasks, image classification, object detection, and machine translation, demonstrate that our method consistently improves the performance of the state-of-the-art baselines. The code is available at https://github.com/lgcnsai/PS-KD-Pytorch.
ProTIP: Progressive Tool Retrieval Improves Planning
Large language models (LLMs) are increasingly employed for complex multi-step planning tasks, where the tool retrieval (TR) step is crucial for achieving successful outcomes. Two prevalent approaches for TR are single-step retrieval, which utilizes the complete query, and sequential retrieval using task decomposition (TD), where a full query is segmented into discrete atomic subtasks. While single-step retrieval lacks the flexibility to handle "inter-tool dependency," the TD approach necessitates maintaining "subtask-tool atomicity alignment," as the toolbox can evolve dynamically. To address these limitations, we introduce the Progressive Tool retrieval to Improve Planning (ProTIP) framework. ProTIP is a lightweight, contrastive learning-based framework that implicitly performs TD without the explicit requirement of subtask labels, while simultaneously maintaining subtask-tool atomicity. On the ToolBench dataset, ProTIP outperforms the ChatGPT task decomposition-based approach by a remarkable margin, achieving a 24% improvement in Recall@K=10 for TR and a 41% enhancement in tool accuracy for plan generation.
CriticLean: Critic-Guided Reinforcement Learning for Mathematical Formalization
Translating natural language mathematical statements into formal, executable code is a fundamental challenge in automated theorem proving. While prior work has focused on generation and compilation success, little attention has been paid to the critic phase-the evaluation of whether generated formalizations truly capture the semantic intent of the original problem. In this paper, we introduce CriticLean, a novel critic-guided reinforcement learning framework that elevates the role of the critic from a passive validator to an active learning component. Specifically, first, we propose the CriticLeanGPT, trained via supervised fine-tuning and reinforcement learning, to rigorously assess the semantic fidelity of Lean 4 formalizations. Then, we introduce CriticLeanBench, a benchmark designed to measure models' ability to distinguish semantically correct from incorrect formalizations, and demonstrate that our trained CriticLeanGPT models can significantly outperform strong open- and closed-source baselines. Building on the CriticLean framework, we construct FineLeanCorpus, a dataset comprising over 285K problems that exhibits rich domain diversity, broad difficulty coverage, and high correctness based on human evaluation. Overall, our findings highlight that optimizing the critic phase is essential for producing reliable formalizations, and we hope our CriticLean will provide valuable insights for future advances in formal mathematical reasoning.
Towards Enhancing Relational Rules for Knowledge Graph Link Prediction
Graph neural networks (GNNs) have shown promising performance for knowledge graph reasoning. A recent variant of GNN called progressive relational graph neural network (PRGNN), utilizes relational rules to infer missing knowledge in relational digraphs and achieves notable results. However, during reasoning with PRGNN, two important properties are often overlooked: (1) the sequentiality of relation composition, where the order of combining different relations affects the semantics of the relational rules, and (2) the lagged entity information propagation, where the transmission speed of required information lags behind the appearance speed of new entities. Ignoring these properties leads to incorrect relational rule learning and decreased reasoning accuracy. To address these issues, we propose a novel knowledge graph reasoning approach, the Relational rUle eNhanced Graph Neural Network (RUN-GNN). Specifically, RUN-GNN employs a query related fusion gate unit to model the sequentiality of relation composition and utilizes a buffering update mechanism to alleviate the negative effect of lagged entity information propagation, resulting in higher-quality relational rule learning. Experimental results on multiple datasets demonstrate the superiority of RUN-GNN is superior on both transductive and inductive link prediction tasks.
Do Machine Learning Models Learn Statistical Rules Inferred from Data?
Machine learning models can make critical errors that are easily hidden within vast amounts of data. Such errors often run counter to rules based on human intuition. However, rules based on human knowledge are challenging to scale or to even formalize. We thereby seek to infer statistical rules from the data and quantify the extent to which a model has learned them. We propose a framework SQRL that integrates logic-based methods with statistical inference to derive these rules from a model's training data without supervision. We further show how to adapt models at test time to reduce rule violations and produce more coherent predictions. SQRL generates up to 300K rules over datasets from vision, tabular, and language settings. We uncover up to 158K violations of those rules by state-of-the-art models for classification, object detection, and data imputation. Test-time adaptation reduces these violations by up to 68.7% with relative performance improvement up to 32%. SQRL is available at https://github.com/DebugML/sqrl.
TPD: Enhancing Student Language Model Reasoning via Principle Discovery and Guidance
Large Language Models (LLMs) have recently showcased remarkable reasoning abilities. However, larger models often surpass their smaller counterparts in reasoning tasks, posing the challenge of effectively transferring these capabilities from larger models. Existing approaches heavily rely on extensive fine-tuning data or continuous interactions with a superior teacher LLM during inference. We introduce a principle-based teacher-student framework called ``Teaching via Principle Discovery'' (TPD) to address these limitations. Inspired by human learning mechanisms, TPD mimics the interaction between a teacher and a student using a principle-based approach. The teacher LLM generates problem-solving instructions and corrective principles based on the student LLM's errors. These principles guide the refinement of instructions and the selection of instructive examples from a validation set. This enables the student model to learn from both the teacher's guidance and its own mistakes. Once the student model begins making inferences, TPD requires no further intervention from the teacher LLM or humans. Through extensive experiments across eight reasoning tasks, we demonstrate the effectiveness of TPD. Compared to standard chain-of-thought prompting, TPD significantly improves the student model's performance, achieving 6.2% improvement on average.
RefineCoder: Iterative Improving of Large Language Models via Adaptive Critique Refinement for Code Generation
Code generation has attracted increasing attention with the rise of Large Language Models (LLMs). Many studies have developed powerful code LLMs by synthesizing code-related instruction data and applying supervised fine-tuning. However, these methods are limited by teacher model distillation and ignore the potential of iterative refinement by self-generated code. In this paper, we propose Adaptive Critique Refinement (ACR), which enables the model to refine itself by self-generated code and external critique, rather than directly imitating the code responses of the teacher model. Concretely, ACR includes a composite scoring system with LLM-as-a-Judge to evaluate the quality of code responses and a selective critique strategy with LLM-as-a-Critic to critique self-generated low-quality code responses. We develop the RefineCoder series by iteratively applying ACR, achieving continuous performance improvement on multiple code generation benchmarks. Compared to the baselines of the same size, our proposed RefineCoder series can achieve comparable or even superior performance using less data.
Direct Alignment of Language Models via Quality-Aware Self-Refinement
Reinforcement Learning from Human Feedback (RLHF) has been commonly used to align the behaviors of Large Language Models (LLMs) with human preferences. Recently, a popular alternative is Direct Policy Optimization (DPO), which replaces an LLM-based reward model with the policy itself, thus obviating the need for extra memory and training time to learn the reward model. However, DPO does not consider the relative qualities of the positive and negative responses, and can lead to sub-optimal training outcomes. To alleviate this problem, we investigate the use of intrinsic knowledge within the on-the-fly fine-tuning LLM to obtain relative qualities and help to refine the loss function. Specifically, we leverage the knowledge of the LLM to design a refinement function to estimate the quality of both the positive and negative responses. We show that the constructed refinement function can help self-refine the loss function under mild assumptions. The refinement function is integrated into DPO and its variant Identity Policy Optimization (IPO). Experiments across various evaluators indicate that they can improve the performance of the fine-tuned models over DPO and IPO.
Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.
The ART of LLM Refinement: Ask, Refine, and Trust
In recent years, Large Language Models (LLMs) have demonstrated remarkable generative abilities, but can they judge the quality of their own generations? A popular concept, referred to as self-refinement, postulates that LLMs can detect and correct the errors in their generations when asked to do so. However, recent empirical evidence points in the opposite direction, suggesting that LLMs often struggle to accurately identify errors when reasoning is involved. To address this, we propose a reasoning with refinement objective called ART: Ask, Refine, and Trust, which asks necessary questions to decide when an LLM should refine its output, and either affirm or withhold trust in its refinement by ranking the refinement and the initial prediction. On two multistep reasoning tasks of mathematical word problems (GSM8K) and question answering (StrategyQA), ART achieves a performance gain of +5 points over self-refinement baselines, while using a much smaller model as the decision maker. We also demonstrate the benefit of using smaller models to make refinement decisions as a cost-effective alternative to fine-tuning a larger model.
Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement
Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities. As instruction datasets proliferate, selecting optimal data for effective training becomes increasingly important. This work addresses the question: How can we determine the optimal subset of data for effective training? While existing research often emphasizes local criteria like instance quality for subset selection, we argue that a global approach focused on data diversity is more critical. Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset. We propose an iterative refinement method inspired by active learning techniques to resample instances from clusters, reassessing each cluster's importance and sampling weight in every training iteration. This approach reduces the effect of outliers and automatically filters out clusters containing low-quality data. Through extensive evaluation across natural language reasoning, general world knowledge, code and math reasoning tasks, and by fine-tuning models from various families, we observe consistent improvements, achieving a 7% increase over random selection and a 3.8% improvement over state-of-the-art sampling methods. Our work highlights the significance of diversity-first sampling when finetuning LLMs to enhance performance across a broad array of evaluation tasks. Our code is available at https://github.com/for-ai/iterative-data-selection.
AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning
Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.
Planning-Driven Programming: A Large Language Model Programming Workflow
The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.
Pinpoint, Not Criticize: Refining Large Language Models via Fine-Grained Actionable Feedback
Recent improvements in text generation have leveraged human feedback to improve the quality of the generated output. However, human feedback is not always available, especially during inference. In this work, we propose an inference time optimization method FITO to use fine-grained actionable feedback in the form of error type, error location and severity level that are predicted by a learned error pinpoint model for iterative refinement. FITO starts with an initial output, then iteratively incorporates the feedback via a refinement model that generates an improved output conditioned on the feedback. Given the uncertainty of consistent refined samples at iterative steps, we formulate iterative refinement into a local search problem and develop a simulated annealing based algorithm that balances exploration of the search space and optimization for output quality. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA) and topical summarization. We observe 0.8 and 0.7 MetricX gain on Chinese-English and English-German translation, 4.5 and 1.8 ROUGE-L gain at long form QA and topic summarization respectively, with a single iteration of refinement. With our simulated annealing algorithm, we see further quality improvements, including up to 1.7 MetricX improvements over the baseline approach.
DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search
We introduce DeepSeek-Prover-V1.5, an open-source language model designed for theorem proving in Lean 4, which enhances DeepSeek-Prover-V1 by optimizing both training and inference processes. Pre-trained on DeepSeekMath-Base with specialization in formal mathematical languages, the model undergoes supervised fine-tuning using an enhanced formal theorem proving dataset derived from DeepSeek-Prover-V1. Further refinement is achieved through reinforcement learning from proof assistant feedback (RLPAF). Beyond the single-pass whole-proof generation approach of DeepSeek-Prover-V1, we propose RMaxTS, a variant of Monte-Carlo tree search that employs an intrinsic-reward-driven exploration strategy to generate diverse proof paths. DeepSeek-Prover-V1.5 demonstrates significant improvements over DeepSeek-Prover-V1, achieving new state-of-the-art results on the test set of the high school level miniF2F benchmark (63.5%) and the undergraduate level ProofNet benchmark (25.3%).
Scaling Synthetic Logical Reasoning Datasets with Context-Sensitive Declarative Grammars
Logical reasoning remains a challenge for natural language processing, but it can be improved by training language models to mimic theorem provers on procedurally generated problems. Previous work used domain-specific proof generation algorithms, which biases reasoning toward specific proof traces and limits auditability and extensibility. We present a simpler and more general declarative framework with flexible context-sensitive rules binding multiple languages (specifically, simplified English and the TPTP theorem-proving language). We construct first-order logic problems by selecting up to 32 premises and one hypothesis. We demonstrate that using semantic constraints during generation and careful English verbalization of predicates enhances logical reasoning without hurting natural English tasks. We use relatively small DeBERTa-v3 models to achieve state-of-the-art accuracy on the FOLIO human-authored logic dataset, surpassing GPT-4 in accuracy with or without an external solver by 12%.
AIR: Complex Instruction Generation via Automatic Iterative Refinement
With the development of large language models, their ability to follow simple instructions has significantly improved. However, adhering to complex instructions remains a major challenge. Current approaches to generating complex instructions are often irrelevant to the current instruction requirements or suffer from limited scalability and diversity. Moreover, methods such as back-translation, while effective for simple instruction generation, fail to leverage the rich contents and structures in large web corpora. In this paper, we propose a novel automatic iterative refinement framework to generate complex instructions with constraints, which not only better reflects the requirements of real scenarios but also significantly enhances LLMs' ability to follow complex instructions. The AIR framework consists of two stages: (1)Generate an initial instruction from a document; (2)Iteratively refine instructions with LLM-as-judge guidance by comparing the model's output with the document to incorporate valuable constraints. Finally, we construct the AIR-10K dataset with 10K complex instructions and demonstrate that instructions generated with our approach significantly improve the model's ability to follow complex instructions, outperforming existing methods for instruction generation.
Query Rewriting via LLMs
Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.
Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
Auto-Evolve: Enhancing Large Language Model's Performance via Self-Reasoning Framework
Recent advancements in prompt engineering strategies, such as Chain-of-Thought (CoT) and Self-Discover, have demonstrated significant potential in improving the reasoning abilities of Large Language Models (LLMs). However, these state-of-the-art (SOTA) prompting strategies rely on single or fixed set of static seed reasoning modules like "think step by step" or "break down this problem" intended to simulate human approach to problem-solving. This constraint limits the flexibility of models in tackling diverse problems effectively. In this paper, we introduce Auto-Evolve, a novel framework that enables LLMs to self-create dynamic reasoning modules and downstream action plan, resulting in significant improvements over current SOTA methods. We evaluate Auto-Evolve on the challenging BigBench-Hard (BBH) dataset with Claude 2.0, Claude 3 Sonnet, Mistral Large, and GPT 4, where it consistently outperforms the SOTA prompt strategies. Auto-Evolve outperforms CoT by up to 10.4% and on an average by 7% across these four models. Our framework introduces two innovations: a) Auto-Evolve dynamically generates reasoning modules for each task while aligning with human reasoning paradigm, thus eliminating the need for predefined templates. b) We introduce an iterative refinement component, that incrementally refines instruction guidance for LLMs and helps boost performance by average 2.8% compared to doing it in a single step.
RefCritic: Training Long Chain-of-Thought Critic Models with Refinement Feedback
With the rapid advancement of Large Language Models (LLMs), developing effective critic modules for precise guidance has become crucial yet challenging. In this paper, we initially demonstrate that supervised fine-tuning for building critic modules (which is widely adopted in current solutions) fails to genuinely enhance models' critique abilities, producing superficial critiques with insufficient reflections and verifications. To unlock the unprecedented critique capabilities, we propose RefCritic, a long-chain-of-thought critic module based on reinforcement learning with dual rule-based rewards: (1) instance-level correctness of solution judgments and (2) refinement accuracies of the policy model based on critiques, aiming to generate high-quality evaluations with actionable feedback that effectively guides model refinement. We evaluate RefCritic on Qwen2.5-14B-Instruct and DeepSeek-R1-Distill-Qwen-14B across five benchmarks. On critique and refinement settings, RefCritic demonstrates consistent advantages across all benchmarks, e.g., 6.8\% and 7.2\% gains on AIME25 for the respective base models. Notably, under majority voting, policy models filtered by RefCritic show superior scaling with increased voting numbers. Moreover, despite training on solution-level supervision, RefCritic outperforms step-level supervised approaches on ProcessBench, a benchmark to identify erroneous steps in mathematical reasoning.
LLM-FuncMapper: Function Identification for Interpreting Complex Clauses in Building Codes via LLM
As a vital stage of automated rule checking (ARC), rule interpretation of regulatory texts requires considerable effort. However, interpreting regulatory clauses with implicit properties or complex computational logic is still challenging due to the lack of domain knowledge and limited expressibility of conventional logic representations. Thus, LLM-FuncMapper, an approach to identifying predefined functions needed to interpret various regulatory clauses based on the large language model (LLM), is proposed. First, by systematically analysis of building codes, a series of atomic functions are defined to capture shared computational logics of implicit properties and complex constraints, creating a database of common blocks for interpreting regulatory clauses. Then, a prompt template with the chain of thought is developed and further enhanced with a classification-based tuning strategy, to enable common LLMs for effective function identification. Finally, the proposed approach is validated with statistical analysis, experiments, and proof of concept. Statistical analysis reveals a long-tail distribution and high expressibility of the developed function database, with which almost 100% of computer-processible clauses can be interpreted and represented as computer-executable codes. Experiments show that LLM-FuncMapper achieve promising results in identifying relevant predefined functions for rule interpretation. Further proof of concept in automated rule interpretation also demonstrates the possibility of LLM-FuncMapper in interpreting complex regulatory clauses. To the best of our knowledge, this study is the first attempt to introduce LLM for understanding and interpreting complex regulatory clauses, which may shed light on further adoption of LLM in the construction domain.
Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement
Large language model agents have exhibited exceptional performance across a range of complex interactive tasks. Recent approaches have utilized tuning with expert trajectories to enhance agent performance, yet they primarily concentrate on outcome rewards, which may lead to errors or suboptimal actions due to the absence of process supervision signals. In this paper, we introduce the Iterative step-level Process Refinement (IPR) framework, which provides detailed step-by-step guidance to enhance agent training. Specifically, we adopt the Monte Carlo method to estimate step-level rewards. During each iteration, the agent explores along the expert trajectory and generates new actions. These actions are then evaluated against the corresponding step of expert trajectory using step-level rewards. Such comparison helps identify discrepancies, yielding contrastive action pairs that serve as training data for the agent. Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines. Moreover, our analytical findings highlight the effectiveness of IPR in augmenting action efficiency and its applicability to diverse models.
FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving
Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.
ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Format Restriction, and Column Exploration
Text-to-SQL systems have unlocked easier access to critical data insights by enabling natural language queries over structured databases. However, deploying such systems in enterprise environments remains challenging due to factors such as large, complex schemas (> 3000 columns), diverse SQL dialects (e.g., BigQuery, Snowflake) and sophisticated query requirements (e.g., transformation, analytics). Current state-of-the-art performance on the Spider 2.0 dataset -- a benchmark built to mimic such complex environments -- remains limited at 20%. Key limitations include inadequate instruction-following, poor long-context comprehension, weak self-refinement, and insufficient dialect-specific knowledge. To address these gaps, we propose ReFoRCE (Self-Refinement Agent with Format Restriction and Column Exploration) which introduces (1) table compression to mitigate long-context limitations (2) format restriction to ensure accurate answer format, and (3) iterative column exploration for enhanced schema understanding. Additionally, it employs self-refinement pipeline consisting of (1) parallelized workflows with voting mechanisms and (2) a Common Table Expression (CTE) based refinement approach to handle unresolved cases. ReFoRCE achieves state-of-the-art results scoring 31.26 on the Spider 2.0-Snow and scoring 30.35 on the Spider 2.0-Lite tasks.
ReGAL: Refactoring Programs to Discover Generalizable Abstractions
While large language models (LLMs) are increasingly being used for program synthesis, they lack the global view needed to develop useful abstractions; they generally predict programs one at a time, often repeating the same functionality. Generating redundant code from scratch is both inefficient and error-prone. To address this, we propose Refactoring for Generalizable Abstraction Learning (ReGAL), a gradient-free method for learning a library of reusable functions via code refactorization, i.e. restructuring code without changing its execution output. ReGAL learns from a small set of existing programs, iteratively verifying and refining its abstractions via execution. We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains. On three datasets (LOGO graphics generation, Date reasoning, and TextCraft, a Minecraft-based text game), both open-source and proprietary LLMs improve in accuracy when predicting programs with ReGAL functions. For CodeLlama-13B, ReGAL results in absolute accuracy increases of 11.5% on graphics, 26.1% on date understanding, and 8.1% on TextCraft, outperforming GPT-3.5 in two of three domains. Our analysis reveals ReGAL's abstractions encapsulate frequently-used subroutines as well as environment dynamics.
LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling
Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
Orca: Progressive Learning from Complex Explanation Traces of GPT-4
Recent research has focused on enhancing the capability of smaller models through imitation learning, drawing on the outputs generated by large foundation models (LFMs). A number of issues impact the quality of these models, ranging from limited imitation signals from shallow LFM outputs; small scale homogeneous training data; and most notably a lack of rigorous evaluation resulting in overestimating the small model's capability as they tend to learn to imitate the style, but not the reasoning process of LFMs. To address these challenges, we develop Orca (We are working with our legal team to publicly release a diff of the model weights in accordance with LLaMA's release policy to be published at https://aka.ms/orca-lm), a 13-billion parameter model that learns to imitate the reasoning process of LFMs. Orca learns from rich signals from GPT-4 including explanation traces; step-by-step thought processes; and other complex instructions, guided by teacher assistance from ChatGPT. To promote this progressive learning, we tap into large-scale and diverse imitation data with judicious sampling and selection. Orca surpasses conventional state-of-the-art instruction-tuned models such as Vicuna-13B by more than 100% in complex zero-shot reasoning benchmarks like Big-Bench Hard (BBH) and 42% on AGIEval. Moreover, Orca reaches parity with ChatGPT on the BBH benchmark and shows competitive performance (4 pts gap with optimized system message) in professional and academic examinations like the SAT, LSAT, GRE, and GMAT, both in zero-shot settings without CoT; while trailing behind GPT-4. Our research indicates that learning from step-by-step explanations, whether these are generated by humans or more advanced AI models, is a promising direction to improve model capabilities and skills.
Progressive Learning without Forgetting
Learning from changing tasks and sequential experience without forgetting the obtained knowledge is a challenging problem for artificial neural networks. In this work, we focus on two challenging problems in the paradigm of Continual Learning (CL) without involving any old data: (i) the accumulation of catastrophic forgetting caused by the gradually fading knowledge space from which the model learns the previous knowledge; (ii) the uncontrolled tug-of-war dynamics to balance the stability and plasticity during the learning of new tasks. In order to tackle these problems, we present Progressive Learning without Forgetting (PLwF) and a credit assignment regime in the optimizer. PLwF densely introduces model functions from previous tasks to construct a knowledge space such that it contains the most reliable knowledge on each task and the distribution information of different tasks, while credit assignment controls the tug-of-war dynamics by removing gradient conflict through projection. Extensive ablative experiments demonstrate the effectiveness of PLwF and credit assignment. In comparison with other CL methods, we report notably better results even without relying on any raw data.
SMART: Self-learning Meta-strategy Agent for Reasoning Tasks
Tasks requiring deductive reasoning, especially those involving multiple steps, often demand adaptive strategies such as intermediate generation of rationales or programs, as no single approach is universally optimal. While Language Models (LMs) can enhance their outputs through iterative self-refinement and strategy adjustments, they frequently fail to apply the most effective strategy in their first attempt. This inefficiency raises the question: Can LMs learn to select the optimal strategy in the first attempt, without a need for refinement? To address this challenge, we introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to autonomously learn and select the most effective strategies for various reasoning tasks. We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement to allow the model to find the suitable strategy to solve a given task. Unlike traditional self-refinement methods that rely on multiple inference passes or external feedback, SMART allows an LM to internalize the outcomes of its own reasoning processes and adjust its strategy accordingly, aiming for correct solutions on the first attempt. Our experiments across various reasoning datasets and with different model architectures demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance (+15 points on the GSM8K dataset). By achieving higher accuracy with a single inference pass, SMART not only improves performance but also reduces computational costs for refinement-based strategies, paving the way for more efficient and intelligent reasoning in LMs.
An Exploration of Left-Corner Transformations
The left-corner transformation (Rosenkrantz and Lewis, 1970) is used to remove left recursion from context-free grammars, which is an important step towards making the grammar parsable top-down with simple techniques. This paper generalizes prior left-corner transformations to support semiring-weighted production rules and to provide finer-grained control over which left corners may be moved. Our generalized left-corner transformation (GLCT) arose from unifying the left-corner transformation and speculation transformation (Eisner and Blatz, 2007), originally for logic programming. Our new transformation and speculation define equivalent weighted languages. Yet, their derivation trees are structurally different in an important way: GLCT replaces left recursion with right recursion, and speculation does not. We also provide several technical results regarding the formal relationships between the outputs of GLCT, speculation, and the original grammar. Lastly, we empirically investigate the efficiency of GLCT for left-recursion elimination from grammars of nine languages.
Use Property-Based Testing to Bridge LLM Code Generation and Validation
Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.
Get an A in Math: Progressive Rectification Prompting
Chain-of-Thought (CoT) prompting methods have enabled large language models (LLMs) to generate reasoning paths and solve math word problems (MWPs). However, they are sensitive to mistakes in the paths, as any mistake can result in an incorrect answer. We propose a novel method named Progressive Rectification Prompting (PRP) to improve average accuracy on eight MWP datasets from 77.3 to 90.5. Given an initial answer from CoT, PRP iterates a verify-then-rectify process to progressively identify incorrect answers and rectify the reasoning paths. With the most likely correct answer, the LLM predicts a masked numerical value in the question; if the prediction does not match the masked value, the answer is likely incorrect. Then the LLM is prompted to re-generate the reasoning path hinted with a set of incorrect answers to prevent itself from repeating previous mistakes. PRP achieves the best performance compared against the CoT methods. Our implementation is made publicly available at https://wzy6642.github.io/prp.github.io/.
Iterative Experience Refinement of Software-Developing Agents
Autonomous agents powered by large language models (LLMs) show significant potential for achieving high autonomy in various scenarios such as software development. Recent research has shown that LLM agents can leverage past experiences to reduce errors and enhance efficiency. However, the static experience paradigm, reliant on a fixed collection of past experiences acquired heuristically, lacks iterative refinement and thus hampers agents' adaptability. In this paper, we introduce the Iterative Experience Refinement framework, enabling LLM agents to refine experiences iteratively during task execution. We propose two fundamental patterns: the successive pattern, refining based on nearest experiences within a task batch, and the cumulative pattern, acquiring experiences across all previous task batches. Augmented with our heuristic experience elimination, the method prioritizes high-quality and frequently-used experiences, effectively managing the experience space and enhancing efficiency. Extensive experiments show that while the successive pattern may yield superior results, the cumulative pattern provides more stable performance. Moreover, experience elimination facilitates achieving better performance using just 11.54% of a high-quality subset.
Training LLMs to Better Self-Debug and Explain Code
In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose a training framework that significantly improves self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92% and pass@10 by 9.30% over four benchmarks. RL training brings additional up to 3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained LLMs show iterative refinement ability, and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.
RNR: Teaching Large Language Models to Follow Roles and Rules
Instruction fine-tuning (IFT) elicits instruction following capabilities and steers the behavior of large language models (LLMs) via supervised learning. However, existing models trained on open-source IFT datasets only have the ability to follow instructions from users, and often fail to follow complex role and rules specified by developers, a.k.a. system prompts. The ability to follow these roles and rules is essential for deployment, as it ensures that the model safely interacts with users within developer defined guidelines. To improve such role and rule following ability, we propose \model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions, along with corresponding responses. This data can then be used to train models that follow complex system prompts. The models are evaluated on our newly created benchmarks for role and rule following ability, as well as standard instruction-following benchmarks and general NLP tasks. Our framework significantly improves role and rule following capability in LLMs, as evidenced by over 25% increase in pass-rate on rule adherence, i.e. following all requirements, in our experiments with the Alpaca and Ultrachat datasets. Moreover, our models achieves this increase without any regression on popular instruction following benchmarks.
UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback
Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs. Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model. In this paper, we explore the use of automated feedback (compilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset using an original model, applying automated tools to aggressively filter, score, and de-duplicate the data into a refined higher quality dataset. The original LLM is improved by finetuning on this refined dataset. We applied our approach to several open-source LLMs and compared the resulting performance to baseline models with both automated metrics and human preferences. Our evaluation shows the resulting models outperform all other downloadable baselines and approach the performance of larger proprietary models.
AlphaMath Almost Zero: process Supervision without process
Recent advancements in large language models (LLMs) have substantially enhanced their mathematical reasoning abilities. However, these models still struggle with complex problems that require multiple reasoning steps, frequently leading to logical or numerical errors. While numerical mistakes can be largely addressed by integrating a code interpreter, identifying logical errors within intermediate steps is more challenging. Moreover, manually annotating these steps for training is not only expensive but also labor-intensive, requiring the expertise of professional annotators. In our study, we introduce an innovative approach that bypasses the need for process annotations (from human or GPTs) by utilizing the Monte Carlo Tree Search (MCTS) framework. This technique automatically generates both the process supervision and the step-level evaluation signals. Our method iteratively trains the policy and value models, leveraging the capabilities of a well-pretrained LLM to progressively enhance its mathematical reasoning skills. Furthermore, we propose an efficient inference strategy-step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria
By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.
On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
Pre^3: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre^3 that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre^3 enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre^3 introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre^3 can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon Sequential Task Planning
Motivated by the substantial achievements observed in Large Language Models (LLMs) in the field of natural language processing, recent research has commenced investigations into the application of LLMs for complex, long-horizon sequential task planning challenges in robotics. LLMs are advantageous in offering the potential to enhance the generalizability as task-agnostic planners and facilitate flexible interaction between human instructors and planning systems. However, task plans generated by LLMs often lack feasibility and correctness. To address this challenge, we introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process. The framework operates through three sequential steps: preprocessing, planning, and iterative self-refinement. During preprocessing, an LLM translator is employed to convert natural language input into a Planning Domain Definition Language (PDDL) formulation. In the planning phase, an LLM planner formulates an initial plan, which is then assessed and refined in the iterative self-refinement step by using a validator. We examine the performance of ISR-LLM across three distinct planning domains. The results show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners. Moreover, it also preserves the broad applicability and generalizability of working with natural language instructions.
Prompt Alchemy: Automatic Prompt Refinement for Enhancing Code Generation
Code generation has emerged as a key task to automate software development by converting high-level descriptions into executable code. Large language models (LLMs) excel at this but depend heavily on input prompt quality.Manual prompt engineering can be time-consuming and inconsistent, limiting LLM effectiveness. This paper introduces Prochemy, an innovative method for automatically refining prompts to boost code generation. Prochemy overcomes manual prompt limitations by automating optimization, ensuring consistency during inference, and supporting multi-agent systems.It iteratively refines prompts based on model performance, using an optimized final prompt for improved consistency across tasks. We tested Prochemy on natural language-based code generation and translation tasks using three LLM series. Results indicate Prochemy enhances existing methods, improving performance by 5.0% for GPT-3.5-Turbo and 1.9% for GPT-4o over zero-shot baselines on HumanEval. In state-of-the-art LDB, Prochemy + LDB surpasses standalone methods by 1.2-1.8%. For code translation, Prochemy boosts GPT-4o's Java-to-Python (AVATAR) performance from 74.5 to 84.1 (+12.9%) and Python-to-Java from 66.8 to 78.2 (+17.1%). Moreover, Prochemy maintains strong performance when integrated with the o1-mini model, validating its efficacy in code tasks. Designed as plug-and-play, Prochemy optimizes prompts with minimal human input, bridging the gap between simple prompts and complex frameworks.
APP: Anytime Progressive Pruning
With the latest advances in deep learning, there has been a lot of focus on the online learning paradigm due to its relevance in practical settings. Although many methods have been investigated for optimal learning settings in scenarios where the data stream is continuous over time, sparse networks training in such settings have often been overlooked. In this paper, we explore the problem of training a neural network with a target sparsity in a particular case of online learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way of progressive pruning, referred to as Anytime Progressive Pruning (APP); the proposed approach significantly outperforms the baseline dense and Anytime OSP models across multiple architectures and datasets under short, moderate, and long-sequence training. Our method, for example, shows an improvement in accuracy of approx 7% and a reduction in the generalization gap by approx 22%, while being approx 1/3 rd the size of the dense baseline model in few-shot restricted imagenet training. We further observe interesting nonmonotonic transitions in the generalization gap in the high number of megabatches-based ALMA. The code and experiment dashboards can be accessed at https://github.com/landskape-ai/Progressive-Pruning and https://wandb.ai/landskape/APP, respectively.
CPGD: Toward Stable Rule-based Reinforcement Learning for Language Models
Recent advances in rule-based reinforcement learning (RL) have significantly improved the reasoning capability of language models (LMs) with rule-based rewards. However, existing RL methods -- such as GRPO, REINFORCE++, and RLOO -- often suffer from training instability, where large policy updates and improper clipping can lead to training collapse. To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algorithm designed to stabilize policy learning in LMs. CPGD introduces a policy drift constraint based on KL divergence to dynamically regularize policy updates, and leverages a clip mechanism on the logarithm of the ratio to prevent excessive policy updates. We provide theoretical justification for CPGD and demonstrate through empirical analysis that it mitigates the instability observed in prior approaches. Furthermore, we show that CPGD significantly improves performance while maintaining training stability. Our implementation balances theoretical rigor with practical usability, offering a robust alternative for RL in the post-training of LMs. We release our code at https://github.com/ModalMinds/MM-EUREKA.
DesignLab: Designing Slides Through Iterative Detection and Correction
Designing high-quality presentation slides can be challenging for non-experts due to the complexity involved in navigating various design choices. Numerous automated tools can suggest layouts and color schemes, yet often lack the ability to refine their own output, which is a key aspect in real-world workflows. We propose DesignLab, which separates the design process into two roles, the design reviewer, who identifies design-related issues, and the design contributor who corrects them. This decomposition enables an iterative loop where the reviewer continuously detects issues and the contributor corrects them, allowing a draft to be further polished with each iteration, reaching qualities that were unattainable. We fine-tune large language models for these roles and simulate intermediate drafts by introducing controlled perturbations, enabling the design reviewer learn design errors and the contributor learn how to fix them. Our experiments show that DesignLab outperforms existing design-generation methods, including a commercial tool, by embracing the iterative nature of designing which can result in polished, professional slides.
LEMMA: Learning from Errors for MatheMatical Advancement in LLMs
Large language models (LLMs) have demonstrated remarkable reasoning capability in solving mathematical problems. However, existing approaches primarily focus on improving the quality of correct training data, e.g., distilling high-quality correct solutions from advanced models, neglecting the value contained in error data, potentially hindering the model's reflective ability. Though some studies attempt to leverage error data, they often involve complex mechanisms, such as Monte Carlo Tree Search (MCTS) to explore error nodes. In this work, we propose to enhance LLMs' reasoning ability by Learning from Errors for Mathematical Advancement (LEMMA). LEMMA constructs data consisting of an incorrect solution with an erroneous step and a reflection connection to a correct solution for fine-tuning. Specifically, we systematically analyze the model-generated error types and introduce an error-type grounded mistake augmentation method to collect diverse and representative errors. Correct solutions are either from fixing the errors or generating a fresh start. Through a model-aware smooth reflection connection, the erroneous solution is transferred to the correct one. By fine-tuning on the constructed dataset, the model is able to self-correct errors autonomously within the generation process without relying on external critique models. Experimental results demonstrate that LEMMA achieves significant performance improvements over other strong baselines.
The Hitchhiker's Guide to Program Analysis, Part II: Deep Thoughts by LLMs
Static analysis is a cornerstone for software vulnerability detection, yet it often struggles with the classic precision-scalability trade-off. In practice, such tools often produce high false positive rates, particularly in large codebases like the Linux kernel. This imprecision can arise from simplified vulnerability modeling and over-approximation of path and data constraints. While large language models (LLMs) show promise in code understanding, their naive application to program analysis yields unreliable results due to inherent reasoning limitations. We introduce BugLens, a post-refinement framework that significantly improves static analysis precision. BugLens guides an LLM to follow traditional analysis steps by assessing buggy code patterns for security impact and validating the constraints associated with static warnings. Evaluated on real-world Linux kernel bugs, BugLens raises precision from 0.10 (raw) and 0.50 (semi-automated refinement) to 0.72, substantially reducing false positives and revealing four previously unreported vulnerabilities. Our results suggest that a structured LLM-based workflow can meaningfully enhance the effectiveness of static analysis tools.
When Does Confidence-Based Cascade Deferral Suffice?
Cascades are a classical strategy to enable inference cost to vary adaptively across samples, wherein a sequence of classifiers are invoked in turn. A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction. One simple deferral rule employs the confidence of the current classifier, e.g., based on the maximum predicted softmax probability. Despite being oblivious to the structure of the cascade -- e.g., not modelling the errors of downstream models -- such confidence-based deferral often works remarkably well in practice. In this paper, we seek to better understand the conditions under which confidence-based deferral may fail, and when alternate deferral strategies can perform better. We first present a theoretical characterisation of the optimal deferral rule, which precisely characterises settings under which confidence-based deferral may suffer. We then study post-hoc deferral mechanisms, and demonstrate they can significantly improve upon confidence-based deferral in settings where (i) downstream models are specialists that only work well on a subset of inputs, (ii) samples are subject to label noise, and (iii) there is distribution shift between the train and test set.
One-Nearest-Neighbor Search is All You Need for Minimax Optimal Regression and Classification
Recently, Qiao, Duan, and Cheng~(2019) proposed a distributed nearest-neighbor classification method, in which a massive dataset is split into smaller groups, each processed with a k-nearest-neighbor classifier, and the final class label is predicted by a majority vote among these groupwise class labels. This paper shows that the distributed algorithm with k=1 over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor under some regularity conditions, for both regression and classification problems. Roughly speaking, distributed 1-nearest-neighbor rules with M groups has a performance comparable to standard Theta(M)-nearest-neighbor rules. In the analysis, alternative rules with a refined aggregation method are proposed and shown to attain exact minimax optimal rates.
Generalized Disparate Impact for Configurable Fairness Solutions in ML
We make two contributions in the field of AI fairness over continuous protected attributes. First, we show that the Hirschfeld-Gebelein-Renyi (HGR) indicator (the only one currently available for such a case) is valuable but subject to a few crucial limitations regarding semantics, interpretability, and robustness. Second, we introduce a family of indicators that are: 1) complementary to HGR in terms of semantics; 2) fully interpretable and transparent; 3) robust over finite samples; 4) configurable to suit specific applications. Our approach also allows us to define fine-grained constraints to permit certain types of dependence and forbid others selectively. By expanding the available options for continuous protected attributes, our approach represents a significant contribution to the area of fair artificial intelligence.
Leanabell-Prover: Posttraining Scaling in Formal Reasoning
Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages.To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
Iterative Self-Training for Code Generation via Reinforced Re-Ranking
Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.
AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
Recent advancements in Large Language Models (LLMs) have led to the development of intelligent LLM-based agents capable of interacting with graphical user interfaces (GUIs). These agents demonstrate strong reasoning and adaptability, enabling them to perform complex tasks that traditionally required predefined rules. However, the reliance on step-by-step reasoning in LLM-based agents often results in inefficiencies, particularly for routine tasks. In contrast, traditional rule-based systems excel in efficiency but lack the intelligence and flexibility to adapt to novel scenarios. To address this challenge, we propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility. Our approach incorporates a memory mechanism that records the agent's task execution history. By analyzing this history, the agent identifies repetitive action sequences and evolves high-level actions that act as shortcuts, replacing these low-level operations and improving efficiency. This allows the agent to focus on tasks requiring more complex reasoning, while simplifying routine actions. Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy. The code will be open-sourced to support further research.
Reasoning-Table: Exploring Reinforcement Learning for Table Reasoning
Table reasoning, encompassing tasks such as table question answering, fact verification, and text-to-SQL, requires precise understanding of structured tabular data, coupled with numerical computation and code manipulation for effective inference. Supervised fine-tuning (SFT) approaches have achieved notable success but often struggle with generalization and robustness due to biases inherent in imitative learning. We introduce Reasoning-Table, the first application of reinforcement learning (RL) to table reasoning, achieving state-of-the-art performance. Through rigorous data preprocessing, reward design, and tailored training strategies, our method leverages simple rule-based outcome rewards to outperform SFT across multiple benchmarks. Unified training across diverse tasks enables Reasoning-Table to emerge as a robust table reasoning large language model, surpassing larger proprietary models like Claude-3.7-Sonnet by 4.0% on table reasoning benchmarks. The approach also achieves excellent performance on text-to-SQL tasks, reaching 68.3% performance on the BIRD dev dataset with a 7B model. Further experiments demonstrate that Reasoning-Table enhances the model's generalization capabilities and robustness.
Process-Supervised Reinforcement Learning for Code Generation
Existing reinforcement learning strategies based on outcome supervision have proven effective in enhancing the performance of large language models(LLMs) for code generation. While reinforcement learning based on process supervision has shown great promise in handling multi-step reasoning tasks, its effectiveness in code generation remains largely underexplored and underjustified. The primary obstacle stems from the resource-intensive nature of constructing high-quality process-supervised data, which demands substantial human expertise and computational resources. In response to this challenge, we propose a "statement mutation/refactoring-compile and execution verification" strategy: mutating and refactoring code line-by-line through a teacher model, and utilizing compiler execution results to automatically label each line, resulting in line-by-line process-supervised data, which is pivotal for training a process-supervised reward model. The trained reward model is then integrated into the PRLCoder framework, followed by experimental validation on several benchmarks. Experimental results demonstrate that process-supervised reinforcement learning significantly surpasses methods relying solely on outcome supervision. Notably, in tackling complex code generation tasks, process-supervised reinforcement learning shows a clear advantage, ensuring both the integrity of the code generation process and the correctness of the generation results.
ToolACE-R: Tool Learning with Adaptive Self-Refinement
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, current approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations. Our approach features a model-aware iterative training procedure that progressively incorporates more training samples based on the model's evolving capabilities. Additionally, it allows LLMs to iteratively refine their tool calls, optimizing performance without requiring external feedback. To further enhance computational efficiency, we integrate an adaptive mechanism when scaling the inference time, enabling the model to autonomously determine when to stop the refinement process. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models, even without any refinement. Furthermore, its performance can be further improved efficiently through adaptive self-refinement. Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes, offering a promising direction for more efficient tool learning.
CYCLE: Learning to Self-Refine the Code Generation
Pre-trained code language models have achieved promising performance in code generation and improved the programming efficiency of human developers. However, their self-refinement capability is typically overlooked by the existing evaluations of code LMs, which focus only on the accuracy of the one-time prediction. For the cases when code LMs fail to implement the correct program, developers actually find it hard to debug and fix the faulty prediction since it is not written by the developers themselves. Unfortunately, our study reveals that code LMs cannot efficiently self-refine their faulty generations as well. In this paper, we propose CYCLE framework, learning to self-refine the faulty generation according to the available feedback, such as the execution results reported by the test suites. We evaluate CYCLE on three popular code generation benchmarks, HumanEval, MBPP, and APPS. The results reveal that CYCLE successfully maintains, sometimes improves, the quality of one-time code generation, while significantly improving the self-refinement capability of code LMs. We implement four variants of CYCLE with varied numbers of parameters across 350M, 1B, 2B, and 3B, and the experiments show that CYCLE consistently boosts the code generation performance, by up to 63.5%, across benchmarks and varied model sizes. We also notice that CYCLE outperforms code LMs that have 3times more parameters in self-refinement.
Training Language Models on Synthetic Edit Sequences Improves Code Synthesis
Software engineers mainly write code by editing existing programs. In contrast, large language models (LLMs) autoregressively synthesize programs in a single pass. One explanation for this is the scarcity of open-sourced edit data. While high-quality instruction data for code synthesis is already scarce, high-quality edit data is even scarcer. To fill this gap, we develop a synthetic data generation algorithm called LintSeq. This algorithm refactors existing code into a sequence of code edits by using a linter to procedurally sample across the error-free insertions that can be used to sequentially write programs. It outputs edit sequences as text strings consisting of consecutive program diffs. To test LintSeq, we use it to refactor a dataset of instruction + program pairs into instruction + program-diff-sequence tuples. Then, we instruction finetune a series of smaller LLMs ranging from 2.6B to 14B parameters on both the re-factored and original versions of this dataset, comparing zero-shot performance on code synthesis benchmarks. We show that during repeated sampling, edit sequence finetuned models produce more diverse programs than baselines. This results in better inference-time scaling for benchmark coverage as a function of samples, i.e. the fraction of problems "pass@k" solved by any attempt given "k" tries. For example, on HumanEval pass@50, small LLMs finetuned on synthetic edit sequences are competitive with GPT-4 and outperform models finetuned on the baseline dataset by +20% (+/-3%) in absolute score. Finally, we also pretrain our own tiny LMs for code understanding. We show that finetuning tiny models on synthetic code edits results in state-of-the-art code synthesis for the on-device model class. Our 150M parameter edit sequence LM matches or outperforms code models with twice as many parameters, both with and without repeated sampling, including Codex and AlphaCode.
Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning
A promising approach for improving reasoning in large language models is to use process reward models (PRMs). PRMs provide feedback at each step of a multi-step reasoning trace, potentially improving credit assignment over outcome reward models (ORMs) that only provide feedback at the final step. However, collecting dense, per-step human labels is not scalable, and training PRMs from automatically-labeled data has thus far led to limited gains. To improve a base policy by running search against a PRM or using it as dense rewards for reinforcement learning (RL), we ask: "How should we design process rewards?". Our key insight is that, to be effective, the process reward for a step should measure progress: a change in the likelihood of producing a correct response in the future, before and after taking the step, corresponding to the notion of step-level advantages in RL. Crucially, this progress should be measured under a prover policy distinct from the base policy. We theoretically characterize the set of good provers and our results show that optimizing process rewards from such provers improves exploration during test-time search and online RL. In fact, our characterization shows that weak prover policies can substantially improve a stronger base policy, which we also observe empirically. We validate our claims by training process advantage verifiers (PAVs) to predict progress under such provers, and show that compared to ORMs, test-time search against PAVs is >8% more accurate, and 1.5-5times more compute-efficient. Online RL with dense rewards from PAVs enables one of the first results with 5-6times gain in sample efficiency, and >6% gain in accuracy, over ORMs.
Harnessing the Power of Large Language Models for Natural Language to First-Order Logic Translation
Translating natural language sentences to first-order logic (NL-FOL translation) is a longstanding challenge in the NLP and formal logic literature. This paper introduces LogicLLaMA, a LLaMA-7B model fine-tuned for NL-FOL translation using LoRA on a single GPU. LogicLLaMA is capable of directly translating natural language into FOL rules, which outperforms GPT-3.5. LogicLLaMA is also equipped to correct FOL rules predicted by GPT-3.5, and can achieve similar performance as GPT-4 with a fraction of the cost. This correction ability was achieved by a novel supervised fine-tuning (SFT) + reinforcement learning with human feedback (RLHF) framework, which initially trains on synthetically perturbed NL-FOL pairs to encourage chain-of-thought reasoning and then fine-tunes with RLHF on GPT-3.5 outputs using a FOL verifier as the reward model. To train LogicLLaMA, we present MALLS (large language Model generAted NL-FOL pairS), a dataset of 34K high-quality and diverse sentence-level NL-FOL pairs collected from GPT-4. The dataset was created by implementing a pipeline that prompts GPT-4 for pairs, and dynamically adjusts the prompts to ensure the collection of pairs with rich and diverse contexts at different levels of complexity, and verifies the validity of the generated FOL rules. Codes, weights, and data are available at https://github.com/gblackout/LogicLLaMA{{small https://github.com/gblackout/LogicLLaMA}}.
RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.
RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
LLM-Augmented Symbolic Reinforcement Learning with Landmark-Based Task Decomposition
One of the fundamental challenges in reinforcement learning (RL) is to take a complex task and be able to decompose it to subtasks that are simpler for the RL agent to learn. In this paper, we report on our work that would identify subtasks by using some given positive and negative trajectories for solving the complex task. We assume that the states are represented by first-order predicate logic using which we devise a novel algorithm to identify the subtasks. Then we employ a Large Language Model (LLM) to generate first-order logic rule templates for achieving each subtask. Such rules were then further fined tuned to a rule-based policy via an Inductive Logic Programming (ILP)-based RL agent. Through experiments, we verify the accuracy of our algorithm in detecting subtasks which successfully detect all of the subtasks correctly. We also investigated the quality of the common-sense rules produced by the language model to achieve the subtasks. Our experiments show that our LLM-guided rule template generation can produce rules that are necessary for solving a subtask, which leads to solving complex tasks with fewer assumptions about predefined first-order logic predicates of the environment.
RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios
This paper introduces RuleArena, a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning. Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions that demand long-context understanding, logical reasoning, and accurate mathematical computation. Two key attributes distinguish RuleArena from traditional rule-based reasoning benchmarks: (1) it extends beyond standard first-order logic representations, and (2) it is grounded in authentic, practical scenarios, providing insights into the suitability and reliability of LLMs for real-world applications. Our findings reveal several notable limitations in LLMs: (1) they struggle to identify and apply the appropriate rules, frequently becoming confused by similar but distinct regulations, (2) they cannot consistently perform accurate mathematical computations, even when they correctly identify the relevant rules, and (3) in general, they perform poorly in the benchmark. These results highlight significant challenges in advancing LLMs' rule-guided reasoning capabilities in real-life applications.
Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions into long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
Legal Rule Induction: Towards Generalizable Principle Discovery from Analogous Judicial Precedents
Legal rules encompass not only codified statutes but also implicit adjudicatory principles derived from precedents that contain discretionary norms, social morality, and policy. While computational legal research has advanced in applying established rules to cases, inducing legal rules from judicial decisions remains understudied, constrained by limitations in model inference efficacy and symbolic reasoning capability. The advent of Large Language Models (LLMs) offers unprecedented opportunities for automating the extraction of such latent principles, yet progress is stymied by the absence of formal task definitions, benchmark datasets, and methodologies. To address this gap, we formalize Legal Rule Induction (LRI) as the task of deriving concise, generalizable doctrinal rules from sets of analogous precedents, distilling their shared preconditions, normative behaviors, and legal consequences. We introduce the first LRI benchmark, comprising 5,121 case sets (38,088 Chinese cases in total) for model tuning and 216 expert-annotated gold test sets. Experimental results reveal that: 1) State-of-the-art LLMs struggle with over-generalization and hallucination; 2) Training on our dataset markedly enhances LLMs capabilities in capturing nuanced rule patterns across similar cases.
FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
AlphaOne: Reasoning Models Thinking Slow and Fast at Test Time
This paper presents AlphaOne (alpha1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. alpha1 first introduces alpha moment, which represents the scaled thinking phase with a universal parameter alpha. Within this scaled pre-alpha moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the alpha moment, alpha1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate alpha1's superior reasoning capability and efficiency. Project page: https://alphaone-project.github.io/
Patched RTC: evaluating LLMs for diverse software development tasks
This paper introduces Patched Round-Trip Correctness (Patched RTC), a novel evaluation technique for Large Language Models (LLMs) applied to diverse software development tasks, particularly focusing on "outer loop" activities such as bug fixing, code review, and documentation updates. Patched RTC extends the original Round-Trip Correctness method to work with any LLM and downstream task, offering a self-evaluating framework that measures consistency and robustness of model responses without human intervention. The study demonstrates a correlation between Patched RTC scores and task-specific accuracy metrics, presenting it as an alternative to the LLM-as-Judge paradigm for open-domain task evaluation. We implement Patched RTC in an open-source framework called patchwork, allowing for transparent evaluation during inference across various patchflows. Experiments comparing GPT-3.5 and GPT-4 models across different software development tasks reveal that Patched RTC effectively distinguishes model performance and task difficulty. The paper also explores the impact of consistency prompts on improving model accuracy, suggesting that Patched RTC can guide prompt refinement and model selection for complex software development workflows.
Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models
The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT) using demonstrations generated from robust Large Language Models (LLMs). Although these approaches deliver more performant models, they do not show sufficiently strong generalization ability as the training only relies on the provided demonstrations. In this paper, we propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities. Our approach is based on a two-stage process, where reasoning abilities are first transferred between LLMs and Small Language Models (SLMs) via Instruction-tuning on demonstrations provided by LLMs, and then the instructed models Self-refine their abilities through preference optimization strategies. In particular, the second phase operates refinement heuristics based on the Direct Preference Optimization algorithm, where the SLMs are elicited to deliver a series of reasoning paths by automatically sampling the generated responses and providing rewards using ground truths from the LLMs. Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios, aligning the reasoning abilities of Smaller and Larger Language Models.
On the Limit of Language Models as Planning Formalizers
Large Language Models have been shown to fail to create executable and verifiable plans in grounded environments. An emerging line of work shows success in using LLM as a formalizer to generate a formal representation (e.g., PDDL) of the planning domain, which can be deterministically solved to find a plan. We systematically evaluate this methodology while bridging some major gaps. While previous work only generates a partial PDDL representation given templated and thus unrealistic environment descriptions, we generate the complete representation given descriptions of various naturalness levels. Among an array of observations critical to improve LLMs' formal planning ability, we note that large enough models can effectively formalize descriptions as PDDL, outperforming those directly generating plans, while being robust to lexical perturbation. As the descriptions become more natural-sounding, we observe a decrease in performance and provide detailed error analysis.
Unprocessing Seven Years of Algorithmic Fairness
Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation.
FairAutoML: Embracing Unfairness Mitigation in AutoML
In this work, we propose an Automated Machine Learning (AutoML) system to search for models not only with good prediction accuracy but also fair. We first investigate the necessity and impact of unfairness mitigation in the AutoML context. We establish the FairAutoML framework. The framework provides a novel design based on pragmatic abstractions, which makes it convenient to incorporate existing fairness definitions, unfairness mitigation techniques, and hyperparameter search methods into the model search and evaluation process. Following this framework, we develop a fair AutoML system based on an existing AutoML system. The augmented system includes a resource allocation strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness, and resource consumption on the fly. Extensive empirical evaluation shows that our system can achieve a good `fair accuracy' and high resource efficiency.
Teaching LLMs to Refine with Tools
Large language models (LLMs) can refine their responses based on feedback, enabling self-improvement through iterative training or test-time refinement. However, existing methods predominantly focus on refinement within the same reasoning format, which may lead to non-correcting behaviors. We propose CaP, a novel approach that uses external tools to refine chain-of-thought (CoT) responses generated by the same or other LLMs. CaP employs a two-stage training process: supervised fine-tuning followed by preference optimization with DPO variants. Our observations highlight the critical role of preference optimization in enabling effective refinement. Additionally, we compare several sampling strategies to leverage CoT and tools at inference time. Experimental results demonstrate CaP's potential for effective cross-reasoning refinement and efficient inference.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness, generating erroneous outputs when addressing queries beyond their knowledge boundaries. While existing approaches mitigate hallucinations via uncertainty estimation or query rejection, they suffer from computational inefficiency or sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate use of high-confidence outputs. For uncertain predictions, a slow refinement model conducts targeted reasoning to improve accuracy. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. Our work establishes a scalable paradigm for advancing LLM reliability and balancing accuracy and practical utility in error-sensitive applications.
DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing
Analyzing unstructured data, such as complex documents, has been a persistent challenge in data processing. Large Language Models (LLMs) have shown promise in this regard, leading to recent proposals for declarative frameworks for LLM-powered unstructured data processing. However, these frameworks focus on reducing cost when executing user-specified operations using LLMs, rather than improving accuracy, executing most operations as-is. This is problematic for complex tasks and data, where LLM outputs for user-defined operations are often inaccurate, even with optimized prompts. We present DocETL, a system that optimizes complex document processing pipelines, while accounting for LLM shortcomings. DocETL offers a declarative interface for users to define such pipelines and uses an agent-based framework to automatically optimize them, leveraging novel agent-based rewrites (that we call {\em rewrite directives}) and an optimization and evaluation framework that we introduce. We introduce {\em (i)} logical rewriting of pipelines, tailored for LLM-based tasks, {\em (ii)} an agent-guided plan evaluation mechanism that synthesizes and orchestrates task-specific validation prompts, and {\em (iii)} an optimization algorithm that efficiently finds promising plans, considering the time constraints of LLM-based plan generation and evaluation. Our evaluation on three different unstructured document analysis tasks demonstrates that DocETL finds plans with outputs that are 1.34 to 4.6times higher quality (e.g., more accurate, comprehensive) than well-engineered baselines, addressing a critical gap in existing declarative frameworks for unstructured data analysis. DocETL is open-source at docetl.org, and as of October 2024, has amassed over 800 GitHub Stars, with users spanning a variety of domains.
LegalReasoner: Step-wised Verification-Correction for Legal Judgment Reasoning
Legal judgment prediction (LJP) aims to function as a judge by making final rulings based on case claims and facts, which plays a vital role in the judicial domain for supporting court decision-making and improving judicial efficiency. However, existing methods often struggle with logical errors when conducting complex legal reasoning. We propose LegalReasoner, which enhances LJP reliability through step-wise verification and correction of the reasoning process. Specifically, it first identifies dispute points to decompose complex cases, and then conducts step-wise reasoning while employing a process verifier to validate each step's logic from correctness, progressiveness, and potential perspectives. When errors are detected, expert-designed attribution and resolution strategies are applied for correction. To fine-tune LegalReasoner, we release the LegalHK dataset, containing 58,130 Hong Kong court cases with detailed annotations of dispute points, step-by-step reasoning chains, and process verification labels. Experiments demonstrate that LegalReasoner significantly improves concordance with court decisions from 72.37 to 80.27 on LLAMA-3.1-70B. The data is available at https://huggingface.co/datasets/weijiezz/LegalHK.
RuleBert: Teaching Soft Rules to Pre-trained Language Models
While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.
Refactoring Programs Using Large Language Models with Few-Shot Examples
A less complex and more straightforward program is a crucial factor that enhances its maintainability and makes writing secure and bug-free programs easier. However, due to its heavy workload and the risks of breaking the working programs, programmers are reluctant to do code refactoring, and thus, it also causes the loss of potential learning experiences. To mitigate this, we demonstrate the application of using a large language model (LLM), GPT-3.5, to suggest less complex versions of the user-written Python program, aiming to encourage users to learn how to write better programs. We propose a method to leverage the prompting with few-shot examples of the LLM by selecting the best-suited code refactoring examples for each target programming problem based on the prior evaluation of prompting with the one-shot example. The quantitative evaluation shows that 95.68% of programs can be refactored by generating 10 candidates each, resulting in a 17.35% reduction in the average cyclomatic complexity and a 25.84% decrease in the average number of lines after filtering only generated programs that are semantically correct. Furthermore, the qualitative evaluation shows outstanding capability in code formatting, while unnecessary behaviors such as deleting or translating comments are also observed.
Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning
Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems. This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving. Our method first utilizes LLMs to translate a natural language problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference on the formulated problem. We also introduce a self-refinement module, which utilizes the symbolic solver's error messages to revise symbolic formalizations. We demonstrate Logic-LM's effectiveness on five logical reasoning datasets: ProofWriter, PrOntoQA, FOLIO, LogicalDeduction, and AR-LSAT. On average, Logic-LM achieves a significant performance boost of 39.2% over using LLM alone with standard prompting and 18.4% over LLM with chain-of-thought prompting. Our findings suggest that Logic-LM, by combining LLMs with symbolic logic, offers a promising avenue for faithful logical reasoning. Code and data are publicly available at https://github.com/teacherpeterpan/Logic-LLM.
Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning
Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
NaturalProver: Grounded Mathematical Proof Generation with Language Models
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.
FMC: Formalization of Natural Language Mathematical Competition Problems
Efficient and accurate autoformalization methods, which leverage large-scale datasets of extensive natural language mathematical problems to construct formal language datasets, are key to advancing formal mathematical reasoning. In this paper, we propose an autoformalization pipeline based on large language models with error feedback, achieving a fully automatic and training-free formalization approach. Using this pipeline, we curate an Olympiad-level dataset aligning natural language problems with Lean formalizations. The dataset comprises 3,922 mathematical problems in natural language and 9,787 in Lean, of which 64.46% were assessed as at least above-average quality, making it suitable as a benchmark for automated theorem provers. Additionally, we investigate the formalization and reasoning capabilities of various LLMs and empirically demonstrate that few-shot learning, error feedback, and increasing sampling numbers enhance the autoformalization process. Experiments of three automated theorem provers on the \dataset\ dataset also highlight its challenging nature and its value as a benchmark for formal reasoning tasks.
LexGPT 0.1: pre-trained GPT-J models with Pile of Law
This research aims to build generative language models specialized for the legal domain. The manuscript presents the development of LexGPT models based on GPT-J models and pre-trained with Pile of Law. The foundation model built in this manuscript is the initial step for the development of future applications in the legal domain, such as further training with reinforcement learning from human feedback. Another objective of this manuscript is to assist legal professionals in utilizing language models through the ``No Code'' approach. By fine-tuning models with specialized data and without modifying any source code, legal professionals can create custom language models for downstream tasks with minimum effort and technical knowledge. The downstream task in this manuscript is to turn a LexGPT model into a classifier, although the performance is notably lower than the state-of-the-art result. How to enhance downstream task performance without modifying the model or its source code is a research topic for future exploration.
Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has significant influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring sample effect. Hypothetical analysis show that SFT efficiency is limited by training data. Guided by our analysis, we propose Re-distillation, a technique that fine-tunes pretrain model through small-scale distillation from the RL-trained policy. Experiments on Knight & Knave and MATH datasets demonstrate re-distillation's surprising efficiency: re-distilled models match RL performance with far fewer samples and less computation. Empirical verification shows that sample effect is a good indicator of performance improvements. As a result, on K&K dataset, our re-distilled Qwen2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. On MATH, Qwen2.5-1.5B fine-tuned with re-distilled 500 samples matches its instruct-tuned variant without RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning
AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
SubgoalXL: Subgoal-based Expert Learning for Theorem Proving
Formal theorem proving, a field at the intersection of mathematics and computer science, has seen renewed interest with advancements in large language models (LLMs). This paper introduces SubgoalXL, a novel approach that synergizes subgoal-based proofs with expert learning to enhance LLMs' capabilities in formal theorem proving within the Isabelle environment. SubgoalXL addresses two critical challenges: the scarcity of specialized mathematics and theorem-proving data, and the need for improved multi-step reasoning abilities in LLMs. By optimizing data efficiency and employing subgoal-level supervision, SubgoalXL extracts richer information from limited human-generated proofs. The framework integrates subgoal-oriented proof strategies with an expert learning system, iteratively refining formal statement, proof, and subgoal generators. Leveraging the Isabelle environment's advantages in subgoal-based proofs, SubgoalXL achieves a new state-of-the-art performance of 56.1\% in Isabelle on the standard miniF2F dataset, marking an absolute improvement of 4.9\%. Notably, SubgoalXL successfully solves 41 AMC12, 9 AIME, and 3 IMO problems from miniF2F. These results underscore the effectiveness of maximizing limited data utility and employing targeted guidance for complex reasoning in formal theorem proving, contributing to the ongoing advancement of AI reasoning capabilities. The implementation is available at https://github.com/zhaoxlpku/SubgoalXL.
Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
Self-critic has become an important mechanism for enhancing the reasoning performance of LLMs. However, current approaches mainly involve basic prompts without further training, which tend to be over-simplified, leading to limited accuracy.Moreover, there is a lack of in-depth investigation of the relationship between LLM's ability to criticism and its task-solving performance.To address these issues, we propose Critic-CoT, a novel framework that pushes LLMs toward System-2-like critic capability, via step-wise CoT reasoning format and distant-supervision data construction, without the need for human annotation. Experiments on GSM8K and MATH show that via filtering out invalid solutions or iterative refinement, our enhanced model boosts task-solving performance, which demonstrates the effectiveness of our method. Further, we find that training on critique and refinement alone improves the generation. We hope our work could shed light on future research on improving the reasoning and critic ability of LLMs.
In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
REFACTOR: Learning to Extract Theorems from Proofs
Human mathematicians are often good at recognizing modular and reusable theorems that make complex mathematical results within reach. In this paper, we propose a novel method called theoREm-from-prooF extrACTOR (REFACTOR) for training neural networks to mimic this ability in formal mathematical theorem proving. We show on a set of unseen proofs, REFACTOR is able to extract 19.6% of the theorems that humans would use to write the proofs. When applying the model to the existing Metamath library, REFACTOR extracted 16 new theorems. With newly extracted theorems, we show that the existing proofs in the MetaMath database can be refactored. The new theorems are used very frequently after refactoring, with an average usage of 733.5 times, and help shorten the proof lengths. Lastly, we demonstrate that the prover trained on the new-theorem refactored dataset proves more test theorems and outperforms state-of-the-art baselines by frequently leveraging a diverse set of newly extracted theorems. Code can be found at https://github.com/jinpz/refactor.
Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose ReaRec, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints
Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.
BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.
Treasure Hunt: Real-time Targeting of the Long Tail using Training-Time Markers
One of the most profound challenges of modern machine learning is performing well on the long-tail of rare and underrepresented features. Large general-purpose models are trained for many tasks, but work best on high-frequency use cases. After training, it is hard to adapt a model to perform well on specific use cases underrepresented in the training corpus. Relying on prompt engineering or few-shot examples to maximize the output quality on a particular test case can be frustrating, as models can be highly sensitive to small changes, react in unpredicted ways or rely on a fixed system prompt for maintaining performance. In this work, we ask: "Can we optimize our training protocols to both improve controllability and performance on underrepresented use cases at inference time?" We revisit the divide between training and inference techniques to improve long-tail performance while providing users with a set of control levers the model is trained to be responsive to. We create a detailed taxonomy of data characteristics and task provenance to explicitly control generation attributes and implicitly condition generations at inference time. We fine-tune a base model to infer these markers automatically, which makes them optional at inference time. This principled and flexible approach yields pronounced improvements in performance, especially on examples from the long tail of the training distribution. While we observe an average lift of 5.7% win rates in open-ended generation quality with our markers, we see over 9.1% gains in underrepresented domains. We also observe relative lifts of up to 14.1% on underrepresented tasks like CodeRepair and absolute improvements of 35.3% on length instruction following evaluations.
Query Rewriting via Large Language Models
Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.
Self-Refine: Iterative Refinement with Self-Feedback
Like humans, large language models (LLMs) do not always generate the best output on their first try. Motivated by how humans refine their written text, we introduce Self-Refine, an approach for improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an initial output using an LLMs; then, the same LLMs provides feedback for its output and uses it to refine itself, iteratively. Self-Refine does not require any supervised training data, additional training, or reinforcement learning, and instead uses a single LLM as the generator, refiner, and feedback provider. We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs. Across all evaluated tasks, outputs generated with Self-Refine are preferred by humans and automatic metrics over those generated with the same LLM using conventional one-step generation, improving by ~20% absolute on average in task performance. Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
Don't Transform the Code, Code the Transforms: Towards Precise Code Rewriting using LLMs
Tools for rewriting, refactoring and optimizing code should be fast and correct. Large language models (LLMs), by their nature, possess neither of these qualities. Yet, there remains tremendous opportunity in using LLMs to improve code. We explore the use of LLMs not to transform code, but to code transforms. We propose a chain-of-thought approach to synthesizing code transformations from a small number of input/output code examples that incorporates execution and feedback. Unlike the direct rewrite approach, LLM-generated transformations are easy to inspect, debug, and validate. The logic of the rewrite is explicitly coded and easy to adapt. The compute required to run code transformations is minute compared to that of LLM rewriting. We test our approach on 16 Python code transformations and find that LLM- generated transforms are perfectly precise for 7 of them and less imprecise than direct LLM rewriting on the others. We hope to encourage further research to improving the precision of LLM code rewriting.
Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks. However, most LLM-based agents are designed as specific task solvers with sophisticated prompt engineering, rather than agents capable of learning and evolving through interactions. These task solvers necessitate manually crafted prompts to inform task rules and regulate LLM behaviors, inherently incapacitating to address complex dynamic scenarios e.g., large interactive games. In light of this, we propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization that can learn a wealth of expertise from interactive experiences and progressively elevate its behavioral policy. Specifically, it involves a dynamic belief generation and reflection process for policy evolution. Rather than action-level reflection, Agent-Pro iteratively reflects on past trajectories and beliefs, fine-tuning its irrational beliefs for a better policy. Moreover, a depth-first search is employed for policy optimization, ensuring continual enhancement in policy payoffs. Agent-Pro is evaluated across two games: Blackjack and Texas Hold'em, outperforming vanilla LLM and specialized models. Our results show Agent-Pro can learn and evolve in complex and dynamic scenes, which also benefits numerous LLM-based applications.
AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence
Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges
As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.
Generalized Planning for the Abstraction and Reasoning Corpus
The Abstraction and Reasoning Corpus (ARC) is a general artificial intelligence benchmark that poses difficulties for pure machine learning methods due to its requirement for fluid intelligence with a focus on reasoning and abstraction. In this work, we introduce an ARC solver, Generalized Planning for Abstract Reasoning (GPAR). It casts an ARC problem as a generalized planning (GP) problem, where a solution is formalized as a planning program with pointers. We express each ARC problem using the standard Planning Domain Definition Language (PDDL) coupled with external functions representing object-centric abstractions. We show how to scale up GP solvers via domain knowledge specific to ARC in the form of restrictions over the actions model, predicates, arguments and valid structure of planning programs. Our experiments demonstrate that GPAR outperforms the state-of-the-art solvers on the object-centric tasks of the ARC, showing the effectiveness of GP and the expressiveness of PDDL to model ARC problems. The challenges provided by the ARC benchmark motivate research to advance existing GP solvers and understand new relations with other planning computational models. Code is available at github.com/you68681/GPAR.
R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a 8.4% improvement on the VL Reward-Bench and a 14.3% improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined set of weights that carve out a trajectory within the weight space of a pre-trained model, enhancing task performance when traversed. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
Long Is More for Alignment: A Simple but Tough-to-Beat Baseline for Instruction Fine-Tuning
There is a consensus that instruction fine-tuning of LLMs requires high-quality data, but what are they? LIMA (NeurIPS 2023) and AlpaGasus (ICLR 2024) are state-of-the-art methods for selecting such high-quality examples, either via manual curation or using GPT-3.5-Turbo as a quality scorer. We show that the extremely simple baseline of selecting the 1,000 instructions with longest responses from standard datasets can consistently outperform these sophisticated methods according to GPT-4 and PaLM-2 as judges, while remaining competitive on the OpenLLM benchmarks that test factual knowledge. We demonstrate this for several state-of-the-art LLMs (Llama-2-7B, Llama-2-13B, and Mistral-7B) and datasets (Alpaca-52k and Evol-Instruct-70k). In addition, a lightweight refinement of such long instructions can further improve the abilities of the fine-tuned LLMs, and allows us to obtain the 2nd highest-ranked Llama-2-7B-based model on AlpacaEval 2.0 while training on only 1,000 examples and no extra preference data. We also conduct a thorough analysis of our models to ensure that their enhanced performance is not simply due to GPT-4's preference for longer responses, thus ruling out any artificial improvement. In conclusion, our findings suggest that fine-tuning on the longest instructions should be the default baseline for any research on instruction fine-tuning.
IDEA:Enhancing the Rule Learning Ability of Language Agents through Induction, Deduction, and Abduction
While large language models (LLMs) have been thoroughly evaluated for deductive and inductive reasoning, their proficiency in abductive reasoning and holistic rule learning in interactive environments remains less explored. This work introduces RULEARN, a novel benchmark specifically designed to assess the rule-learning ability of LLMs in interactive settings. In RULEARN, agents interact with the environment to gather observations and discern patterns, using these insights to solve problems. To further enhance the rule-learning capabilities of LLM agents within this benchmark, we propose IDEA agent, which integrates Induction, Deduction, and Abduction processes. IDEA agent refines this approach by leveraging a structured reasoning sequence: generating hypotheses through abduction, testing them via deduction, and refining them based on feedback from induction. This sequence enables agents to dynamically establish and apply rules, mimicking human-like reasoning processes. Our evaluation of five representative LLMs indicates that while these models can generate plausible initial hypotheses, they often struggle with strategic interaction within the environment, effective incorporation of feedback, and adaptive refinement of their hypotheses. IDEA agent demonstrates significantly improved performance on the RULEARN benchmark, offering valuable insights for the development of agents capable of human-like rule-learning in real-world scenarios. We will release our code and data.
GPTutor: an open-source AI pair programming tool alternative to Copilot
This paper presents the latest progress of GPTutor: a ChatGPT-powered programming tool extension in Visual Studio Code. The emergence of Large Language Models (LLMs) has improved software development efficiency, but their performance can be hindered by training data limitations and prompt design issues. Existing LLM development tools often operate as black boxes, with users unable to view the prompts used and unable to improve performance by correcting prompts when errors occur. To address the aforementioned issues, GPTutor was introduced as an open-source AI pair programming tool, offering an alternative to Copilot. GPTutor empowers users to customize prompts for various programming languages and scenarios, with support for 120+ human languages and 50+ programming languages. Users can fine-tune prompts to correct the errors from LLM for precision and efficient code generation. At the end of the paper, we underscore GPTutor's potential through examples, including demonstrating its proficiency in interpreting and generating Sui-Move, a newly introduced smart contract language, using prompt engineering.
Backprop as Functor: A compositional perspective on supervised learning
A supervised learning algorithm searches over a set of functions A to B parametrised by a space P to find the best approximation to some ideal function fcolon A to B. It does this by taking examples (a,f(a)) in Atimes B, and updating the parameter according to some rule. We define a category where these update rules may be composed, and show that gradient descent---with respect to a fixed step size and an error function satisfying a certain property---defines a monoidal functor from a category of parametrised functions to this category of update rules. This provides a structural perspective on backpropagation, as well as a broad generalisation of neural networks.
Towards LLM-based optimization compilers. Can LLMs learn how to apply a single peephole optimization? Reasoning is all LLMs need!
Large Language Models (LLMs) have demonstrated great potential in various language processing tasks, and recent studies have explored their application in compiler optimizations. However, all these studies focus on the conventional open-source LLMs, such as Llama2, which lack enhanced reasoning mechanisms. In this study, we investigate the errors produced by the fine-tuned 7B-parameter Llama2 model as it attempts to learn and apply a simple peephole optimization for the AArch64 assembly code. We provide an analysis of the errors produced by the LLM and compare it with state-of-the-art OpenAI models which implement advanced reasoning logic, including GPT-4o and GPT-o1 (preview). We demonstrate that OpenAI GPT-o1, despite not being fine-tuned, outperforms the fine-tuned Llama2 and GPT-4o. Our findings indicate that this advantage is largely due to the chain-of-thought reasoning implemented in GPT-o1. We hope our work will inspire further research on using LLMs with enhanced reasoning mechanisms and chain-of-thought for code generation and optimization.
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language. All the datasets and code base have been made publicly available.
CORNET: Learning Table Formatting Rules By Example
Spreadsheets are widely used for table manipulation and presentation. Stylistic formatting of these tables is an important property for both presentation and analysis. As a result, popular spreadsheet software, such as Excel, supports automatically formatting tables based on rules. Unfortunately, writing such formatting rules can be challenging for users as it requires knowledge of the underlying rule language and data logic. We present CORNET, a system that tackles the novel problem of automatically learning such formatting rules from user examples in the form of formatted cells. CORNET takes inspiration from advances in inductive programming and combines symbolic rule enumeration with a neural ranker to learn conditional formatting rules. To motivate and evaluate our approach, we extracted tables with over 450K unique formatting rules from a corpus of over 1.8M real worksheets. Since we are the first to introduce conditional formatting, we compare CORNET to a wide range of symbolic and neural baselines adapted from related domains. Our results show that CORNET accurately learns rules across varying evaluation setups. Additionally, we show that CORNET finds shorter rules than those that a user has written and discovers rules in spreadsheets that users have manually formatted.
O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
Recently, long-thought reasoning LLMs, such as OpenAI's O1, adopt extended reasoning processes similar to how humans ponder over complex problems. This reasoning paradigm significantly enhances the model's problem-solving abilities and has achieved promising results. However, long-thought reasoning process leads to a substantial increase in inference time. A pressing challenge is reducing the inference overhead of long-thought LLMs while ensuring accuracy. In this paper, we experimentally demonstrate that long-thought reasoning models struggle to effectively allocate token budgets based on problem difficulty and reasoning redundancies. To address this, we propose Length-Harmonizing Fine-Tuning (O1-Pruner), aiming at minimizing reasoning overhead while maintaining accuracy. This effective fine-tuning method first estimates the LLM's baseline performance through pre-sampling and then uses RL-style fine-tuning to encourage the model to generate shorter reasoning processes under accuracy constraints. This allows the model to achieve efficient reasoning with lower redundancy while maintaining accuracy. Experiments on various mathematical reasoning benchmarks show that O1-Pruner not only significantly reduces inference overhead but also achieves higher accuracy, providing a novel and promising solution to this challenge. Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner
MPS-Prover: Advancing Stepwise Theorem Proving by Multi-Perspective Search and Data Curation
Automated Theorem Proving (ATP) in formal languages remains a formidable challenge in AI, demanding rigorous logical deduction and navigating vast search spaces. While large language models (LLMs) have shown promising performance, existing stepwise provers often suffer from biased search guidance, leading to inefficiencies and suboptimal proof strategies. This paper introduces the Multi-Perspective Search Prover (MPS-Prover), a novel stepwise ATP system designed to overcome these limitations. MPS-Prover incorporates two key innovations: a highly effective post-training data curation strategy that prunes approximately 40% of redundant training data without sacrificing performance, and a multi-perspective tree search mechanism. This search integrates a learned critic model with strategically designed heuristic rules to diversify tactic selection, prevent getting trapped in unproductive states, and enhance search robustness. Extensive evaluations demonstrate that MPS-Prover achieves state-of-the-art performance on multiple challenging benchmarks, including miniF2F and ProofNet, outperforming prior 7B parameter models. Furthermore, our analyses reveal that MPS-Prover generates significantly shorter and more diverse proofs compared to existing stepwise and whole-proof methods, highlighting its efficiency and efficacy. Our work advances the capabilities of LLM-based formal reasoning and offers a robust framework and a comprehensive analysis for developing more powerful theorem provers.
Spec2RTL-Agent: Automated Hardware Code Generation from Complex Specifications Using LLM Agent Systems
Despite recent progress in generating hardware RTL code with LLMs, existing solutions still suffer from a substantial gap between practical application scenarios and the requirements of real-world RTL code development. Prior approaches either focus on overly simplified hardware descriptions or depend on extensive human guidance to process complex specifications, limiting their scalability and automation potential. In this paper, we address this gap by proposing an LLM agent system, termed Spec2RTL-Agent, designed to directly process complex specification documentation and generate corresponding RTL code implementations, advancing LLM-based RTL code generation toward more realistic application settings. To achieve this goal, Spec2RTL-Agent introduces a novel multi-agent collaboration framework that integrates three key enablers: (1) a reasoning and understanding module that translates specifications into structured, step-by-step implementation plans; (2) a progressive coding and prompt optimization module that iteratively refines the code across multiple representations to enhance correctness and synthesisability for RTL conversion; and (3) an adaptive reflection module that identifies and traces the source of errors during generation, ensuring a more robust code generation flow. Instead of directly generating RTL from natural language, our system strategically generates synthesizable C++ code, which is then optimized for HLS. This agent-driven refinement ensures greater correctness and compatibility compared to naive direct RTL generation approaches. We evaluate Spec2RTL-Agent on three specification documents, showing it generates accurate RTL code with up to 75% fewer human interventions than existing methods. This highlights its role as the first fully automated multi-agent system for RTL generation from unstructured specs, reducing reliance on human effort in hardware design.
Prediction Error-based Classification for Class-Incremental Learning
Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification
Self-awareness, i.e., the ability to assess and correct one's own generation, is a fundamental aspect of human intelligence, making its replication in large language models (LLMs) an important yet challenging task. Previous works tackle this by employing extensive reinforcement learning or rather relying on large external verifiers. In this work, we propose Refine via Intrinsic Self-Verification (ReVISE), an efficient and effective framework that enables LLMs to self-correct their outputs through self-verification. The core idea of ReVISE is to enable LLMs to verify their reasoning processes and continually rethink reasoning trajectories based on its verification. We introduce a structured curriculum based upon online preference learning to implement this efficiently. Specifically, as ReVISE involves two challenging tasks (i.e., self-verification and reasoning correction), we tackle each task sequentially using curriculum learning, collecting both failed and successful reasoning paths to construct preference pairs for efficient training. During inference, our approach enjoys natural test-time scaling by integrating self-verification and correction capabilities, further enhanced by our proposed confidence-aware decoding mechanism. Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
LLM-FE: Automated Feature Engineering for Tabular Data with LLMs as Evolutionary Optimizers
Automated feature engineering plays a critical role in improving predictive model performance for tabular learning tasks. Traditional automated feature engineering methods are limited by their reliance on pre-defined transformations within fixed, manually designed search spaces, often neglecting domain knowledge. Recent advances using Large Language Models (LLMs) have enabled the integration of domain knowledge into the feature engineering process. However, existing LLM-based approaches use direct prompting or rely solely on validation scores for feature selection, failing to leverage insights from prior feature discovery experiments or establish meaningful reasoning between feature generation and data-driven performance. To address these challenges, we propose LLM-FE, a novel framework that combines evolutionary search with the domain knowledge and reasoning capabilities of LLMs to automatically discover effective features for tabular learning tasks. LLM-FE formulates feature engineering as a program search problem, where LLMs propose new feature transformation programs iteratively, and data-driven feedback guides the search process. Our results demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, significantly enhancing the performance of tabular prediction models across diverse classification and regression benchmarks.
MoGraphGPT: Creating Interactive Scenes Using Modular LLM and Graphical Control
Creating interactive scenes often involves complex programming tasks. Although large language models (LLMs) like ChatGPT can generate code from natural language, their output is often error-prone, particularly when scripting interactions among multiple elements. The linear conversational structure limits the editing of individual elements, and lacking graphical and precise control complicates visual integration. To address these issues, we integrate an element-level modularization technique that processes textual descriptions for individual elements through separate LLM modules, with a central module managing interactions among elements. This modular approach allows for refining each element independently. We design a graphical user interface, MoGraphGPT , which combines modular LLMs with enhanced graphical control to generate codes for 2D interactive scenes. It enables direct integration of graphical information and offers quick, precise control through automatically generated sliders. Our comparative evaluation against an AI coding tool, Cursor Composer, as the baseline system and a usability study show MoGraphGPT significantly improves easiness, controllability, and refinement in creating complex 2D interactive scenes with multiple visual elements in a coding-free manner.
Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning
There is a growing interest in applying pre-trained large language models (LLMs) to planning problems. However, methods that use LLMs directly as planners are currently impractical due to several factors, including limited correctness of plans, strong reliance on feedback from interactions with simulators or even the actual environment, and the inefficiency in utilizing human feedback. In this work, we introduce a novel alternative paradigm that constructs an explicit world (domain) model in planning domain definition language (PDDL) and then uses it to plan with sound domain-independent planners. To address the fact that LLMs may not generate a fully functional PDDL model initially, we employ LLMs as an interface between PDDL and sources of corrective feedback, such as PDDL validators and humans. For users who lack a background in PDDL, we show that LLMs can translate PDDL into natural language and effectively encode corrective feedback back to the underlying domain model. Our framework not only enjoys the correctness guarantee offered by the external planners but also reduces human involvement by allowing users to correct domain models at the beginning, rather than inspecting and correcting (through interactive prompting) every generated plan as in previous work. On two IPC domains and a Household domain that is more complicated than commonly used benchmarks such as ALFWorld, we demonstrate that GPT-4 can be leveraged to produce high-quality PDDL models for over 40 actions, and the corrected PDDL models are then used to successfully solve 48 challenging planning tasks. Resources including the source code will be released at: https://guansuns.github.io/pages/llm-dm.
ReflAct: World-Grounded Decision Making in LLM Agents via Goal-State Reflection
Recent advances in LLM agents have largely built on reasoning backbones like ReAct, which interleave thought and action in complex environments. However, ReAct often produces ungrounded or incoherent reasoning steps, leading to misalignment between the agent's actual state and goal. Our analysis finds that this stems from ReAct's inability to maintain consistent internal beliefs and goal alignment, causing compounding errors and hallucinations. To address this, we introduce ReflAct, a novel backbone that shifts reasoning from merely planning next actions to continuously reflecting on the agent's state relative to its goal. By explicitly grounding decisions in states and enforcing ongoing goal alignment, ReflAct dramatically improves strategic reliability. This design delivers substantial empirical gains: ReflAct surpasses ReAct by 27.7% on average, achieving a 93.3% success rate in ALFWorld. Notably, ReflAct even outperforms ReAct with added enhancement modules (e.g., Reflexion, WKM), showing that strengthening the core reasoning backbone is key to reliable agent performance.
GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.
Improving Autoformalization using Type Checking
Large language models show promise for autoformalization, the task of automatically translating natural language into formal languages. However, current autoformalization methods remain limited. The last reported state-of-the-art performance on the ProofNet formalization benchmark for the Lean proof assistant, achieved using Codex for Lean 3, only showed successful formalization of 16.1% of informal statements. Similarly, our evaluation of GPT-4o for Lean 4 only produces successful translations 34.9% of the time. Our analysis shows that the performance of these models is largely limited by their inability to generate formal statements that successfully type-check (i.e., are syntactically correct and consistent with types) - with a whopping 86.6% of GPT-4o errors starting from a type-check failure. In this work, we propose a method to fix this issue through decoding with type-check filtering, where we initially sample a diverse set of candidate formalizations for an informal statement, then use the Lean proof assistant to filter out candidates that do not type-check. Using GPT-4o as a base model, and combining our method with self-consistency, we obtain a +18.3% absolute increase in formalization accuracy, and achieve a new state-of-the-art of 53.2% on ProofNet with Lean 4.
3D-GPT: Procedural 3D Modeling with Large Language Models
In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.
Can LLMs Follow Simple Rules?
As Large Language Models (LLMs) are deployed with increasing real-world responsibilities, it is important to be able to specify and constrain the behavior of these systems in a reliable manner. Model developers may wish to set explicit rules for the model, such as "do not generate abusive content", but these may be circumvented by jailbreaking techniques. Evaluating how well LLMs follow developer-provided rules in the face of adversarial inputs typically requires manual review, which slows down monitoring and methods development. To address this issue, we propose Rule-following Language Evaluation Scenarios (RuLES), a programmatic framework for measuring rule-following ability in LLMs. RuLES consists of 15 simple text scenarios in which the model is instructed to obey a set of rules in natural language while interacting with the human user. Each scenario has a concise evaluation program to determine whether the model has broken any rules in a conversation. Through manual exploration of model behavior in our scenarios, we identify 6 categories of attack strategies and collect two suites of test cases: one consisting of unique conversations from manual testing and one that systematically implements strategies from the 6 categories. Across various popular proprietary and open models such as GPT-4 and Llama 2, we find that all models are susceptible to a wide variety of adversarial hand-crafted user inputs, though GPT-4 is the best-performing model. Additionally, we evaluate open models under gradient-based attacks and find significant vulnerabilities. We propose RuLES as a challenging new setting for research into exploring and defending against both manual and automatic attacks on LLMs.
Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning
We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven exploration paradigm for formal theorem proving, as showcased in this preview release. Trained with a large-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong performance in Lean 4 proof generation by employing a structured reasoning pattern we term formal reasoning pattern. This approach allows the model to emulate human problem-solving strategies in Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance, our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering strong results even with minimal sampling (pass@1) and scaling effectively with computational budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear performance scaling with model size, a trend previously unobserved for neural theorem provers in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms, shows potential to bridge the gap between formal verification and informal mathematical intuition. We open source distilled versions with 1.5B and 7B parameters of Kimina-Prover
Strong Screening Rules for Group-based SLOPE Models
Tuning the regularization parameter in penalized regression models is an expensive task, requiring multiple models to be fit along a path of parameters. Strong screening rules drastically reduce computational costs by lowering the dimensionality of the input prior to fitting. We develop strong screening rules for group-based Sorted L-One Penalized Estimation (SLOPE) models: Group SLOPE and Sparse-group SLOPE. The developed rules are applicable to the wider family of group-based OWL models, including OSCAR. Our experiments on both synthetic and real data show that the screening rules significantly accelerate the fitting process. The screening rules make it accessible for group SLOPE and sparse-group SLOPE to be applied to high-dimensional datasets, particularly those encountered in genetics.
Prompt Engineering a Prompt Engineer
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.
Trust Region Policy Optimization
We describe an iterative procedure for optimizing policies, with guaranteed monotonic improvement. By making several approximations to the theoretically-justified procedure, we develop a practical algorithm, called Trust Region Policy Optimization (TRPO). This algorithm is similar to natural policy gradient methods and is effective for optimizing large nonlinear policies such as neural networks. Our experiments demonstrate its robust performance on a wide variety of tasks: learning simulated robotic swimming, hopping, and walking gaits; and playing Atari games using images of the screen as input. Despite its approximations that deviate from the theory, TRPO tends to give monotonic improvement, with little tuning of hyperparameters.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
Model Editing with Canonical Examples
We introduce model editing with canonical examples, a setting in which (1) a single learning example is provided per desired behavior, (2) evaluation is performed exclusively out-of-distribution, and (3) deviation from an initial model is strictly limited. A canonical example is a simple instance of good behavior, e.g., The capital of Mauritius is Port Louis) or bad behavior, e.g., An aspect of researchers is coldhearted). The evaluation set contains more complex examples of each behavior (like a paragraph in which the capital of Mauritius is called for.) We create three datasets and modify three more for model editing with canonical examples, covering knowledge-intensive improvements, social bias mitigation, and syntactic edge cases. In our experiments on Pythia language models, we find that LoRA outperforms full finetuning and MEMIT. We then turn to the Backpack language model architecture because it is intended to enable targeted improvement. The Backpack defines a large bank of sense vectors--a decomposition of the different uses of each word--which are weighted and summed to form the output logits of the model. We propose sense finetuning, which selects and finetunes a few (approx 10) sense vectors for each canonical example, and find that it outperforms other finetuning methods, e.g., 4.8% improvement vs 0.3%. Finally, we improve GPT-J-6B by an inference-time ensemble with just the changes from sense finetuning of a 35x smaller Backpack, in one setting outperforming editing GPT-J itself (4.1% vs 1.0%).
FEVO: Financial Knowledge Expansion and Reasoning Evolution for Large Language Models
Advancements in reasoning for large language models (LLMs) have lead to significant performance improvements for LLMs in various fields such as mathematics and programming. However, research applying these advances to the financial domain, where considerable domain-specific knowledge is necessary to complete tasks, remains limited. To address this gap, we introduce FEVO (Financial Evolution), a multi-stage enhancement framework developed to enhance LLM performance in the financial domain. FEVO systemically enhances LLM performance by using continued pre-training (CPT) to expand financial domain knowledge, supervised fine-tuning (SFT) to instill structured, elaborate reasoning patterns, and reinforcement learning (RL) to further integrate the expanded financial domain knowledge with the learned structured reasoning. To ensure effective and efficient training, we leverage frontier reasoning models and rule-based filtering to curate FEVO-Train, high-quality datasets specifically designed for the different post-training phases. Using our framework, we train the FEVO series of models - C32B, S32B, R32B - from Qwen2.5-32B and evaluate them on seven benchmarks to assess financial and general capabilities, with results showing that FEVO-R32B achieves state-of-the-art performance on five financial benchmarks against much larger models as well as specialist models. More significantly, FEVO-R32B demonstrates markedly better performance than FEVO-R32B-0 (trained from Qwen2.5-32B-Instruct using only RL), thus validating the effectiveness of financial domain knowledge expansion and structured, logical reasoning distillation
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
GAVEL: Generating Games Via Evolution and Language Models
Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.
ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models
Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving
Natural language explanations represent a proxy for evaluating explanation-based and multi-step Natural Language Inference (NLI) models. However, assessing the validity of explanations for NLI is challenging as it typically involves the crowd-sourcing of apposite datasets, a process that is time-consuming and prone to logical errors. To address existing limitations, this paper investigates the verification and refinement of natural language explanations through the integration of Large Language Models (LLMs) and Theorem Provers (TPs). Specifically, we present a neuro-symbolic framework, named Explanation-Refiner, that integrates TPs with LLMs to generate and formalise explanatory sentences and suggest potential inference strategies for NLI. In turn, the TP is employed to provide formal guarantees on the logical validity of the explanations and to generate feedback for subsequent improvements. We demonstrate how Explanation-Refiner can be jointly used to evaluate explanatory reasoning, autoformalisation, and error correction mechanisms of state-of-the-art LLMs as well as to automatically enhance the quality of explanations of variable complexity in different domains.
Chain of Logic: Rule-Based Reasoning with Large Language Models
Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation
This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.
Evaluating Superhuman Models with Consistency Checks
If machine learning models were to achieve superhuman abilities at various reasoning or decision-making tasks, how would we go about evaluating such models, given that humans would necessarily be poor proxies for ground truth? In this paper, we propose a framework for evaluating superhuman models via consistency checks. Our premise is that while the correctness of superhuman decisions may be impossible to evaluate, we can still surface mistakes if the model's decisions fail to satisfy certain logical, human-interpretable rules. We instantiate our framework on three tasks where correctness of decisions is hard to evaluate due to either superhuman model abilities, or to otherwise missing ground truth: evaluating chess positions, forecasting future events, and making legal judgments. We show that regardless of a model's (possibly superhuman) performance on these tasks, we can discover logical inconsistencies in decision making. For example: a chess engine assigning opposing valuations to semantically identical boards; GPT-4 forecasting that sports records will evolve non-monotonically over time; or an AI judge assigning bail to a defendant only after we add a felony to their criminal record.
SPRI: Aligning Large Language Models with Context-Situated Principles
Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. We release our code and model generations at https://github.com/honglizhan/SPRI-public.
Early Time Classification with Accumulated Accuracy Gap Control
Early time classification algorithms aim to label a stream of features without processing the full input stream, while maintaining accuracy comparable to that achieved by applying the classifier to the entire input. In this paper, we introduce a statistical framework that can be applied to any sequential classifier, formulating a calibrated stopping rule. This data-driven rule attains finite-sample, distribution-free control of the accuracy gap between full and early-time classification. We start by presenting a novel method that builds on the Learn-then-Test calibration framework to control this gap marginally, on average over i.i.d. instances. As this algorithm tends to yield an excessively high accuracy gap for early halt times, our main contribution is the proposal of a framework that controls a stronger notion of error, where the accuracy gap is controlled conditionally on the accumulated halt times. Numerical experiments demonstrate the effectiveness, applicability, and usefulness of our method. We show that our proposed early stopping mechanism reduces up to 94% of timesteps used for classification while achieving rigorous accuracy gap control.
ProtoReasoning: Prototypes as the Foundation for Generalizable Reasoning in LLMs
Recent advances in Large Reasoning Models (LRMs) trained with Long Chain-of-Thought (Long CoT) reasoning have demonstrated remarkable cross-domain generalization capabilities. However, the underlying mechanisms supporting such transfer remain poorly understood. We hypothesize that cross-domain generalization arises from shared abstract reasoning prototypes -- fundamental reasoning patterns that capture the essence of problems across domains. These prototypes minimize the nuances of the representation, revealing that seemingly diverse tasks are grounded in shared reasoning structures.Based on this hypothesis, we propose ProtoReasoning, a framework that enhances the reasoning ability of LLMs by leveraging scalable and verifiable prototypical representations (Prolog for logical reasoning, PDDL for planning).ProtoReasoning features: (1) an automated prototype construction pipeline that transforms problems into corresponding prototype representations; (2) a comprehensive verification system providing reliable feedback through Prolog/PDDL interpreters; (3) the scalability to synthesize problems arbitrarily within prototype space while ensuring correctness. Extensive experiments show that ProtoReasoning achieves 4.7% improvement over baseline models on logical reasoning (Enigmata-Eval), 6.3% improvement on planning tasks, 4.0% improvement on general reasoning (MMLU) and 1.0% on mathematics (AIME24). Significantly, our ablation studies confirm that learning in prototype space also demonstrates enhanced generalization to structurally similar problems compared to training solely on natural language representations, validating our hypothesis that reasoning prototypes serve as the foundation for generalizable reasoning in large language models.
PAG: Multi-Turn Reinforced LLM Self-Correction with Policy as Generative Verifier
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks, yet they still struggle to reliably verify the correctness of their own outputs. Existing solutions to this verification challenge often depend on separate verifier models or require multi-stage self-correction training pipelines, which limit scalability. In this paper, we propose Policy as Generative Verifier (PAG), a simple and effective framework that empowers LLMs to self-correct by alternating between policy and verifier roles within a unified multi-turn reinforcement learning (RL) paradigm. Distinct from prior approaches that always generate a second attempt regardless of model confidence, PAG introduces a selective revision mechanism: the model revises its answer only when its own generative verification step detects an error. This verify-then-revise workflow not only alleviates model collapse but also jointly enhances both reasoning and verification abilities. Extensive experiments across diverse reasoning benchmarks highlight PAG's dual advancements: as a policy, it enhances direct generation and self-correction accuracy; as a verifier, its self-verification outperforms self-consistency.
ACPBench: Reasoning about Action, Change, and Planning
There is an increasing body of work using Large Language Models (LLMs) as agents for orchestrating workflows and making decisions in domains that require planning and multi-step reasoning. As a result, it is imperative to evaluate LLMs on core skills required for planning. In this work, we present ACPBench, a benchmark for evaluating the reasoning tasks in the field of planning. The benchmark consists of 7 reasoning tasks over 13 planning domains. The collection is constructed from planning domains described in a formal language. This allows us to synthesize problems with provably correct solutions across many tasks and domains. Further, it allows us the luxury of scale without additional human effort, i.e., many additional problems can be created automatically. Our extensive evaluation of 22 open-sourced and frontier LLMs highlight the significant gap in the reasoning capability of the LLMs. The average accuracy of one of the best-performing frontier LLMs -- GPT-4o on these tasks can fall as low as 52.50% ACPBench collection is available at https://ibm.github.io/ACPBench.
Rethinking Repetition Problems of LLMs in Code Generation
With the advent of neural language models, the performance of code generation has been significantly boosted. However, the problem of repetitions during the generation process continues to linger. Previous work has primarily focused on content repetition, which is merely a fraction of the broader repetition problem in code generation. A more prevalent and challenging problem is structural repetition. In structural repetition, the repeated code appears in various patterns but possesses a fixed structure, which can be inherently reflected in grammar. In this paper, we formally define structural repetition and propose an efficient decoding approach called RPG, which stands for Repetition Penalization based on Grammar, to alleviate the repetition problems in code generation for LLMs. Specifically, RPG first leverages grammar rules to identify repetition problems during code generation, and then strategically decays the likelihood of critical tokens that contribute to repetitions, thereby mitigating them in code generation. To facilitate this study, we construct a new dataset CodeRepetEval to comprehensively evaluate approaches for mitigating the repetition problems in code generation. Extensive experimental results demonstrate that RPG substantially outperforms the best-performing baselines on CodeRepetEval dataset as well as HumanEval and MBPP benchmarks, effectively reducing repetitions and enhancing the quality of generated code.
AdaPlanner: Adaptive Planning from Feedback with Language Models
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks. However, most existing methods either take actions greedily without planning or rely on static plans that are not adaptable to environmental feedback. Consequently, the sequential decision-making performance of LLM agents degenerates with problem complexity and plan horizons increase. We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback. In AdaPlanner, the LLM agent adaptively refines its plan from feedback with both in-plan and out-of-plan refinement strategies. To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities. Furthermore, we propose a skill discovery mechanism that leverages successful plans as few-shot exemplars, enabling the agent to plan and refine with fewer task demonstrations. Our experiments in the ALFWorld and MiniWoB++ environments demonstrate that AdaPlanner outperforms state-of-the-art baselines by 3.73% and 4.11% while utilizing 2x and 600x fewer samples, respectively.
ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose Self-Explanation Policy Optimization (ExPO)-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
Boosting Search Engines with Interactive Agents
This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks. Our approach uses machine reading to guide the selection of refinement terms from aggregated search results. Agents are then empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results. We develop a novel way of generating synthetic search sessions, which leverages the power of transformer-based language models through (self-)supervised learning. We also present a reinforcement learning agent with dynamically constrained actions that learns interactive search strategies from scratch. Our search agents obtain retrieval and answer quality performance comparable to recent neural methods, using only a traditional term-based BM25 ranking function and interpretable discrete reranking and filtering actions.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
Lifelong Sequential Knowledge Editing without Model Degradation
Prior work in parameter-modifying knowledge editing has shown that large-scale sequential editing leads to significant model degradation. In this paper, we study the reasons behind this and scale sequential knowledge editing to 10,000 sequential edits, while maintaining the downstream performance of the original model. We first show that locate-then-edit knowledge editing methods lead to overfitting on the edited facts. We also show that continuous knowledge editing using these methods leads to disproportionate growth in the norm of the edited matrix. We then provide a crucial insight into the inner workings of locate-then-edit methods. We show that norm-growth is a hidden trick employed by these methods that gives larger importance to the output activations produced from the edited layers. With this "importance hacking", the edited layers provide a much larger contributions to the model's output. To mitigate these issues, we present ENCORE - Early stopping and Norm-Constrained Robust knowledge Editing. ENCORE controls for overfitting and the disproportionate norm-growth to enable long-term sequential editing, where we are able to perform up to 10,000 sequential edits without loss of downstream performance. ENCORE is also 61% faster than MEMIT and 64% faster than AlphaEdit on Llama3-8B.
CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD development set, our 3B model achieves 65.28% execution accuracy, while the 7B model achieves 69.19%. The code will be open sourced at https://github.com/CycloneBoy/csc_sql.
Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning
The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
Generating consistent PDDL domains with Large Language Models
Large Language Models (LLMs) are capable of transforming natural language domain descriptions into plausibly looking PDDL markup. However, ensuring that actions are consistent within domains still remains a challenging task. In this paper we present a novel concept to significantly improve the quality of LLM-generated PDDL models by performing automated consistency checking during the generation process. Although the proposed consistency checking strategies still can't guarantee absolute correctness of generated models, they can serve as valuable source of feedback reducing the amount of correction efforts expected from a human in the loop. We demonstrate the capabilities of our error detection approach on a number of classical and custom planning domains (logistics, gripper, tyreworld, household, pizza).
A Novel Approach for Automatic Program Repair using Round-Trip Translation with Large Language Models
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back using neural machine translation with language models. We investigate whether this correction capability of Large Language Models (LLMs) extends to Automatic Program Repair (APR). Current generative models for APR are pre-trained on source code and fine-tuned for repair. This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back. We hypothesize that RTT with LLMs restores the most commonly seen patterns in code during pre-training, i.e., performs a regression toward the mean, which removes bugs as they are a form of noise w.r.t. the more frequent, natural, bug-free code in the training data. To test this hypothesis, we employ eight recent LLMs pre-trained on code, including the latest GPT versions, and four common program repair benchmarks in Java. We find that RTT with English as an intermediate language repaired 101 of 164 bugs with GPT-4 on the HumanEval-Java dataset. Moreover, 46 of these are unique bugs that are not repaired by other LLMs fine-tuned for APR. Our findings highlight the viability of round-trip translation with LLMs as a technique for automated program repair and its potential for research in software engineering. Keywords: automated program repair, large language model, machine translation
J1: Exploring Simple Test-Time Scaling for LLM-as-a-Judge
The current focus of AI research is shifting from emphasizing model training towards enhancing evaluation quality, a transition that is crucial for driving further advancements in AI systems. Traditional evaluation methods typically rely on reward models assigning scalar preference scores to outputs. Although effective, such approaches lack interpretability, leaving users often uncertain about why a reward model rates a particular response as high or low. The advent of LLM-as-a-Judge provides a more scalable and interpretable method of supervision, offering insights into the decision-making process. Moreover, with the emergence of large reasoning models, which consume more tokens for deeper thinking and answer refinement, scaling test-time computation in the LLM-as-a-Judge paradigm presents an avenue for further boosting performance and providing more interpretability through reasoning traces. In this paper, we introduce J1-7B, which is first supervised fine-tuned on reflection-enhanced datasets collected via rejection-sampling and subsequently trained using Reinforcement Learning (RL) with verifiable rewards. At inference time, we apply Simple Test-Time Scaling (STTS) strategies for additional performance improvement. Experimental results demonstrate that J1-7B surpasses the previous state-of-the-art LLM-as-a-Judge by 4.8\% and exhibits a 5.1\% stronger scaling trend under STTS. Additionally, we present three key findings: (1) Existing LLM-as-a-Judge does not inherently exhibit such scaling trend. (2) Model simply fine-tuned on reflection-enhanced datasets continues to demonstrate similarly weak scaling behavior. (3) Significant scaling trend emerges primarily during the RL phase, suggesting that effective STTS capability is acquired predominantly through RL training.
CleanAgent: Automating Data Standardization with LLM-based Agents
Data standardization is a crucial part of the data science life cycle. While tools like Pandas offer robust functionalities, their complexity and the manual effort required for customizing code to diverse column types pose significant challenges. Although large language models (LLMs) like ChatGPT have shown promise in automating this process through natural language understanding and code generation, it still demands expert-level programming knowledge and continuous interaction for prompt refinement. To solve these challenges, our key idea is to propose a Python library with declarative, unified APIs for standardizing different column types, simplifying the LLM's code generation with concise API calls. We first propose Dataprep.Clean, a component of the Dataprep Python Library, significantly reduces the coding complexity by enabling the standardization of specific column types with a single line of code. Then, we introduce the CleanAgent framework integrating Dataprep.Clean and LLM-based agents to automate the data standardization process. With CleanAgent, data scientists only need to provide their requirements once, allowing for a hands-free process. To demonstrate the practical utility of CleanAgent, we developed a user-friendly web application, allowing attendees to interact with it using real-world datasets.
Autoformalization of Game Descriptions using Large Language Models
Game theory is a powerful framework for reasoning about strategic interactions, with applications in domains ranging from day-to-day life to international politics. However, applying formal reasoning tools in such contexts is challenging, as these scenarios are often expressed in natural language. To address this, we introduce a framework for the autoformalization of game-theoretic scenarios, which translates natural language descriptions into formal logic representations suitable for formal solvers. Our approach utilizes one-shot prompting and a solver that provides feedback on syntactic correctness to allow LLMs to refine the code. We evaluate the framework using GPT-4o and a dataset of natural language problem descriptions, achieving 98% syntactic correctness and 88% semantic correctness. These results show the potential of LLMs to bridge the gap between real-life strategic interactions and formal reasoning.
Discovering Hierarchical Achievements in Reinforcement Learning via Contrastive Learning
Discovering achievements with a hierarchical structure on procedurally generated environments poses a significant challenge. This requires agents to possess a broad range of abilities, including generalization and long-term reasoning. Many prior methods are built upon model-based or hierarchical approaches, with the belief that an explicit module for long-term planning would be beneficial for learning hierarchical achievements. However, these methods require an excessive amount of environment interactions or large model sizes, limiting their practicality. In this work, we identify that proximal policy optimization (PPO), a simple and versatile model-free algorithm, outperforms the prior methods with recent implementation practices. Moreover, we find that the PPO agent can predict the next achievement to be unlocked to some extent, though with low confidence. Based on this observation, we propose a novel contrastive learning method, called achievement distillation, that strengthens the agent's capability to predict the next achievement. Our method exhibits a strong capacity for discovering hierarchical achievements and shows state-of-the-art performance on the challenging Crafter environment using fewer model parameters in a sample-efficient regime.
ComfyUI-R1: Exploring Reasoning Models for Workflow Generation
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.
VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation
Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).
GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization
LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.
Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level
We introduce Agent K v1.0, an end-to-end autonomous data science agent designed to automate, optimise, and generalise across diverse data science tasks. Fully automated, Agent K v1.0 manages the entire data science life cycle by learning from experience. It leverages a highly flexible structured reasoning framework to enable it to dynamically process memory in a nested structure, effectively learning from accumulated experience stored to handle complex reasoning tasks. It optimises long- and short-term memory by selectively storing and retrieving key information, guiding future decisions based on environmental rewards. This iterative approach allows it to refine decisions without fine-tuning or backpropagation, achieving continuous improvement through experiential learning. We evaluate our agent's apabilities using Kaggle competitions as a case study. Following a fully automated protocol, Agent K v1.0 systematically addresses complex and multimodal data science tasks, employing Bayesian optimisation for hyperparameter tuning and feature engineering. Our new evaluation framework rigorously assesses Agent K v1.0's end-to-end capabilities to generate and send submissions starting from a Kaggle competition URL. Results demonstrate that Agent K v1.0 achieves a 92.5\% success rate across tasks, spanning tabular, computer vision, NLP, and multimodal domains. When benchmarking against 5,856 human Kaggle competitors by calculating Elo-MMR scores for each, Agent K v1.0 ranks in the top 38\%, demonstrating an overall skill level comparable to Expert-level users. Notably, its Elo-MMR score falls between the first and third quartiles of scores achieved by human Grandmasters. Furthermore, our results indicate that Agent K v1.0 has reached a performance level equivalent to Kaggle Grandmaster, with a record of 6 gold, 3 silver, and 7 bronze medals, as defined by Kaggle's progression system.
Personalized Path Recourse
This paper introduces Personalized Path Recourse, a novel method that generates recourse paths for an agent. The objective is to achieve desired goals (e.g., better outcomes compared to the agent's original paths of action), while ensuring a high similarity to the agent's original paths and being personalized to the agent. Personalization refers to the extent to which the new path is tailored to the agent's observed behavior patterns from their policy function. We train a personalized recourse agent to generate such personalized paths, which are obtained using reward functions that consider the goal, similarity, and personalization. The proposed method is applicable to both reinforcement learning and supervised learning settings for correcting or improving sequences of actions or sequences of data to achieve a pre-determined goal. The method is evaluated in various settings and demonstrates promising results.
Process-Driven Autoformalization in Lean 4
Autoformalization, the conversion of natural language mathematics into formal languages, offers significant potential for advancing mathematical reasoning. However, existing efforts are limited to formal languages with substantial online corpora and struggle to keep pace with rapidly evolving languages like Lean 4. To bridge this gap, we propose a new benchmark Formalization for Lean~4 (\name) designed to evaluate the autoformalization capabilities of large language models (LLMs). This benchmark encompasses a comprehensive assessment of questions, answers, formal statements, and proofs. Additionally, we introduce a Process-Supervised Verifier (PSV) model that leverages the precise feedback from Lean 4 compilers to enhance autoformalization. Our experiments demonstrate that the PSV method improves autoformalization, enabling higher accuracy using less filtered training data. Furthermore, when fine-tuned with data containing detailed process information, PSV can leverage the data more effectively, leading to more significant improvements in autoformalization for Lean 4. Our dataset and code are available at https://github.com/rookie-joe/PDA.
Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning
The process of instruction tuning aligns pre-trained large language models (LLMs) with open-domain instructions and human-preferred responses. While several studies have explored autonomous approaches to distilling and annotating instructions from more powerful proprietary LLMs, such as ChatGPT, they often neglect the impact of task distributions and the varying difficulty of instructions of the training sets. This oversight can lead to imbalanced knowledge capabilities and poor generalization powers of small student LLMs. To address this challenge, we introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR), a multi-round distillation framework with balanced task distributions and dynamic difficulty adjustment. This approach utilizes an oracle LLM to select instructions that are difficult for a student LLM to follow and distill instructions with balanced task distributions. By incorporating curriculum planning, our approach systematically escalates the difficulty levels, progressively enhancing the student LLM's capabilities. We rigorously evaluate TAPIR using two widely recognized benchmarks, including AlpacaEval 2.0 and MT-Bench. The empirical results demonstrate that the student LLMs, trained with our method and less training data, outperform larger instruction-tuned models and strong distillation baselines. The improvement is particularly notable in complex tasks, such as logical reasoning and code generation.
Guaranteed Trust Region Optimization via Two-Phase KL Penalization
On-policy reinforcement learning (RL) has become a popular framework for solving sequential decision problems due to its computational efficiency and theoretical simplicity. Some on-policy methods guarantee every policy update is constrained to a trust region relative to the prior policy to ensure training stability. These methods often require computationally intensive non-linear optimization or require a particular form of action distribution. In this work, we show that applying KL penalization alone is nearly sufficient to enforce such trust regions. Then, we show that introducing a "fixup" phase is sufficient to guarantee a trust region is enforced on every policy update while adding fewer than 5% additional gradient steps in practice. The resulting algorithm, which we call FixPO, is able to train a variety of policy architectures and action spaces, is easy to implement, and produces results competitive with other trust region methods.
Interpretable Proof Generation via Iterative Backward Reasoning
We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR .
OpenPrompt: An Open-source Framework for Prompt-learning
Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to cloze-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt-learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, and verbalizing strategy, etc. need to be considered in prompt-learning, practitioners face impediments to quickly adapting the desired prompt learning methods to their applications. In this paper, we present {OpenPrompt}, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task formats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints. OpenPrompt is publicly released at { https://github.com/thunlp/OpenPrompt}.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
The advent of large language models (LLMs) like GitHub Copilot has significantly enhanced programmers' productivity, particularly in code generation. However, these models often struggle with real-world tasks without fine-tuning. As LLMs grow larger and more performant, fine-tuning for specialized tasks becomes increasingly expensive. Parameter-efficient fine-tuning (PEFT) methods, which fine-tune only a subset of model parameters, offer a promising solution by reducing the computational costs of tuning LLMs while maintaining their performance. Existing studies have explored using PEFT and LLMs for various code-related tasks and found that the effectiveness of PEFT techniques is task-dependent. The application of PEFT techniques in unit test generation remains underexplored. The state-of-the-art is limited to using LLMs with full fine-tuning to generate unit tests. This paper investigates both full fine-tuning and various PEFT methods, including LoRA, (IA)^3, and prompt tuning, across different model architectures and sizes. We use well-established benchmark datasets to evaluate their effectiveness in unit test generation. Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation, making specialized fine-tuning more accessible and cost-effective. Notably, prompt tuning is the most effective in terms of cost and resource utilization, while LoRA approaches the effectiveness of full fine-tuning in several cases.
Post-hoc Bias Scoring Is Optimal For Fair Classification
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO). We propose an explicit characterization of Bayes optimal classifier under the fairness constraints, which turns out to be a simple modification rule of the unconstrained classifier. Namely, we introduce a novel instance-level measure of bias, which we call bias score, and the modification rule is a simple linear rule on top of the finite amount of bias scores.Based on this characterization, we develop a post-hoc approach that allows us to adapt to fairness constraints while maintaining high accuracy. In the case of DP and EOp constraints, the modification rule is thresholding a single bias score, while in the case of EO constraints we are required to fit a linear modification rule with 2 parameters. The method can also be applied for composite group-fairness criteria, such as ones involving several sensitive attributes.
PROC2PDDL: Open-Domain Planning Representations from Texts
Planning in a text-based environment continues to be a major challenge for AI systems. Recent approaches have used language models to predict a planning domain definition (e.g., PDDL) but have only been evaluated in closed-domain simulated environments. To address this, we present Proc2PDDL , the first dataset containing open-domain procedural texts paired with expert-annotated PDDL representations. Using this dataset, we evaluate state-of-the-art models on defining the preconditions and effects of actions. We show that Proc2PDDL is highly challenging, with GPT-3.5's success rate close to 0% and GPT-4's around 35%. Our analysis shows both syntactic and semantic errors, indicating LMs' deficiency in both generating domain-specific prgorams and reasoning about events. We hope this analysis and dataset helps future progress towards integrating the best of LMs and formal planning.
Leveraging Large Language Models for Automated Proof Synthesis in Rust
Formal verification can provably guarantee the correctness of critical system software, but the high proof burden has long hindered its wide adoption. Recently, Large Language Models (LLMs) have shown success in code analysis and synthesis. In this paper, we present a combination of LLMs and static analysis to synthesize invariants, assertions, and other proof structures for a Rust-based formal verification framework called Verus. In a few-shot setting, LLMs demonstrate impressive logical ability in generating postconditions and loop invariants, especially when analyzing short code snippets. However, LLMs lack the ability to retain and propagate context information, a strength of traditional static analysis. Based on these observations, we developed a prototype based on OpenAI's GPT-4 model. Our prototype decomposes the verification task into multiple smaller ones, iteratively queries GPT-4, and combines its output with lightweight static analysis. We evaluated the prototype with a developer in the automation loop on 20 vector-manipulating programs. The results demonstrate that it significantly reduces human effort in writing entry-level proof code.
Learning Prescriptive ReLU Networks
We study the problem of learning optimal policy from a set of discrete treatment options using observational data. We propose a piecewise linear neural network model that can balance strong prescriptive performance and interpretability, which we refer to as the prescriptive ReLU network, or P-ReLU. We show analytically that this model (i) partitions the input space into disjoint polyhedra, where all instances that belong to the same partition receive the same treatment, and (ii) can be converted into an equivalent prescriptive tree with hyperplane splits for interpretability. We demonstrate the flexibility of the P-ReLU network as constraints can be easily incorporated with minor modifications to the architecture. Through experiments, we validate the superior prescriptive accuracy of P-ReLU against competing benchmarks. Lastly, we present examples of interpretable prescriptive trees extracted from trained P-ReLUs using a real-world dataset, for both the unconstrained and constrained scenarios.
GenPRM: Scaling Test-Time Compute of Process Reward Models via Generative Reasoning
Recent advancements in Large Language Models (LLMs) have shown that it is promising to utilize Process Reward Models (PRMs) as verifiers to enhance the performance of LLMs. However, current PRMs face three key challenges: (1) limited process supervision and generalization capabilities, (2) dependence on scalar value prediction without leveraging the generative abilities of LLMs, and (3) inability to scale the test-time compute of PRMs. In this work, we introduce GenPRM, a generative process reward model that performs explicit Chain-of-Thought (CoT) reasoning with code verification before providing judgment for each reasoning step. To obtain high-quality process supervision labels and rationale data, we propose Relative Progress Estimation (RPE) and a rationale synthesis framework that incorporates code verification. Experimental results on ProcessBench and several mathematical reasoning tasks show that GenPRM significantly outperforms prior PRMs with only 23K training data from MATH dataset. Through test-time scaling, a 1.5B GenPRM outperforms GPT-4o, and a 7B GenPRM surpasses Qwen2.5-Math-PRM-72B on ProcessBench. Additionally, GenPRM demonstrates strong abilities to serve as a critic model for policy model refinement. This work establishes a new paradigm for process supervision that bridges the gap between PRMs and critic models in LLMs. Our code, model, and data will be available in https://ryanliu112.github.io/GenPRM.
LEURN: Learning Explainable Univariate Rules with Neural Networks
In this paper, we propose LEURN: a neural network architecture that learns univariate decision rules. LEURN is a white-box algorithm that results into univariate trees and makes explainable decisions in every stage. In each layer, LEURN finds a set of univariate rules based on an embedding of the previously checked rules and their corresponding responses. Both rule finding and final decision mechanisms are weighted linear combinations of these embeddings, hence contribution of all rules are clearly formulated and explainable. LEURN can select features, extract feature importance, provide semantic similarity between a pair of samples, be used in a generative manner and can give a confidence score. Thanks to a smoothness parameter, LEURN can also controllably behave like decision trees or vanilla neural networks. Besides these advantages, LEURN achieves comparable performance to state-of-the-art methods across 30 tabular datasets for classification and regression problems.
ClarifyGPT: Empowering LLM-based Code Generation with Intention Clarification
We introduce a novel framework named ClarifyGPT, which aims to enhance code generation by empowering LLMs with the ability to identify ambiguous requirements and ask targeted clarifying questions. In particular, ClarifyGPT first detects whether a given requirement is ambiguous by performing a code consistency check. If it is ambiguous, ClarifyGPT prompts an LLM to generate targeted clarifying questions. After receiving question responses, ClarifyGPT refines the ambiguous requirement and inputs it into the same LLM to generate a final code solution. To evaluate our ClarifyGPT, we first conduct a human evaluation involving ten participants who use ClarifyGPT for code generation on two publicly available benchmarks: MBPP-sanitized and MBPP-ET. The results show that ClarifyGPT elevates the performance (Pass@1) of GPT-4 from 70.96% to 80.80% on MBPP-sanitized. Furthermore, to perform large-scale automated evaluations of ClarifyGPT across different LLMs and benchmarks without requiring user participation, we introduce a high-fidelity simulation method to simulate user responses. The automated evaluation results also demonstrate that ClarifyGPT can significantly enhance code generation performance compared to the baselines. In particular, ClarifyGPT improves the average performance of GPT-4 and ChatGPT across four benchmarks from 68.02% to 75.75% and from 58.55% to 67.22%, respectively. We believe that ClarifyGPT can effectively facilitate the practical application of LLMs in real-world development environments.
Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models
Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces DSP+, an improved version of the Draft, Sketch, and Prove framework, featuring a fine-grained and integrated neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves imo\_2019\_p1, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.
ReFT: Reasoning with Reinforced Fine-Tuning
One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.
Derailer-Rerailer: Adaptive Verification for Efficient and Reliable Language Model Reasoning
Large Language Models (LLMs) have shown impressive reasoning capabilities, yet existing prompting methods face a critical trade-off: simple approaches often struggle with complex tasks and reasoning stability, while more sophisticated methods require multiple inferences and substantial computational resources, limiting their practical deployment. To address this challenge, we propose Derailer-Rerailer, a novel framework that adaptively balances reasoning accuracy and computational efficiency. At its core, our framework employs a lightweight Derailer mechanism to assess reasoning stability and selectively triggers an advanced Rerailer verification process only when necessary, thereby optimizing computational resource usage. Extensive evaluation across both open and closed-source models on more than 20 categories of mathematical, symbolic, and commonsense reasoning tasks demonstrates our framework's effectiveness: Derailer-Rerailer achieves significant accuracy improvements (8-11\% across various reasoning tasks) while maintaining 2-3 times better efficiency than existing verification methods, with particularly strong performance in mathematical and symbolic reasoning, offering a practical solution for enhancing LLM reasoning reliability while significantly reducing computational overhead.
Touching Loop Patterns with Cellular Automata
The objective is the design of a Cellular Automata rule that can form patterns with 'touching' loops. A loop is defined as a closed path of 1-cells in a 2D grid on a zero background and with a zero border. A path cell is connected with two of its adjacent neighbors. In touching loops a path cell is also allowed to touch another on a diagonal. A CA rule was designed that can evolve stable touching loop patterns. The rule tries to cover the 2D space by overlapping tiles. The rule uses so-called templates, 5 x 5 matching patterns which are systematically derived from the given set of 3 x 3 tiles. The rule checks the pattern being evolved against a list of templates. If the outer neighbors of a template match, then the cell's state is set to the template's center value. Noise is injected if there is no matching template, or the tiles are not properly assembled. Thereby the evolution is driven to the desired loop patterns.
PoAct: Policy and Action Dual-Control Agent for Generalized Applications
Based on their superior comprehension and reasoning capabilities, Large Language Model (LLM) driven agent frameworks have achieved significant success in numerous complex reasoning tasks. ReAct-like agents can solve various intricate problems step-by-step through progressive planning and tool calls, iteratively optimizing new steps based on environmental feedback. However, as the planning capabilities of LLMs improve, the actions invoked by tool calls in ReAct-like frameworks often misalign with complex planning and challenging data organization. Code Action addresses these issues while also introducing the challenges of a more complex action space and more difficult action organization. To leverage Code Action and tackle the challenges of its complexity, this paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications. The aim is to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space. Experimental results on the Agent Benchmark for both legal and generic scenarios demonstrate the superior reasoning capabilities and reduced token consumption of our approach in complex tasks. On the LegalAgentBench, our method shows a 20 percent improvement over the baseline while requiring fewer tokens. We conducted experiments and analyses on the GPT-4o and GLM-4 series models, demonstrating the significant potential and scalability of our approach to solve complex problems.
Instruction Following without Instruction Tuning
Instruction tuning commonly means finetuning a language model on instruction-response pairs. We discover two forms of adaptation (tuning) that are deficient compared to instruction tuning, yet still yield instruction following; we call this implicit instruction tuning. We first find that instruction-response pairs are not necessary: training solely on responses, without any corresponding instructions, yields instruction following. This suggests pretrained models have an instruction-response mapping which is revealed by teaching the model the desired distribution of responses. However, we then find it's not necessary to teach the desired distribution of responses: instruction-response training on narrow-domain data like poetry still leads to broad instruction-following behavior like recipe generation. In particular, when instructions are very different from those in the narrow finetuning domain, models' responses do not adhere to the style of the finetuning domain. To begin to explain implicit instruction tuning, we hypothesize that very simple changes to a language model's distribution yield instruction following. We support this by hand-writing a rule-based language model which yields instruction following in a product-of-experts with a pretrained model. The rules are to slowly increase the probability of ending the sequence, penalize repetition, and uniformly change 15 words' probabilities. In summary, adaptations made without being designed to yield instruction following can do so implicitly.
When is Tree Search Useful for LLM Planning? It Depends on the Discriminator
In this paper, we examine how large language models (LLMs) solve multi-step problems under a language agent framework with three components: a generator, a discriminator, and a planning method. We investigate the practical utility of two advanced planning methods, iterative correction and tree search. We present a comprehensive analysis of how discrimination accuracy affects the overall performance of agents when using these two methods or a simpler method, re-ranking. Experiments on two tasks, text-to-SQL parsing and mathematical reasoning, show that: (1) advanced planning methods demand discriminators with at least 90% accuracy to achieve significant improvements over re-ranking; (2) current LLMs' discrimination abilities have not met the needs of advanced planning methods to achieve such improvements; (3) with LLM-based discriminators, advanced planning methods may not adequately balance accuracy and efficiency. For example, compared to the other two methods, tree search is at least 10--20 times slower but leads to negligible performance gains, which hinders its real-world applications. Code and data will be released at https://github.com/OSU-NLP-Group/llm-planning-eval.
Med-REFL: Medical Reasoning Enhancement via Self-Corrected Fine-grained Reflection
Large reasoning models have recently made significant strides in mathematical and code reasoning, yet their success has not transferred smoothly to the medical domain. While multiple factors contribute to this disparity, a critical issue is the inadequate focus on the quality of intermediate reflection steps, which is particularly crucial in high-stakes medical scenarios. To address this challenge, we propose Med-REFL, a \textbf{Med}ical \textbf{R}easoning \textbf{E}nhancement via self-corrected \textbf{F}ine-grained ref\textbf{L}ection. Our method leverages a tree-of-thought approach to decompose medical questions into fine-grained reasoning paths, quantitatively evaluating each step and its subsequent reflections. These assessments enable automatic construction of direct preference optimization data, reducing reliance on expensive expert annotations while guiding models to identify and correct reasoning errors. Experimental results on the MedQA-USMLE benchmark demonstrate Med-REFL achieves consistent improvements, with average gains up to 4.11\%. Notably, it further boosts the state-of-the-art performance of 7B/8B models by an additional 4.13\%. Furthermore, Med-REFL exhibits strong generalization capabilities and robustness across several challenging medical question-answering datasets. Our work illustrates that prioritizing reflection quality leads to more accurate and trustworthy reasoning in medical AI applications. Checkpoints, code, and data can be found https://github.com/TianYin123/Med-REFL{here}.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
Training Step-Level Reasoning Verifiers with Formal Verification Tools
Process Reward Models (PRMs), which provide step-by-step feedback on the reasoning generated by Large Language Models (LLMs), are receiving increasing attention. However, two key research gaps remain: collecting accurate step-level error labels for training typically requires costly human annotation, and existing PRMs are limited to math reasoning problems. In response to these gaps, this paper aims to address the challenges of automatic dataset creation and the generalization of PRMs to diverse reasoning tasks. To achieve this goal, we propose FoVer, an approach for training PRMs on step-level error labels automatically annotated by formal verification tools, such as Z3 for formal logic and Isabelle for theorem proof, which provide automatic and accurate verification for symbolic tasks. Using this approach, we synthesize a training dataset with error labels on LLM responses for formal logic and theorem proof tasks without human annotation. Although this data synthesis is feasible only for tasks compatible with formal verification, we observe that LLM-based PRMs trained on our dataset exhibit cross-task generalization, improving verification across diverse reasoning tasks. Specifically, PRMs trained with FoVer significantly outperform baseline PRMs based on the original LLMs and achieve competitive or superior results compared to state-of-the-art PRMs trained on labels annotated by humans or stronger models, as measured by step-level verification on ProcessBench and Best-of-K performance across 12 reasoning benchmarks, including MATH, AIME, ANLI, MMLU, and BBH. The datasets, models, and code are provided at https://github.com/psunlpgroup/FoVer.
Lemur: Integrating Large Language Models in Automated Program Verification
The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that often demands high-level abstract reasoning about program properties, which is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of derivation rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure, which led to practical improvements on a set of synthetic and competition benchmarks.
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection: a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): the first LLM-based prover that is augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 96,962 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.
Routine: A Structural Planning Framework for LLM Agent System in Enterprise
The deployment of agent systems in an enterprise environment is often hindered by several challenges: common models lack domain-specific process knowledge, leading to disorganized plans, missing key tools, and poor execution stability. To address this, this paper introduces Routine, a multi-step agent planning framework designed with a clear structure, explicit instructions, and seamless parameter passing to guide the agent's execution module in performing multi-step tool-calling tasks with high stability. In evaluations conducted within a real-world enterprise scenario, Routine significantly increases the execution accuracy in model tool calls, increasing the performance of GPT-4o from 41.1% to 96.3%, and Qwen3-14B from 32.6% to 83.3%. We further constructed a Routine-following training dataset and fine-tuned Qwen3-14B, resulting in an accuracy increase to 88.2% on scenario-specific evaluations, indicating improved adherence to execution plans. In addition, we employed Routine-based distillation to create a scenario-specific, multi-step tool-calling dataset. Fine-tuning on this distilled dataset raised the model's accuracy to 95.5%, approaching GPT-4o's performance. These results highlight Routine's effectiveness in distilling domain-specific tool-usage patterns and enhancing model adaptability to new scenarios. Our experimental results demonstrate that Routine provides a practical and accessible approach to building stable agent workflows, accelerating the deployment and adoption of agent systems in enterprise environments, and advancing the technical vision of AI for Process.
AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
OpenRFT: Adapting Reasoning Foundation Model for Domain-specific Tasks with Reinforcement Fine-Tuning
OpenAI's recent introduction of Reinforcement Fine-Tuning (RFT) showcases the potential of reasoning foundation model and offers a new paradigm for fine-tuning beyond simple pattern imitation. This technical report presents OpenRFT, our attempt to fine-tune generalist reasoning models for domain-specific tasks under the same settings as RFT. OpenRFT addresses two key challenges of lacking reasoning step data and the limited quantity of training samples, by leveraging the domain-specific samples in three ways: question augmentation, synthesizing reasoning-process data, and few-shot ICL. The evaluation is conducted on SciKnowEval, where OpenRFT achieves notable performance gains with only 100 domain-specific samples for each task. More experimental results will be updated continuously in later versions. Source codes, datasets, and models are disclosed at: https://github.com/ADaM-BJTU/OpenRFT
When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement
Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.
Fair Classifiers that Abstain without Harm
In critical applications, it is vital for classifiers to defer decision-making to humans. We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples. Our abstaining classifier is incentivized to maintain the original accuracy for each sub-population (i.e. no harm) while achieving a set of group fairness definitions to a user specified degree. To this end, we design an Integer Programming (IP) procedure that assigns abstention decisions for each training sample to satisfy a set of constraints. To generalize the abstaining decisions to test samples, we then train a surrogate model to learn the abstaining decisions based on the IP solutions in an end-to-end manner. We analyze the feasibility of the IP procedure to determine the possible abstention rate for different levels of unfairness tolerance and accuracy constraint for achieving no harm. To the best of our knowledge, this work is the first to identify the theoretical relationships between the constraint parameters and the required abstention rate. Our theoretical results are important since a high abstention rate is often infeasible in practice due to a lack of human resources. Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates.
Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions
Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, ReLIFT (Reinforcement Learning Interleaved with Online Fine-Tuning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.
FineTuneBench: How well do commercial fine-tuning APIs infuse knowledge into LLMs?
There is great interest in fine-tuning frontier large language models (LLMs) to inject new information and update existing knowledge. While commercial LLM fine-tuning APIs from providers such as OpenAI and Google promise flexible adaptation for various applications, the efficacy of fine-tuning remains unclear. In this study, we introduce FineTuneBench, an evaluation framework and dataset for understanding how well commercial fine-tuning APIs can successfully learn new and updated knowledge. We analyze five frontier LLMs with commercially available fine-tuning APIs, including GPT-4o and Gemini 1.5 Pro, on their effectiveness in two settings: (1) ingesting novel information, such as recent news events and new people profiles, and (2) updating existing knowledge, such as updated medical guidelines and code frameworks. Our results reveal substantial shortcomings in all the models' abilities to effectively learn new information through fine-tuning, with an average generalization accuracy of 37% across all models. When updating existing knowledge, such as incorporating medical guideline updates, commercial fine-tuning APIs show even more limited capability (average generalization accuracy of 19%). Overall, fine-tuning GPT-4o mini is the most effective for infusing new knowledge and updating knowledge, followed by GPT-3.5 Turbo and GPT-4o. The fine-tuning APIs for Gemini 1.5 Flesh and Gemini 1.5 Pro are unable to learn new knowledge or update existing knowledge. These findings underscore a major shortcoming in using current commercial fine-tuning services to achieve reliable knowledge infusion in common scenarios. We open source the FineTuneBench dataset at https://github.com/kevinwu23/StanfordFineTuneBench.