new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 6

CTVIS: Consistent Training for Online Video Instance Segmentation

The discrimination of instance embeddings plays a vital role in associating instances across time for online video instance segmentation (VIS). Instance embedding learning is directly supervised by the contrastive loss computed upon the contrastive items (CIs), which are sets of anchor/positive/negative embeddings. Recent online VIS methods leverage CIs sourced from one reference frame only, which we argue is insufficient for learning highly discriminative embeddings. Intuitively, a possible strategy to enhance CIs is replicating the inference phase during training. To this end, we propose a simple yet effective training strategy, called Consistent Training for Online VIS (CTVIS), which devotes to aligning the training and inference pipelines in terms of building CIs. Specifically, CTVIS constructs CIs by referring inference the momentum-averaged embedding and the memory bank storage mechanisms, and adding noise to the relevant embeddings. Such an extension allows a reliable comparison between embeddings of current instances and the stable representations of historical instances, thereby conferring an advantage in modeling VIS challenges such as occlusion, re-identification, and deformation. Empirically, CTVIS outstrips the SOTA VIS models by up to +5.0 points on three VIS benchmarks, including YTVIS19 (55.1% AP), YTVIS21 (50.1% AP) and OVIS (35.5% AP). Furthermore, we find that pseudo-videos transformed from images can train robust models surpassing fully-supervised ones.

LEMON: LanguagE ModeL for Negative Sampling of Knowledge Graph Embeddings

Knowledge Graph Embedding models have become an important area of machine learning.Those models provide a latent representation of entities and relations in a knowledge graph which can then be used in downstream machine learning tasks such as link prediction. The learning process of such models can be performed by contrasting positive and negative triples. While all triples of a KG are considered positive, negative triples are usually not readily available. Therefore, the choice of the sampling method to obtain the negative triples play a crucial role in the performance and effectiveness of Knowledge Graph Embedding models. Most of the current methods fetch negative samples from a random distribution of entities in the underlying Knowledge Graph which also often includes meaningless triples. Other known methods use adversarial techniques or generative neural networks which consequently reduce the efficiency of the process. In this paper, we propose an approach for generating informative negative samples considering available complementary knowledge about entities. Particularly, Pre-trained Language Models are used to form neighborhood clusters by utilizing the distances between entities to obtain representations of symbolic entities via their textual information. Our comprehensive evaluations demonstrate the effectiveness of the proposed approach on benchmark Knowledge Graphs with textual information for the link prediction task.

Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation

Cross-View Geo-Localisation is still a challenging task where additional modules, specific pre-processing or zooming strategies are necessary to determine accurate positions of images. Since different views have different geometries, pre-processing like polar transformation helps to merge them. However, this results in distorted images which then have to be rectified. Adding hard negatives to the training batch could improve the overall performance but with the default loss functions in geo-localisation it is difficult to include them. In this article, we present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss that outperforms current state-of-the-art results. Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules, avoids further pre-processing steps and even increases the generalisation capability of the model to unknown regions. We introduce two types of sampling strategies for hard negatives. The first explicitly exploits geographically neighboring locations to provide a good starting point. The second leverages the visual similarity between the image embeddings in order to mine hard negative samples. Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison between cross-area and same-area settings demonstrate the good generalisation capability of our model.

Hard Negative Mixing for Contrastive Learning

Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies either at the image or the feature level improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing the memory size, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.

Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings

The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.

Heterogeneous Graph Contrastive Learning with Meta-path Contexts and Adaptively Weighted Negative Samples

Heterogeneous graph contrastive learning has received wide attention recently. Some existing methods use meta-paths, which are sequences of object types that capture semantic relationships between objects, to construct contrastive views. However, most of them ignore the rich meta-path context information that describes how two objects are connected by meta-paths. Further, they fail to distinguish negative samples, which could adversely affect the model performance. To address the problems, we propose MEOW, which considers both meta-path contexts and weighted negative samples. Specifically, MEOW constructs a coarse view and a fine-grained view for contrast. The former reflects which objects are connected by meta-paths, while the latter uses meta-path contexts and characterizes details on how the objects are connected. Then, we theoretically analyze the InfoNCE loss and recognize its limitations for computing gradients of negative samples. To better distinguish negative samples, we learn hard-valued weights for them based on node clustering and use prototypical contrastive learning to pull close embeddings of nodes in the same cluster. In addition, we propose a variant model AdaMEOW that adaptively learns soft-valued weights of negative samples to further improve node representation. Finally, we conduct extensive experiments to show the superiority of MEOW and AdaMEOW against other state-of-the-art methods.

Whitening-based Contrastive Learning of Sentence Embeddings

This paper presents a whitening-based contrastive learning method for sentence embedding learning (WhitenedCSE), which combines contrastive learning with a novel shuffled group whitening. Generally, contrastive learning pulls distortions of a single sample (i.e., positive samples) close and push negative samples far away, correspondingly facilitating the alignment and uniformity in the feature space. A popular alternative to the "pushing'' operation is whitening the feature space, which scatters all the samples for uniformity. Since the whitening and the contrastive learning have large redundancy w.r.t. the uniformity, they are usually used separately and do not easily work together. For the first time, this paper integrates whitening into the contrastive learning scheme and facilitates two benefits. 1) Better uniformity. We find that these two approaches are not totally redundant but actually have some complementarity due to different uniformity mechanism. 2) Better alignment. We randomly divide the feature into multiple groups along the channel axis and perform whitening independently within each group. By shuffling the group division, we derive multiple distortions of a single sample and thus increase the positive sample diversity. Consequently, using multiple positive samples with enhanced diversity further improves contrastive learning due to better alignment. Extensive experiments on seven semantic textual similarity tasks show our method achieves consistent improvement over the contrastive learning baseline and sets new states of the art, e.g., 78.78\% (+2.53\% based on BERT\ba) Spearman correlation on STS tasks.

Enhancing Multimodal Compositional Reasoning of Visual Language Models with Generative Negative Mining

Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at https://ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.

LG-ANNA-Embedding technical report

This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.

Contrastive Learning with Adversarial Perturbations for Conditional Text Generation

Recently, sequence-to-sequence (seq2seq) models with the Transformer architecture have achieved remarkable performance on various conditional text generation tasks, such as machine translation. However, most of them are trained with teacher forcing with the ground truth label given at each time step, without being exposed to incorrectly generated tokens during training, which hurts its generalization to unseen inputs, that is known as the "exposure bias" problem. In this work, we propose to mitigate the conditional text generation problem by contrasting positive pairs with negative pairs, such that the model is exposed to various valid or incorrect perturbations of the inputs, for improved generalization. However, training the model with naive contrastive learning framework using random non-target sequences as negative examples is suboptimal, since they are easily distinguishable from the correct output, especially so with models pretrained with large text corpora. Also, generating positive examples requires domain-specific augmentation heuristics which may not generalize over diverse domains. To tackle this problem, we propose a principled method to generate positive and negative samples for contrastive learning of seq2seq models. Specifically, we generate negative examples by adding small perturbations to the input sequence to minimize its conditional likelihood, and positive examples by adding large perturbations while enforcing it to have a high conditional likelihood. Such "hard" positive and negative pairs generated using our method guides the model to better distinguish correct outputs from incorrect ones. We empirically show that our proposed method significantly improves the generalization of the seq2seq on three text generation tasks - machine translation, text summarization, and question generation.

From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model

Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks, yet adapting their generative nature for discriminative representation learning remains a significant challenge. The dominant paradigm of large-scale contrastive pre-training suffers from critical inefficiencies, including prohibitive computational costs and a failure to leverage the intrinsic, instruction-following capabilities of MLLMs. To overcome these limitations, we propose an efficient framework for universal multimodal embeddings, which bridges this gap by centering on two synergistic components. First, our hierarchical embedding prompt template employs a two-level instruction architecture that forces the model to produce discriminative representations. Building on this strong foundation, our second component, self-aware hard negative sampling, redefines the fine-tuning process by leveraging the model's own understanding to efficiently mine challenging negatives while actively filtering out potential false negatives. Our comprehensive experiments show that our hierarchical prompt achieves zero-shot performance competitive with contrastively trained baselines and enhances the fine-tuning process by lifting a simple in-batch negative baseline by 4.8 points on the MMEB benchmark. We further boost the performance via our self-aware hard negative sampling, achieving the state-of-the-art performance without the contrative pre-training. Our work presents an effective and efficient pathway to adapt MLLMs for universal embedding tasks, significantly reducing training time.

ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding

Contrastive learning has been attracting much attention for learning unsupervised sentence embeddings. The current state-of-the-art unsupervised method is the unsupervised SimCSE (unsup-SimCSE). Unsup-SimCSE takes dropout as a minimal data augmentation method, and passes the same input sentence to a pre-trained Transformer encoder (with dropout turned on) twice to obtain the two corresponding embeddings to build a positive pair. As the length information of a sentence will generally be encoded into the sentence embeddings due to the usage of position embedding in Transformer, each positive pair in unsup-SimCSE actually contains the same length information. And thus unsup-SimCSE trained with these positive pairs is probably biased, which would tend to consider that sentences of the same or similar length are more similar in semantics. Through statistical observations, we find that unsup-SimCSE does have such a problem. To alleviate it, we apply a simple repetition operation to modify the input sentence, and then pass the input sentence and its modified counterpart to the pre-trained Transformer encoder, respectively, to get the positive pair. Additionally, we draw inspiration from the community of computer vision and introduce a momentum contrast, enlarging the number of negative pairs without additional calculations. The proposed two modifications are applied on positive and negative pairs separately, and build a new sentence embedding method, termed Enhanced Unsup-SimCSE (ESimCSE). We evaluate the proposed ESimCSE on several benchmark datasets w.r.t the semantic text similarity (STS) task. Experimental results show that ESimCSE outperforms the state-of-the-art unsup-SimCSE by an average Spearman correlation of 2.02% on BERT-base.

GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.

Geodesic Multi-Modal Mixup for Robust Fine-Tuning

Pre-trained multi-modal models, such as CLIP, provide transferable embeddings and show promising results in diverse applications. However, the analysis of learned multi-modal embeddings is relatively unexplored, and the embedding transferability can be improved. In this work, we observe that CLIP holds separated embedding subspaces for two different modalities, and then we investigate it through the lens of uniformity-alignment to measure the quality of learned representation. Both theoretically and empirically, we show that CLIP retains poor uniformity and alignment even after fine-tuning. Such a lack of alignment and uniformity might restrict the transferability and robustness of embeddings. To this end, we devise a new fine-tuning method for robust representation equipping better alignment and uniformity. First, we propose a Geodesic Multi-Modal Mixup that mixes the embeddings of image and text to generate hard negative samples on the hypersphere. Then, we fine-tune the model on hard negatives as well as original negatives and positives with contrastive loss. Based on the theoretical analysis about hardness guarantee and limiting behavior, we justify the use of our method. Extensive experiments on retrieval, calibration, few- or zero-shot classification (under distribution shift), embedding arithmetic, and image captioning further show that our method provides transferable representations, enabling robust model adaptation on diverse tasks. Code: https://github.com/changdaeoh/multimodal-mixup

GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models

In this work, we propose a novel method (GLOV) enabling Large Language Models (LLMs) to act as implicit Optimizers for Vision-Langugage Models (VLMs) to enhance downstream vision tasks. Our GLOV meta-prompts an LLM with the downstream task description, querying it for suitable VLM prompts (e.g., for zero-shot classification with CLIP). These prompts are ranked according to a purity measure obtained through a fitness function. In each respective optimization step, the ranked prompts are fed as in-context examples (with their accuracies) to equip the LLM with the knowledge of the type of text prompts preferred by the downstream VLM. Furthermore, we also explicitly steer the LLM generation process in each optimization step by specifically adding an offset difference vector of the embeddings from the positive and negative solutions found by the LLM, in previous optimization steps, to the intermediate layer of the network for the next generation step. This offset vector steers the LLM generation toward the type of language preferred by the downstream VLM, resulting in enhanced performance on the downstream vision tasks. We comprehensively evaluate our GLOV on 16 diverse datasets using two families of VLMs, i.e., dual-encoder (e.g., CLIP) and encoder-decoder (e.g., LLaVa) models -- showing that the discovered solutions can enhance the recognition performance by up to 15.0% and 57.5% (3.8% and 21.6% on average) for these models.

Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond

Although text-to-image diffusion models have made significant strides in generating images from text, they are sometimes more inclined to generate images like the data on which the model was trained rather than the provided text. This limitation has hindered their usage in both 2D and 3D applications. To address this problem, we explored the use of negative prompts but found that the current implementation fails to produce desired results, particularly when there is an overlap between the main and negative prompts. To overcome this issue, we propose Perp-Neg, a new algorithm that leverages the geometrical properties of the score space to address the shortcomings of the current negative prompts algorithm. Perp-Neg does not require any training or fine-tuning of the model. Moreover, we experimentally demonstrate that Perp-Neg provides greater flexibility in generating images by enabling users to edit out unwanted concepts from the initially generated images in 2D cases. Furthermore, to extend the application of Perp-Neg to 3D, we conducted a thorough exploration of how Perp-Neg can be used in 2D to condition the diffusion model to generate desired views, rather than being biased toward the canonical views. Finally, we applied our 2D intuition to integrate Perp-Neg with the state-of-the-art text-to-3D (DreamFusion) method, effectively addressing its Janus (multi-head) problem. Our project page is available at https://Perp-Neg.github.io/

KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model

In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.

Negative Token Merging: Image-based Adversarial Feature Guidance

Text-based adversarial guidance using a negative prompt has emerged as a widely adopted approach to push the output features away from undesired concepts. While useful, performing adversarial guidance using text alone can be insufficient to capture complex visual concepts and avoid undesired visual elements like copyrighted characters. In this paper, for the first time we explore an alternate modality in this direction by performing adversarial guidance directly using visual features from a reference image or other images in a batch. In particular, we introduce negative token merging (NegToMe), a simple but effective training-free approach which performs adversarial guidance by selectively pushing apart matching semantic features (between reference and output generation) during the reverse diffusion process. When used w.r.t. other images in the same batch, we observe that NegToMe significantly increases output diversity (racial, gender, visual) without sacrificing output image quality. Similarly, when used w.r.t. a reference copyrighted asset, NegToMe helps reduce visual similarity with copyrighted content by 34.57%. NegToMe is simple to implement using just few-lines of code, uses only marginally higher (<4%) inference times and generalizes to different diffusion architectures like Flux, which do not natively support the use of a separate negative prompt. Code is available at https://negtome.github.io

Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition

The goal of face recognition (FR) can be viewed as a pair similarity optimization problem, maximizing a similarity set S^p over positive pairs, while minimizing similarity set S^n over negative pairs. Ideally, it is expected that FR models form a well-discriminative feature space (WDFS) that satisfies mathcal{S^p} > mathcal{S^n}. With regard to WDFS, the existing deep feature learning paradigms (i.e., metric and classification losses) can be expressed as a unified perspective on different pair generation (PG) strategies. Unfortunately, in the metric loss (ML), it is infeasible to generate negative pairs taking all classes into account in each iteration because of the limited mini-batch size. In contrast, in classification loss (CL), it is difficult to generate extremely hard negative pairs owing to the convergence of the class weight vectors to their center. This leads to a mismatch between the two similarity distributions of the sampled pairs and all negative pairs. Thus, this paper proposes a unified negative pair generation (UNPG) by combining two PG strategies (i.e., MLPG and CLPG) from a unified perspective to alleviate the mismatch. UNPG introduces useful information about negative pairs using MLPG to overcome the CLPG deficiency. Moreover, it includes filtering the similarities of noisy negative pairs to guarantee reliable convergence and improved performance. Exhaustive experiments show the superiority of UNPG by achieving state-of-the-art performance across recent loss functions on public benchmark datasets. Our code and pretrained models are publicly available.

Improving Contrastive Learning by Visualizing Feature Transformation

Contrastive learning, which aims at minimizing the distance between positive pairs while maximizing that of negative ones, has been widely and successfully applied in unsupervised feature learning, where the design of positive and negative (pos/neg) pairs is one of its keys. In this paper, we attempt to devise a feature-level data manipulation, differing from data augmentation, to enhance the generic contrastive self-supervised learning. To this end, we first design a visualization scheme for pos/neg score (Pos/neg score indicates cosine similarity of pos/neg pair.) distribution, which enables us to analyze, interpret and understand the learning process. To our knowledge, this is the first attempt of its kind. More importantly, leveraging this tool, we gain some significant observations, which inspire our novel Feature Transformation proposals including the extrapolation of positives. This operation creates harder positives to boost the learning because hard positives enable the model to be more view-invariant. Besides, we propose the interpolation among negatives, which provides diversified negatives and makes the model more discriminative. It is the first attempt to deal with both challenges simultaneously. Experiment results show that our proposed Feature Transformation can improve at least 6.0% accuracy on ImageNet-100 over MoCo baseline, and about 2.0% accuracy on ImageNet-1K over the MoCoV2 baseline. Transferring to the downstream tasks successfully demonstrate our model is less task-bias. Visualization tools and codes https://github.com/DTennant/CL-Visualizing-Feature-Transformation .

Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models

Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.

Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models

Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.

Adversarial Retriever-Ranker for dense text retrieval

Current dense text retrieval models face two typical challenges. First, they adopt a siamese dual-encoder architecture to encode queries and documents independently for fast indexing and searching, while neglecting the finer-grained term-wise interactions. This results in a sub-optimal recall performance. Second, their model training highly relies on a negative sampling technique to build up the negative documents in their contrastive losses. To address these challenges, we present Adversarial Retriever-Ranker (AR2), which consists of a dual-encoder retriever plus a cross-encoder ranker. The two models are jointly optimized according to a minimax adversarial objective: the retriever learns to retrieve negative documents to cheat the ranker, while the ranker learns to rank a collection of candidates including both the ground-truth and the retrieved ones, as well as providing progressive direct feedback to the dual-encoder retriever. Through this adversarial game, the retriever gradually produces harder negative documents to train a better ranker, whereas the cross-encoder ranker provides progressive feedback to improve retriever. We evaluate AR2 on three benchmarks. Experimental results show that AR2 consistently and significantly outperforms existing dense retriever methods and achieves new state-of-the-art results on all of them. This includes the improvements on Natural Questions R@5 to 77.9%(+2.1%), TriviaQA R@5 to 78.2%(+1.4), and MS-MARCO MRR@10 to 39.5%(+1.3%). Code and models are available at https://github.com/microsoft/AR2.

Class-dependent Compression of Deep Neural Networks

Today's deep neural networks require substantial computation resources for their training, storage, and inference, which limits their effective use on resource-constrained devices. Many recent research activities explore different options for compressing and optimizing deep models. On the one hand, in many real-world applications, we face the data imbalance challenge, i.e. when the number of labeled instances of one class considerably outweighs the number of labeled instances of the other class. On the other hand, applications may pose a class imbalance problem, i.e. higher number of false positives produced when training a model and optimizing its performance may be tolerable, yet the number of false negatives must stay low. The problem originates from the fact that some classes are more important for the application than others, e.g. detection problems in medical and surveillance domains. Motivated by the success of the lottery ticket hypothesis, in this paper we propose an iterative deep model compression technique, which keeps the number of false negatives of the compressed model close to the one of the original model at the price of increasing the number of false positives if necessary. Our experimental evaluation using two benchmark data sets shows that the resulting compressed sub-networks 1) achieve up to 35% lower number of false negatives than the compressed model without class optimization, 2) provide an overall higher AUC_ROC measure, and 3) use up to 99% fewer parameters compared to the original network.

Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning

Pre-trained sequence-to-sequence language models have led to widespread success in many natural language generation tasks. However, there has been relatively less work on analyzing their ability to generate structured outputs such as graphs. Unlike natural language, graphs have distinct structural and semantic properties in the context of a downstream NLP task, e.g., generating a graph that is connected and acyclic can be attributed to its structural constraints, while the semantics of a graph can refer to how meaningfully an edge represents the relation between two node concepts. In this work, we study pre-trained language models that generate explanation graphs in an end-to-end manner and analyze their ability to learn the structural constraints and semantics of such graphs. We first show that with limited supervision, pre-trained language models often generate graphs that either violate these constraints or are semantically incoherent. Since curating large amount of human-annotated graphs is expensive and tedious, we propose simple yet effective ways of graph perturbations via node and edge edit operations that lead to structurally and semantically positive and negative graphs. Next, we leverage these graphs in different contrastive learning models with Max-Margin and InfoNCE losses. Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs and also generalize to other similar graph generation tasks. Lastly, we show that human errors are the best negatives for contrastive learning and also that automatically generating more such human-like negative graphs can lead to further improvements. Our code and models are publicly available at https://github.com/swarnaHub/ExplagraphGen

Lbl2Vec: An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics

In this paper, we consider the task of retrieving documents with predefined topics from an unlabeled document dataset using an unsupervised approach. The proposed unsupervised approach requires only a small number of keywords describing the respective topics and no labeled document. Existing approaches either heavily relied on a large amount of additionally encoded world knowledge or on term-document frequencies. Contrariwise, we introduce a method that learns jointly embedded document and word vectors solely from the unlabeled document dataset in order to find documents that are semantically similar to the topics described by the keywords. The proposed method requires almost no text preprocessing but is simultaneously effective at retrieving relevant documents with high probability. When successively retrieving documents on different predefined topics from publicly available and commonly used datasets, we achieved an average area under the receiver operating characteristic curve value of 0.95 on one dataset and 0.92 on another. Further, our method can be used for multiclass document classification, without the need to assign labels to the dataset in advance. Compared with an unsupervised classification baseline, we increased F1 scores from 76.6 to 82.7 and from 61.0 to 75.1 on the respective datasets. For easy replication of our approach, we make the developed Lbl2Vec code publicly available as a ready-to-use tool under the 3-Clause BSD license.

A Practical Contrastive Learning Framework for Single-Image Super-Resolution

Contrastive learning has achieved remarkable success on various high-level tasks, but there are fewer contrastive learning-based methods proposed for low-level tasks. It is challenging to adopt vanilla contrastive learning technologies proposed for high-level visual tasks to low-level image restoration problems straightly. Because the acquired high-level global visual representations are insufficient for low-level tasks requiring rich texture and context information. In this paper, we investigate the contrastive learning-based single image super-resolution from two perspectives: positive and negative sample construction and feature embedding. The existing methods take naive sample construction approaches (e.g., considering the low-quality input as a negative sample and the ground truth as a positive sample) and adopt a prior model (e.g., pre-trained VGG model) to obtain the feature embedding. To this end, we propose a practical contrastive learning framework for SISR, named PCL-SR. We involve the generation of many informative positive and hard negative samples in frequency space. Instead of utilizing an additional pre-trained network, we design a simple but effective embedding network inherited from the discriminator network which is more task-friendly. Compared with existing benchmark methods, we re-train them by our proposed PCL-SR framework and achieve superior performance. Extensive experiments have been conducted to show the effectiveness and technical contributions of our proposed PCL-SR thorough ablation studies. The code and pre-trained models can be found at https://github.com/Aitical/PCL-SISR.

Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs

The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.

Deep Learning Applied to Image and Text Matching

The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.

NGAME: Negative Mining-aware Mini-batching for Extreme Classification

Extreme Classification (XC) seeks to tag data points with the most relevant subset of labels from an extremely large label set. Performing deep XC with dense, learnt representations for data points and labels has attracted much attention due to its superiority over earlier XC methods that used sparse, hand-crafted features. Negative mining techniques have emerged as a critical component of all deep XC methods that allow them to scale to millions of labels. However, despite recent advances, training deep XC models with large encoder architectures such as transformers remains challenging. This paper identifies that memory overheads of popular negative mining techniques often force mini-batch sizes to remain small and slow training down. In response, this paper introduces NGAME, a light-weight mini-batch creation technique that offers provably accurate in-batch negative samples. This allows training with larger mini-batches offering significantly faster convergence and higher accuracies than existing negative sampling techniques. NGAME was found to be up to 16% more accurate than state-of-the-art methods on a wide array of benchmark datasets for extreme classification, as well as 3% more accurate at retrieving search engine queries in response to a user webpage visit to show personalized ads. In live A/B tests on a popular search engine, NGAME yielded up to 23% gains in click-through-rates.

Improving Composed Image Retrieval via Contrastive Learning with Scaling Positives and Negatives

The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query consisting of a reference image and a modified text. Advanced methods often utilize contrastive learning as the optimization objective, which benefits from adequate positive and negative examples. However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces the negative number available for the model. To address the problem of lack of positives, we propose a data generation method by leveraging a multi-modal large language model to construct triplets for CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework for CIR, whose second stage introduces plenty of static representations of negatives to optimize the representation space rapidly. The above two improvements can be effectively stacked and designed to be plug-and-play, easily applied to existing CIR models without changing their original architectures. Extensive experiments and ablation analysis demonstrate that our method effectively scales positives and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition, our method also performs well in zero-shot composed image retrieval, providing a new CIR solution for the low-resources scenario. Our code and data are released at https://github.com/BUAADreamer/SPN4CIR.

Experimental Analysis of Large-scale Learnable Vector Storage Compression

Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.

NeIn: Telling What You Don't Want

Negation is a fundamental linguistic concept used by humans to convey information that they do not desire. Despite this, minimal research has focused on negation within text-guided image editing. This lack of research means that vision-language models (VLMs) for image editing may struggle to understand negation, implying that they struggle to provide accurate results. One barrier to achieving human-level intelligence is the lack of a standard collection by which research into negation can be evaluated. This paper presents the first large-scale dataset, Negative Instruction (NeIn), for studying negation within instruction-based image editing. Our dataset comprises 366,957 quintuplets, i.e., source image, original caption, selected object, negative sentence, and target image in total, including 342,775 queries for training and 24,182 queries for benchmarking image editing methods. Specifically, we automatically generate NeIn based on a large, existing vision-language dataset, MS-COCO, via two steps: generation and filtering. During the generation phase, we leverage two VLMs, BLIP and InstructPix2Pix (fine-tuned on MagicBrush dataset), to generate NeIn's samples and the negative clauses that expresses the content of the source image. In the subsequent filtering phase, we apply BLIP and LLaVA-NeXT to remove erroneous samples. Additionally, we introduce an evaluation protocol to assess the negation understanding for image editing models. Extensive experiments using our dataset across multiple VLMs for text-guided image editing demonstrate that even recent state-of-the-art VLMs struggle to understand negative queries.

Efficient block contrastive learning via parameter-free meta-node approximation

Contrastive learning has recently achieved remarkable success in many domains including graphs. However contrastive loss, especially for graphs, requires a large number of negative samples which is unscalable and computationally prohibitive with a quadratic time complexity. Sub-sampling is not optimal and incorrect negative sampling leads to sampling bias. In this work, we propose a meta-node based approximation technique that can (a) proxy all negative combinations (b) in quadratic cluster size time complexity, (c) at graph level, not node level, and (d) exploit graph sparsity. By replacing node-pairs with additive cluster-pairs, we compute the negatives in cluster-time at graph level. The resulting Proxy approximated meta-node Contrastive (PamC) loss, based on simple optimized GPU operations, captures the full set of negatives, yet is efficient with a linear time complexity. By avoiding sampling, we effectively eliminate sample bias. We meet the criterion for larger number of samples, thus achieving block-contrastiveness, which is proven to outperform pair-wise losses. We use learnt soft cluster assignments for the meta-node constriction, and avoid possible heterophily and noise added during edge creation. Theoretically, we show that real world graphs easily satisfy conditions necessary for our approximation. Empirically, we show promising accuracy gains over state-of-the-art graph clustering on 6 benchmarks. Importantly, we gain substantially in efficiency; up to 3x in training time, 1.8x in inference time and over 5x in GPU memory reduction.

Towards Enhancing Time Series Contrastive Learning: A Dynamic Bad Pair Mining Approach

Not all positive pairs are beneficial to time series contrastive learning. In this paper, we study two types of bad positive pairs that can impair the quality of time series representation learned through contrastive learning: the noisy positive pair and the faulty positive pair. We observe that, with the presence of noisy positive pairs, the model tends to simply learn the pattern of noise (Noisy Alignment). Meanwhile, when faulty positive pairs arise, the model wastes considerable amount of effort aligning non-representative patterns (Faulty Alignment). To address this problem, we propose a Dynamic Bad Pair Mining (DBPM) algorithm, which reliably identifies and suppresses bad positive pairs in time series contrastive learning. Specifically, DBPM utilizes a memory module to dynamically track the training behavior of each positive pair along training process. This allows us to identify potential bad positive pairs at each epoch based on their historical training behaviors. The identified bad pairs are subsequently down-weighted through a transformation module, thereby mitigating their negative impact on the representation learning process. DBPM is a simple algorithm designed as a lightweight plug-in without learnable parameters to enhance the performance of existing state-of-the-art methods. Through extensive experiments conducted on four large-scale, real-world time series datasets, we demonstrate DBPM's efficacy in mitigating the adverse effects of bad positive pairs.

GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning

Embedding models are integral to AI applications like semantic search, personalized recommendations, and retrieval augmented generation for LLMs, necessitating high-quality training data. However, the limited scalability of manual data curation prompts the need for automated methods to ensure data integrity. Traditional unsupervised triplet mining automates training data generation, crucial for embedding model training, yet inadvertently injects biases and noise, thereby degrading model performance. Addressing this, we introduce GISTEmbed, a novel strategy that enhances in-batch negative selection during contrastive training through a guide model. This approach departs from reliance on random sampling and equal utility assumption of batch negatives, significantly reducing noise from data quality issues and improving model fine-tuning. Benchmarked against the Massive Text Embedding Benchmark (MTEB), GISTEmbed showcases consistent performance improvements across various model sizes and achieves state-of-the-art results in select categories. This framework enables significant enhancements for smaller models by leveraging the capabilities of powerful yet resource-intensive large models. GISTEmbed can potentially revolutionize the creation of highly efficient, smaller models, democratizing access to advanced AI technologies. Making these technologies more accessible and cost-effective, especially for applications constrained by resources, significantly expands the impact and accessibility of state-of-the-art AI solutions across diverse sectors.

Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging

Text embeddings are vital for tasks such as text retrieval and semantic textual similarity (STS). Recently, the advent of pretrained language models, along with unified benchmarks like the Massive Text Embedding Benchmark (MTEB), has facilitated the development of versatile general-purpose text embedding models. Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks. However, our experimental analysis reveals two significant drawbacks of joint training: 1) Task Conflict: Gradients from different tasks interfere with each other, leading to negative transfer. 2) Data Imbalance: Disproportionate data distribution introduces biases that negatively impact performance across tasks. To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution. We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the interpolation space of task vectors using stochastic gradient descent. Our experiments demonstrate that Self Positioning significantly enhances multi-task performance on the MTEB dataset, achieving an absolute improvement of 0.7 points. It outperforms traditional resampling methods while reducing computational costs. This work offers a robust approach to building generalized text embedding models with superior performance across diverse embedding-related tasks.

BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings

Natural Language Processing (NLP) for low-resource languages presents significant challenges, particularly due to the scarcity of high-quality annotated data and linguistic resources. The choice of embeddings plays a critical role in enhancing the performance of NLP tasks, such as news classification, sentiment analysis, and hate speech detection, especially for low-resource languages like Marathi. In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language. Our research includes a thorough evaluation of both compressed and uncompressed embeddings, providing a comprehensive overview of how these embeddings perform across different scenarios. Specifically, we compare two BERT model embeddings, Muril and MahaBERT, as well as two FastText model embeddings, IndicFT and MahaFT. Our evaluation includes applying embeddings to a Multiple Logistic Regression (MLR) classifier for task performance assessment, as well as TSNE visualizations to observe the spatial distribution of these embeddings. The results demonstrate that contextual embeddings outperform non-contextual embeddings. Furthermore, BERT-based non-contextual embeddings extracted from the first BERT embedding layer yield better results than FastText-based embeddings, suggesting a potential alternative to FastText embeddings.

CausaLM: Causal Model Explanation Through Counterfactual Language Models

Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.

Contrastive Attraction and Contrastive Repulsion for Representation Learning

Contrastive learning (CL) methods effectively learn data representations in a self-supervision manner, where the encoder contrasts each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. By leveraging large amounts of unlabeled image data, recent CL methods have achieved promising results when pretrained on large-scale datasets, such as ImageNet. However, most of them consider the augmented views from the same instance are positive pairs, while views from other instances are negative ones. Such binary partition insufficiently considers the relation between samples and tends to yield worse performance when generalized on images in the wild. In this paper, to further improve the performance of CL and enhance its robustness on various datasets, {we propose a doubly CL strategy that separately compares positive and negative samples within their own groups, and then proceeds with a contrast between positive and negative groups}. We realize this strategy with contrastive attraction and contrastive repulsion (CACR), which makes the query not only exert a greater force to attract more distant positive samples but also do so to repel closer negative samples. Theoretical analysis reveals that CACR generalizes CL's behavior by positive attraction and negative repulsion, and it further considers the intra-contrastive relation within the positive and negative pairs to narrow the gap between the sampled and true distribution, which is important when datasets are less curated. With our extensive experiments, CACR not only demonstrates good performance on CL benchmarks, but also shows better robustness when generalized on imbalanced image datasets. Code and pre-trained checkpoints are available at https://github.com/JegZheng/CACR-SSL.

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.

CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection

With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The code is publicly at https://github.com/RedAIGC/CQ-DINO.

Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network

Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests.

When to Pre-Train Graph Neural Networks? From Data Generation Perspective!

In recent years, graph pre-training has gained significant attention, focusing on acquiring transferable knowledge from unlabeled graph data to improve downstream performance. Despite these recent endeavors, the problem of negative transfer remains a major concern when utilizing graph pre-trained models to downstream tasks. Previous studies made great efforts on the issue of what to pre-train and how to pre-train by designing a variety of graph pre-training and fine-tuning strategies. However, there are cases where even the most advanced "pre-train and fine-tune" paradigms fail to yield distinct benefits. This paper introduces a generic framework W2PGNN to answer the crucial question of when to pre-train (i.e., in what situations could we take advantage of graph pre-training) before performing effortful pre-training or fine-tuning. We start from a new perspective to explore the complex generative mechanisms from the pre-training data to downstream data. In particular, W2PGNN first fits the pre-training data into graphon bases, each element of graphon basis (i.e., a graphon) identifies a fundamental transferable pattern shared by a collection of pre-training graphs. All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training. In this manner, the feasibility of pre-training can be quantified as the generation probability of the downstream data from any generator in the generator space. W2PGNN offers three broad applications: providing the application scope of graph pre-trained models, quantifying the feasibility of pre-training, and assistance in selecting pre-training data to enhance downstream performance. We provide a theoretically sound solution for the first application and extensive empirical justifications for the latter two applications.

Dice Loss for Data-imbalanced NLP Tasks

Many NLP tasks such as tagging and machine reading comprehension are faced with the severe data imbalance issue: negative examples significantly outnumber positive examples, and the huge number of background examples (or easy-negative examples) overwhelms the training. The most commonly used cross entropy (CE) criteria is actually an accuracy-oriented objective, and thus creates a discrepancy between training and test: at training time, each training instance contributes equally to the objective function, while at test time F1 score concerns more about positive examples. In this paper, we propose to use dice loss in replacement of the standard cross-entropy objective for data-imbalanced NLP tasks. Dice loss is based on the Sorensen-Dice coefficient or Tversky index, which attaches similar importance to false positives and false negatives, and is more immune to the data-imbalance issue. To further alleviate the dominating influence from easy-negative examples in training, we propose to associate training examples with dynamically adjusted weights to deemphasize easy-negative examples.Theoretical analysis shows that this strategy narrows down the gap between the F1 score in evaluation and the dice loss in training. With the proposed training objective, we observe significant performance boost on a wide range of data imbalanced NLP tasks. Notably, we are able to achieve SOTA results on CTB5, CTB6 and UD1.4 for the part of speech tagging task; SOTA results on CoNLL03, OntoNotes5.0, MSRA and OntoNotes4.0 for the named entity recognition task; along with competitive results on the tasks of machine reading comprehension and paraphrase identification.

Decoupled Contrastive Learning

Contrastive learning (CL) is one of the most successful paradigms for self-supervised learning (SSL). In a principled way, it considers two augmented "views" of the same image as positive to be pulled closer, and all other images as negative to be pushed further apart. However, behind the impressive success of CL-based techniques, their formulation often relies on heavy-computation settings, including large sample batches, extensive training epochs, etc. We are thus motivated to tackle these issues and establish a simple, efficient, yet competitive baseline of contrastive learning. Specifically, we identify, from theoretical and empirical studies, a noticeable negative-positive-coupling (NPC) effect in the widely used InfoNCE loss, leading to unsuitable learning efficiency concerning the batch size. By removing the NPC effect, we propose decoupled contrastive learning (DCL) loss, which removes the positive term from the denominator and significantly improves the learning efficiency. DCL achieves competitive performance with less sensitivity to sub-optimal hyperparameters, requiring neither large batches in SimCLR, momentum encoding in MoCo, or large epochs. We demonstrate with various benchmarks while manifesting robustness as much less sensitive to suboptimal hyperparameters. Notably, SimCLR with DCL achieves 68.2% ImageNet-1K top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its SimCLR baseline by 6.4%. Further, DCL can be combined with the SOTA contrastive learning method, NNCLR, to achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs, which represents a new SOTA in contrastive learning. We believe DCL provides a valuable baseline for future contrastive SSL studies.

T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition

To address the risks of encountering inappropriate or harmful content, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This hinders the generalizability of methods based on such datasets, potentially leading to misjudgments. Therefore, we propose a comprehensive harmful dataset, Visual Harmful Dataset 11K (VHD11K), consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with nontrivial definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) VHD11K outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods. The complete dataset and code can be found at https://github.com/nctu-eva-lab/VHD11K.

The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation

This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.

Adaptive Multi-head Contrastive Learning

In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.

SuSana Distancia is all you need: Enforcing class separability in metric learning via two novel distance-based loss functions for few-shot image classification

Few-shot learning is a challenging area of research that aims to learn new concepts with only a few labeled samples of data. Recent works based on metric-learning approaches leverage the meta-learning approach, which is encompassed by episodic tasks that make use a support (training) and query set (test) with the objective of learning a similarity comparison metric between those sets. Due to the lack of data, the learning process of the embedding network becomes an important part of the few-shot task. Previous works have addressed this problem using metric learning approaches, but the properties of the underlying latent space and the separability of the difference classes on it was not entirely enforced. In this work, we propose two different loss functions which consider the importance of the embedding vectors by looking at the intra-class and inter-class distance between the few data. The first loss function is the Proto-Triplet Loss, which is based on the original triplet loss with the modifications needed to better work on few-shot scenarios. The second loss function, which we dub ICNN loss is based on an inter and intra class nearest neighbors score, which help us to assess the quality of embeddings obtained from the trained network. Our results, obtained from a extensive experimental setup show a significant improvement in accuracy in the miniImagenNet benchmark compared to other metric-based few-shot learning methods by a margin of 2%, demonstrating the capability of these loss functions to allow the network to generalize better to previously unseen classes. In our experiments, we demonstrate competitive generalization capabilities to other domains, such as the Caltech CUB, Dogs and Cars datasets compared with the state of the art.

Word and Document Embeddings based on Neural Network Approaches

Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ...

Optimizing Dense Retrieval Model Training with Hard Negatives

Ranking has always been one of the top concerns in information retrieval researches. For decades, the lexical matching signal has dominated the ad-hoc retrieval process, but solely using this signal in retrieval may cause the vocabulary mismatch problem. In recent years, with the development of representation learning techniques, many researchers turn to Dense Retrieval (DR) models for better ranking performance. Although several existing DR models have already obtained promising results, their performance improvement heavily relies on the sampling of training examples. Many effective sampling strategies are not efficient enough for practical usage, and for most of them, there still lacks theoretical analysis in how and why performance improvement happens. To shed light on these research questions, we theoretically investigate different training strategies for DR models and try to explain why hard negative sampling performs better than random sampling. Through the analysis, we also find that there are many potential risks in static hard negative sampling, which is employed by many existing training methods. Therefore, we propose two training strategies named a Stable Training Algorithm for dense Retrieval (STAR) and a query-side training Algorithm for Directly Optimizing Ranking pErformance (ADORE), respectively. STAR improves the stability of DR training process by introducing random negatives. ADORE replaces the widely-adopted static hard negative sampling method with a dynamic one to directly optimize the ranking performance. Experimental results on two publicly available retrieval benchmark datasets show that either strategy gains significant improvements over existing competitive baselines and a combination of them leads to the best performance.

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

Unsupervised Learning under Latent Label Shift

What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.

When and why vision-language models behave like bags-of-words, and what to do about it?

Despite the success of large vision and language models (VLMs) in many downstream applications, it is unclear how well they encode compositional information. Here, we create the Attribution, Relation, and Order (ARO) benchmark to systematically evaluate the ability of VLMs to understand different types of relationships, attributes, and order. ARO consists of Visual Genome Attribution, to test the understanding of objects' properties; Visual Genome Relation, to test for relational understanding; and COCO & Flickr30k-Order, to test for order sensitivity. ARO is orders of magnitude larger than previous benchmarks of compositionality, with more than 50,000 test cases. We show where state-of-the-art VLMs have poor relational understanding, can blunder when linking objects to their attributes, and demonstrate a severe lack of order sensitivity. VLMs are predominantly trained and evaluated on large datasets with rich compositional structure in the images and captions. Yet, training on these datasets has not been enough to address the lack of compositional understanding, and evaluating on these datasets has failed to surface this deficiency. To understand why these limitations emerge and are not represented in the standard tests, we zoom into the evaluation and training procedures. We demonstrate that it is possible to perform well on retrieval over existing datasets without using the composition and order information. Given that contrastive pretraining optimizes for retrieval on datasets with similar shortcuts, we hypothesize that this can explain why the models do not need to learn to represent compositional information. This finding suggests a natural solution: composition-aware hard negative mining. We show that a simple-to-implement modification of contrastive learning significantly improves the performance on tasks requiring understanding of order and compositionality.

Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization

Large language models (LLMs) have revolutionized the role of AI, yet also pose potential risks of propagating unethical content. Alignment technologies have been introduced to steer LLMs towards human preference, gaining increasing attention. Despite notable breakthroughs in this direction, existing methods heavily rely on high-quality positive-negative training pairs, suffering from noisy labels and the marginal distinction between preferred and dispreferred response data. Given recent LLMs' proficiency in generating helpful responses, this work pivots towards a new research focus: achieving alignment using solely human-annotated negative samples, preserving helpfulness while reducing harmfulness. For this purpose, we propose Distributional Dispreference Optimization (D^2O), which maximizes the discrepancy between the generated responses and the dispreferred ones to effectively eschew harmful information. We theoretically demonstrate that D^2O is equivalent to learning a distributional instead of instance-level preference model reflecting human dispreference against the distribution of negative responses. Besides, D^2O integrates an implicit Jeffrey Divergence regularization to balance the exploitation and exploration of reference policies and converges to a non-negative one during training. Extensive experiments demonstrate that our method achieves comparable generation quality and surpasses the latest baselines in producing less harmful and more informative responses with better training stability and faster convergence.