new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 6

Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens

Are n-gram language models still relevant in this era of neural large language models (LLMs)? Our answer is yes, and we show their values in both text analysis and improving neural LLMs. Yet this necessitates modernizing n-gram models in two aspects. First, we train them at the same data scale as neural LLMs -- 1.4 trillion tokens. This is the largest n-gram model ever built. Second, existing n-gram models use small n which hinders their performance; we instead allow n to be arbitrarily large, by introducing a new infty-gram LM with backoff. Instead of pre-computing n-gram count tables (which would be very expensive), we develop an engine named infini-gram -- powered by suffix arrays -- that can compute infty-gram (as well as n-gram with arbitrary n) probabilities with millisecond-level latency. The infty-gram framework and infini-gram engine enable us to conduct many novel and interesting analyses of human-written and machine-generated text: we find that the infty-gram LM has fairly high accuracy for next-token prediction (47%), and can complement neural LLMs to greatly reduce their language modeling perplexities. When analyzing machine-generated text, we also observe irregularities in the machine--infty-gram agreement level with respect to the suffix length, which indicates deficiencies in neural LLM pretraining and the positional embeddings of Transformers. We open-source our infini-gram engine in the hopes of enabling more study on how to best use verbatim information retrieved from large text corpora.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

ZIP-FIT: Embedding-Free Data Selection via Compression-Based Alignment

Data selection is crucial for optimizing language model (LM) performance on specific tasks, yet most existing methods fail to effectively consider the target task distribution. Current approaches either ignore task-specific requirements entirely or rely on approximations that fail to capture the nuanced patterns needed for tasks like Autoformalization or code generation. Methods that do consider the target distribution often rely on simplistic, sometimes noisy, representations, like hashed n-gram features, which can lead to collisions and introduce noise. We introduce ZIP-FIT, a data selection framework that uses gzip compression to directly measure alignment between potential training data and the target task distribution. In extensive evaluations on Autoformalization and Python code generation, ZIP-FIT significantly outperforms leading baselines like DSIR and D4. Models trained on ZIP-FIT-selected data achieve their lowest cross-entropy loss up to 85.1\% faster than baselines, demonstrating that better task alignment leads to more efficient learning. In addition, ZIP-FIT performs selection up to 65.8\% faster than DSIR and two orders of magnitude faster than D4. Notably, ZIP-FIT shows that smaller, well-aligned datasets often outperform larger but less targeted ones, demonstrating that a small amount of higher quality data is superior to a large amount of lower quality data. Our results imply that task-aware data selection is crucial for efficient domain adaptation, and that compression offers a principled way to measure task alignment. By showing that targeted data selection can dramatically improve task-specific performance, our work provides new insights into the relationship between data quality, task alignment, and model learning efficiency.

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

SEntFiN 1.0: Entity-Aware Sentiment Analysis for Financial News

Fine-grained financial sentiment analysis on news headlines is a challenging task requiring human-annotated datasets to achieve high performance. Limited studies have tried to address the sentiment extraction task in a setting where multiple entities are present in a news headline. In an effort to further research in this area, we make publicly available SEntFiN 1.0, a human-annotated dataset of 10,753 news headlines with entity-sentiment annotations, of which 2,847 headlines contain multiple entities, often with conflicting sentiments. We augment our dataset with a database of over 1,000 financial entities and their various representations in news media amounting to over 5,000 phrases. We propose a framework that enables the extraction of entity-relevant sentiments using a feature-based approach rather than an expression-based approach. For sentiment extraction, we utilize 12 different learning schemes utilizing lexicon-based and pre-trained sentence representations and five classification approaches. Our experiments indicate that lexicon-based n-gram ensembles are above par with pre-trained word embedding schemes such as GloVe. Overall, RoBERTa and finBERT (domain-specific BERT) achieve the highest average accuracy of 94.29% and F1-score of 93.27%. Further, using over 210,000 entity-sentiment predictions, we validate the economic effect of sentiments on aggregate market movements over a long duration.

Word and Document Embeddings based on Neural Network Approaches

Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ...

A Comprehensive Analysis of Static Word Embeddings for Turkish

Word embeddings are fixed-length, dense and distributed word representations that are used in natural language processing (NLP) applications. There are basically two types of word embedding models which are non-contextual (static) models and contextual models. The former method generates a single embedding for a word regardless of its context, while the latter method produces distinct embeddings for a word based on the specific contexts in which it appears. There are plenty of works that compare contextual and non-contextual embedding models within their respective groups in different languages. However, the number of studies that compare the models in these two groups with each other is very few and there is no such study in Turkish. This process necessitates converting contextual embeddings into static embeddings. In this paper, we compare and evaluate the performance of several contextual and non-contextual models in both intrinsic and extrinsic evaluation settings for Turkish. We make a fine-grained comparison by analyzing the syntactic and semantic capabilities of the models separately. The results of the analyses provide insights about the suitability of different embedding models in different types of NLP tasks. We also build a Turkish word embedding repository comprising the embedding models used in this work, which may serve as a valuable resource for researchers and practitioners in the field of Turkish NLP. We make the word embeddings, scripts, and evaluation datasets publicly available.

DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries

This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.

From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.

Sinhala-English Word Embedding Alignment: Introducing Datasets and Benchmark for a Low Resource Language

Since their inception, embeddings have become a primary ingredient in many flavours of Natural Language Processing (NLP) tasks supplanting earlier types of representation. Even though multilingual embeddings have been used for the increasing number of multilingual tasks, due to the scarcity of parallel training data, low-resource languages such as Sinhala, tend to focus more on monolingual embeddings. Then when it comes to the aforementioned multi-lingual tasks, it is challenging to utilize these monolingual embeddings given that even if the embedding spaces have a similar geometric arrangement due to an identical training process, the embeddings of the languages considered are not aligned. This is solved by the embedding alignment task. Even in this, high-resource language pairs are in the limelight while low-resource languages such as Sinhala which is in dire need of help seem to have fallen by the wayside. In this paper, we try to align Sinhala and English word embedding spaces based on available alignment techniques and introduce a benchmark for Sinhala language embedding alignment. In addition to that, to facilitate the supervised alignment, as an intermediate task, we also introduce Sinhala-English alignment datasets. These datasets serve as our anchor datasets for supervised word embedding alignment. Even though we do not obtain results comparable to the high-resource languages such as French, German, or Chinese, we believe our work lays the groundwork for more specialized alignment between English and Sinhala embeddings.

BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings

Natural Language Processing (NLP) for low-resource languages presents significant challenges, particularly due to the scarcity of high-quality annotated data and linguistic resources. The choice of embeddings plays a critical role in enhancing the performance of NLP tasks, such as news classification, sentiment analysis, and hate speech detection, especially for low-resource languages like Marathi. In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language. Our research includes a thorough evaluation of both compressed and uncompressed embeddings, providing a comprehensive overview of how these embeddings perform across different scenarios. Specifically, we compare two BERT model embeddings, Muril and MahaBERT, as well as two FastText model embeddings, IndicFT and MahaFT. Our evaluation includes applying embeddings to a Multiple Logistic Regression (MLR) classifier for task performance assessment, as well as TSNE visualizations to observe the spatial distribution of these embeddings. The results demonstrate that contextual embeddings outperform non-contextual embeddings. Furthermore, BERT-based non-contextual embeddings extracted from the first BERT embedding layer yield better results than FastText-based embeddings, suggesting a potential alternative to FastText embeddings.

L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi

Sentence representation from vanilla BERT models does not work well on sentence similarity tasks. Sentence-BERT models specifically trained on STS or NLI datasets are shown to provide state-of-the-art performance. However, building these models for low-resource languages is not straightforward due to the lack of these specialized datasets. This work focuses on two low-resource Indian languages, Hindi and Marathi. We train sentence-BERT models for these languages using synthetic NLI and STS datasets prepared using machine translation. We show that the strategy of NLI pre-training followed by STSb fine-tuning is effective in generating high-performance sentence-similarity models for Hindi and Marathi. The vanilla BERT models trained using this simple strategy outperform the multilingual LaBSE trained using a complex training strategy. These models are evaluated on downstream text classification and similarity tasks. We evaluate these models on real text classification datasets to show embeddings obtained from synthetic data training are generalizable to real datasets as well and thus represent an effective training strategy for low-resource languages. We also provide a comparative analysis of sentence embeddings from fast text models, multilingual BERT models (mBERT, IndicBERT, xlm-RoBERTa, MuRIL), multilingual sentence embedding models (LASER, LaBSE), and monolingual BERT models based on L3Cube-MahaBERT and HindBERT. We release L3Cube-MahaSBERT and HindSBERT, the state-of-the-art sentence-BERT models for Marathi and Hindi respectively. Our work also serves as a guide to building low-resource sentence embedding models.

Experimental Analysis of Large-scale Learnable Vector Storage Compression

Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.

A Comparative Analysis of Static Word Embeddings for Hungarian

This paper presents a comprehensive analysis of various static word embeddings for Hungarian, including traditional models such as Word2Vec, FastText, as well as static embeddings derived from BERT-based models using different extraction methods. We evaluate these embeddings on both intrinsic and extrinsic tasks to provide a holistic view of their performance. For intrinsic evaluation, we employ a word analogy task, which assesses the embeddings ability to capture semantic and syntactic relationships. Our results indicate that traditional static embeddings, particularly FastText, excel in this task, achieving high accuracy and mean reciprocal rank (MRR) scores. Among the BERT-based models, the X2Static method for extracting static embeddings demonstrates superior performance compared to decontextualized and aggregate methods, approaching the effectiveness of traditional static embeddings. For extrinsic evaluation, we utilize a bidirectional LSTM model to perform Named Entity Recognition (NER) and Part-of-Speech (POS) tagging tasks. The results reveal that embeddings derived from dynamic models, especially those extracted using the X2Static method, outperform purely static embeddings. Notably, ELMo embeddings achieve the highest accuracy in both NER and POS tagging tasks, underscoring the benefits of contextualized representations even when used in a static form. Our findings highlight the continued relevance of static word embeddings in NLP applications and the potential of advanced extraction methods to enhance the utility of BERT-based models. This piece of research contributes to the understanding of embedding performance in the Hungarian language and provides valuable insights for future developments in the field. The training scripts, evaluation codes, restricted vocabulary, and extracted embeddings will be made publicly available to support further research and reproducibility.

Lexinvariant Language Models

Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.

When Text Embedding Meets Large Language Model: A Comprehensive Survey

Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications, such as semantic matching, clustering, and information retrieval, continue to rely on text embeddings for their efficiency and effectiveness. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, utilizing their innate capabilities for embedding generation; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing these efforts based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.

LLMs are Also Effective Embedding Models: An In-depth Overview

Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models.

BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering

Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text.

Do We Need Domain-Specific Embedding Models? An Empirical Investigation

Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advancements in Large Language Models (LLMs) have further enhanced the performance of embedding models, which are trained on massive amounts of text covering almost every domain. These models are often benchmarked on general-purpose datasets like Massive Text Embedding Benchmark (MTEB), where they demonstrate superior performance. However, a critical question arises: Is the development of domain-specific embedding models necessary when general-purpose models are trained on vast corpora that already include specialized domain texts? In this paper, we empirically investigate this question, choosing the finance domain as an example. We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a counterpart to MTEB that consists of financial domain-specific text datasets. We evaluate the performance of seven state-of-the-art embedding models on FinMTEB and observe a significant performance drop compared to their performance on MTEB. To account for the possibility that this drop is driven by FinMTEB's higher complexity, we propose four measures to quantify dataset complexity and control for this factor in our analysis. Our analysis provides compelling evidence that state-of-the-art embedding models struggle to capture domain-specific linguistic and semantic patterns, even when trained on large general-purpose corpora. This study sheds light on the necessity of developing domain-specific embedding models in the LLM era, offering valuable insights for researchers and practitioners.

KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model

In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.

2D Matryoshka Sentence Embeddings

Common approaches rely on fixed-length embedding vectors from language models as sentence embeddings for downstream tasks such as semantic textual similarity (STS). Such methods are limited in their flexibility due to unknown computational constraints and budgets across various applications. Matryoshka Representation Learning (MRL) (Kusupati et al., 2022) encodes information at finer granularities, i.e., with lower embedding dimensions, to adaptively accommodate ad hoc tasks. Similar accuracy can be achieved with a smaller embedding size, leading to speedups in downstream tasks. Despite its improved efficiency, MRL still requires traversing all Transformer layers before obtaining the embedding, which remains the dominant factor in time and memory consumption. This prompts consideration of whether the fixed number of Transformer layers affects representation quality and whether using intermediate layers for sentence representation is feasible. In this paper, we introduce a novel sentence embedding model called Two-dimensional Matryoshka Sentence Embedding (2DMSE). It supports elastic settings for both embedding sizes and Transformer layers, offering greater flexibility and efficiency than MRL. We conduct extensive experiments on STS tasks and downstream applications. The experimental results demonstrate the effectiveness of our proposed model in dynamically supporting different embedding sizes and Transformer layers, allowing it to be highly adaptable to various scenarios.