Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeExpanding the Boundaries of Vision Prior Knowledge in Multi-modal Large Language Models
Does the prior knowledge of the vision encoder constrain the capability boundary of Multi-modal Large Language Models (MLLMs)? While most existing research treats MLLMs as unified systems optimized through end-to-end training, the impact of vision encoder's prior knowledge is seldom investigated. In this work, we introduce a novel metric, Rank_e, to quantify the effect of the vision encoder's prior knowledge on MLLM performance. Our analysis reveals a positive correlation between prior knowledge and MLLM performance. Moreover, we find that domain-specific fine-tuning using solely end-to-end visual question answering (VQA) data is insufficient--particularly for entities with low inherent visual prior knowledge. To address this issue, we propose VisPRE (Vision Prior Remediation), a two-stage training framework that explicitly incorporates prior knowledge at the vision encoder level. Experimental results demonstrate that augmenting vision encoder's prior knowledge substantially boosts the visual understanding capabilities of MLLMs, offering a novel and effective strategy for improving performance, especially in scenarios involving uncommon visual entities.
Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection
Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.
Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld
While large language models (LLMs) excel in a simulated world of texts, they struggle to interact with the more realistic world without perceptions of other modalities such as visual or audio signals. Although vision-language models (VLMs) integrate LLM modules (1) aligned with static image features, and (2) may possess prior knowledge of world dynamics (as demonstrated in the text world), they have not been trained in an embodied visual world and thus cannot align with its dynamics. On the other hand, training an embodied agent in a noisy visual world without expert guidance is often challenging and inefficient. In this paper, we train a VLM agent living in a visual world using an LLM agent excelling in a parallel text world (but inapplicable to the visual world). Specifically, we distill LLM's reflection outcomes (improved actions by analyzing mistakes) in a text world's tasks to finetune the VLM on the same tasks of the visual world, resulting in an Embodied Multi-Modal Agent (EMMA) quickly adapting to the visual world dynamics. Such cross-modality imitation learning between the two parallel worlds enables EMMA to generalize to a broad scope of new tasks without any further guidance from the LLM expert. Extensive evaluations on the ALFWorld benchmark highlight EMMA's superior performance to SOTA VLM-based agents across diverse tasks, e.g., 20%-70% improvement in the success rate.
Efficient Multi-modal Large Language Models via Visual Token Grouping
The development of Multi-modal Large Language Models (MLLMs) enhances Large Language Models (LLMs) with the ability to perceive data formats beyond text, significantly advancing a range of downstream applications, such as visual question answering and image captioning. However, the substantial computational costs associated with processing high-resolution images and videos pose a barrier to their broader adoption. To address this challenge, compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs. While existing methods conduct token reduction in the feature alignment phase. In this paper, we introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments without the need for segmentation masks. Specifically, we concatenate semantic tokens to represent image semantic segments after the linear projection layer before feeding into the vision encoder. Besides, with the isolated attention we adopt, VisToG can identify and eliminate redundant visual tokens utilizing the prior knowledge in the pre-trained vision encoder, which effectively reduces computational demands. Extensive experiments demonstrate the effectiveness of VisToG, maintaining 98.1% of the original performance while achieving a reduction of over 27\% inference time.
HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding
Recent advancements in large language models (LLMs) have significantly propelled the development of large multi-modal models (LMMs), highlighting the potential for general and intelligent assistants. However, most LMMs model visual and textual modalities separately, leading to recent efforts to develop native LMMs using a single transformer. Despite the promise, these native models are resource-intensive and often exhibit performance gaps compared to their compositional counterparts. To alleviate this issue, we propose a simple yet efficient method to construct a baseline for the native and end-to-end large multi-modal model in a single transformer. First, we propose a new early-fusion LMM that can fuse multi-modal inputs in the early stage and respond to visual instructions in an auto-regressive manner. Second, we devise an efficient training recipe for the proposed model, which harnesses the prior knowledge of the pre-trained models, addressing both the performance limitations and the challenge of resource consumption. The proposed model demonstrates superior performance compared to other LMMs using one transformer and significantly narrows the performance gap with compositional LMMs.
PaccMann: Prediction of anticancer compound sensitivity with multi-modal attention-based neural networks
We present a novel approach for the prediction of anticancer compound sensitivity by means of multi-modal attention-based neural networks (PaccMann). In our approach, we integrate three key pillars of drug sensitivity, namely, the molecular structure of compounds, transcriptomic profiles of cancer cells as well as prior knowledge about interactions among proteins within cells. Our models ingest a drug-cell pair consisting of SMILES encoding of a compound and the gene expression profile of a cancer cell and predicts an IC50 sensitivity value. Gene expression profiles are encoded using an attention-based encoding mechanism that assigns high weights to the most informative genes. We present and study three encoders for SMILES string of compounds: 1) bidirectional recurrent 2) convolutional 3) attention-based encoders. We compare our devised models against a baseline model that ingests engineered fingerprints to represent the molecular structure. We demonstrate that using our attention-based encoders, we can surpass the baseline model. The use of attention-based encoders enhance interpretability and enable us to identify genes, bonds and atoms that were used by the network to make a prediction.
Customize-It-3D: High-Quality 3D Creation from A Single Image Using Subject-Specific Knowledge Prior
In this paper, we present a novel two-stage approach that fully utilizes the information provided by the reference image to establish a customized knowledge prior for image-to-3D generation. While previous approaches primarily rely on a general diffusion prior, which struggles to yield consistent results with the reference image, we propose a subject-specific and multi-modal diffusion model. This model not only aids NeRF optimization by considering the shading mode for improved geometry but also enhances texture from the coarse results to achieve superior refinement. Both aspects contribute to faithfully aligning the 3D content with the subject. Extensive experiments showcase the superiority of our method, Customize-It-3D, outperforming previous works by a substantial margin. It produces faithful 360-degree reconstructions with impressive visual quality, making it well-suited for various applications, including text-to-3D creation.
C3L: Content Correlated Vision-Language Instruction Tuning Data Generation via Contrastive Learning
Vision-Language Instruction Tuning (VLIT) is a critical training phase for Large Vision-Language Models (LVLMs). With the improving capabilities of open-source LVLMs, researchers have increasingly turned to generate VLIT data by using open-source LVLMs and achieved significant progress. However, such data generation approaches are bottlenecked by the following challenges: 1) Since multi-modal models tend to be influenced by prior language knowledge, directly using LVLMs to generate VLIT data would inevitably lead to low content relevance between generated data and images. 2) To improve the ability of the models to generate VLIT data, previous methods have incorporated an additional training phase to boost the generative capacity. This process hurts the generalization of the models to unseen inputs (i.e., "exposure bias" problem). In this paper, we propose a new Content Correlated VLIT data generation via Contrastive Learning (C3L). Specifically, we design a new content relevance module which enhances the content relevance between VLIT data and images by computing Image Instruction Correspondence Scores S(I2C). Moreover, a contrastive learning module is introduced to further boost the VLIT data generation capability of the LVLMs. A large number of automatic measures on four benchmarks show the effectiveness of our method.
Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. In this paper, we introduce an Infrastructure-to-Everything (I2X) collaborative prediction scheme. In this scheme, roadside units (RSUs) independently forecast the future trajectories of all vehicles and transmit these predictions unidirectionally to subscribing vehicles. Building on this scheme, we propose I2XTraj, a dedicated infrastructure-based trajectory prediction model. I2XTraj leverages real-time traffic signal states, prior maneuver strategy knowledge, and multi-agent interactions to generate accurate, joint multi-modal trajectory prediction. First, a continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals to guide trajectory proposal generation under varied intersection configurations. Second, a driving strategy awareness mechanism estimates the joint distribution of maneuver strategies by integrating spatial priors of intersection areas with dynamic vehicle states, enabling coverage of the full set of feasible maneuvers. Third, a spatial-temporal-mode attention network models multi-agent interactions to refine and adjust joint trajectory outputs.Finally, I2XTraj is evaluated on two real-world datasets of signalized intersections, the V2X-Seq and the SinD drone dataset. In both single-infrastructure and online collaborative scenarios, our model outperforms state-of-the-art methods by over 30\% on V2X-Seq and 15\% on SinD, demonstrating strong generalizability and robustness.
A Multi-Modal Context Reasoning Approach for Conditional Inference on Joint Textual and Visual Clues
Conditional inference on joint textual and visual clues is a multi-modal reasoning task that textual clues provide prior permutation or external knowledge, which are complementary with visual content and pivotal to deducing the correct option. Previous methods utilizing pretrained vision-language models (VLMs) have achieved impressive performances, yet they show a lack of multimodal context reasoning capability, especially for text-modal information. To address this issue, we propose a Multi-modal Context Reasoning approach, named ModCR. Compared to VLMs performing reasoning via cross modal semantic alignment, it regards the given textual abstract semantic and objective image information as the pre-context information and embeds them into the language model to perform context reasoning. Different from recent vision-aided language models used in natural language processing, ModCR incorporates the multi-view semantic alignment information between language and vision by introducing the learnable alignment prefix between image and text in the pretrained language model. This makes the language model well-suitable for such multi-modal reasoning scenario on joint textual and visual clues. We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance (exact gain by 4.8% on PMR test set) compared to previous strong baselines. Code Link: https://github.com/YunxinLi/Multimodal-Context-Reasoning.
One2Any: One-Reference 6D Pose Estimation for Any Object
6D object pose estimation remains challenging for many applications due to dependencies on complete 3D models, multi-view images, or training limited to specific object categories. These requirements make generalization to novel objects difficult for which neither 3D models nor multi-view images may be available. To address this, we propose a novel method One2Any that estimates the relative 6-degrees of freedom (DOF) object pose using only a single reference-single query RGB-D image, without prior knowledge of its 3D model, multi-view data, or category constraints. We treat object pose estimation as an encoding-decoding process, first, we obtain a comprehensive Reference Object Pose Embedding (ROPE) that encodes an object shape, orientation, and texture from a single reference view. Using this embedding, a U-Net-based pose decoding module produces Reference Object Coordinate (ROC) for new views, enabling fast and accurate pose estimation. This simple encoding-decoding framework allows our model to be trained on any pair-wise pose data, enabling large-scale training and demonstrating great scalability. Experiments on multiple benchmark datasets demonstrate that our model generalizes well to novel objects, achieving state-of-the-art accuracy and robustness even rivaling methods that require multi-view or CAD inputs, at a fraction of compute.
AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction
Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
4Diffusion: Multi-view Video Diffusion Model for 4D Generation
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models. However, these methods lack multi-view spatial-temporal modeling and encounter challenges in integrating diverse prior knowledge from multiple diffusion models, resulting in inconsistent temporal appearance and flickers. In this paper, we propose a novel 4D generation pipeline, namely 4Diffusion aimed at generating spatial-temporally consistent 4D content from a monocular video. We first design a unified diffusion model tailored for multi-view video generation by incorporating a learnable motion module into a frozen 3D-aware diffusion model to capture multi-view spatial-temporal correlations. After training on a curated dataset, our diffusion model acquires reasonable temporal consistency and inherently preserves the generalizability and spatial consistency of the 3D-aware diffusion model. Subsequently, we propose 4D-aware Score Distillation Sampling loss, which is based on our multi-view video diffusion model, to optimize 4D representation parameterized by dynamic NeRF. This aims to eliminate discrepancies arising from multiple diffusion models, allowing for generating spatial-temporally consistent 4D content. Moreover, we devise an anchor loss to enhance the appearance details and facilitate the learning of dynamic NeRF. Extensive qualitative and quantitative experiments demonstrate that our method achieves superior performance compared to previous methods.
A hybrid multi-object segmentation framework with model-based B-splines for microbial single cell analysis
In this paper, we propose a hybrid approach for multi-object microbial cell segmentation. The approach combines an ML-based detection with a geometry-aware variational-based segmentation using B-splines that are parametrized based on a geometric model of the cell shape. The detection is done first using YOLOv5. In a second step, each detected cell is segmented individually. Thus, the segmentation only needs to be done on a per-cell basis, which makes it amenable to a variational approach that incorporates prior knowledge on the geometry. Here, the contour of the segmentation is modelled as closed uniform cubic B-spline, whose control points are parametrized using the known cell geometry. Compared to purely ML-based segmentation approaches, which need accurate segmentation maps as training data that are very laborious to produce, our method just needs bounding boxes as training data. Still, the proposed method performs on par with ML-based segmentation approaches usually used in this context. We study the performance of the proposed method on time-lapse microscopy data of Corynebacterium glutamicum.
Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
ART: Anonymous Region Transformer for Variable Multi-Layer Transparent Image Generation
Multi-layer image generation is a fundamental task that enables users to isolate, select, and edit specific image layers, thereby revolutionizing interactions with generative models. In this paper, we introduce the Anonymous Region Transformer (ART), which facilitates the direct generation of variable multi-layer transparent images based on a global text prompt and an anonymous region layout. Inspired by Schema theory suggests that knowledge is organized in frameworks (schemas) that enable people to interpret and learn from new information by linking it to prior knowledge.}, this anonymous region layout allows the generative model to autonomously determine which set of visual tokens should align with which text tokens, which is in contrast to the previously dominant semantic layout for the image generation task. In addition, the layer-wise region crop mechanism, which only selects the visual tokens belonging to each anonymous region, significantly reduces attention computation costs and enables the efficient generation of images with numerous distinct layers (e.g., 50+). When compared to the full attention approach, our method is over 12 times faster and exhibits fewer layer conflicts. Furthermore, we propose a high-quality multi-layer transparent image autoencoder that supports the direct encoding and decoding of the transparency of variable multi-layer images in a joint manner. By enabling precise control and scalable layer generation, ART establishes a new paradigm for interactive content creation.
Enhanced Contrastive Learning with Multi-view Longitudinal Data for Chest X-ray Report Generation
Automated radiology report generation offers an effective solution to alleviate radiologists' workload. However, most existing methods focus primarily on single or fixed-view images to model current disease conditions, which limits diagnostic accuracy and overlooks disease progression. Although some approaches utilize longitudinal data to track disease progression, they still rely on single images to analyze current visits. To address these issues, we propose enhanced contrastive learning with Multi-view Longitudinal data to facilitate chest X-ray Report Generation, named MLRG. Specifically, we introduce a multi-view longitudinal contrastive learning method that integrates spatial information from current multi-view images and temporal information from longitudinal data. This method also utilizes the inherent spatiotemporal information of radiology reports to supervise the pre-training of visual and textual representations. Subsequently, we present a tokenized absence encoding technique to flexibly handle missing patient-specific prior knowledge, allowing the model to produce more accurate radiology reports based on available prior knowledge. Extensive experiments on MIMIC-CXR, MIMIC-ABN, and Two-view CXR datasets demonstrate that our MLRG outperforms recent state-of-the-art methods, achieving a 2.3% BLEU-4 improvement on MIMIC-CXR, a 5.5% F1 score improvement on MIMIC-ABN, and a 2.7% F1 RadGraph improvement on Two-view CXR.
RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model
The intelligent interpretation of buildings plays a significant role in urban planning and management, macroeconomic analysis, population dynamics, etc. Remote sensing image building interpretation primarily encompasses building extraction and change detection. However, current methodologies often treat these two tasks as separate entities, thereby failing to leverage shared knowledge. Moreover, the complexity and diversity of remote sensing image scenes pose additional challenges, as most algorithms are designed to model individual small datasets, thus lacking cross-scene generalization. In this paper, we propose a comprehensive remote sensing image building understanding model, termed RSBuilding, developed from the perspective of the foundation model. RSBuilding is designed to enhance cross-scene generalization and task universality. Specifically, we extract image features based on the prior knowledge of the foundation model and devise a multi-level feature sampler to augment scale information. To unify task representation and integrate image spatiotemporal clues, we introduce a cross-attention decoder with task prompts. Addressing the current shortage of datasets that incorporate annotations for both tasks, we have developed a federated training strategy to facilitate smooth model convergence even when supervision for some tasks is missing, thereby bolstering the complementarity of different tasks. Our model was trained on a dataset comprising up to 245,000 images and validated on multiple building extraction and change detection datasets. The experimental results substantiate that RSBuilding can concurrently handle two structurally distinct tasks and exhibits robust zero-shot generalization capabilities.
DreamVVT: Mastering Realistic Video Virtual Try-On in the Wild via a Stage-Wise Diffusion Transformer Framework
Video virtual try-on (VVT) technology has garnered considerable academic interest owing to its promising applications in e-commerce advertising and entertainment. However, most existing end-to-end methods rely heavily on scarce paired garment-centric datasets and fail to effectively leverage priors of advanced visual models and test-time inputs, making it challenging to accurately preserve fine-grained garment details and maintain temporal consistency in unconstrained scenarios. To address these challenges, we propose DreamVVT, a carefully designed two-stage framework built upon Diffusion Transformers (DiTs), which is inherently capable of leveraging diverse unpaired human-centric data to enhance adaptability in real-world scenarios. To further leverage prior knowledge from pretrained models and test-time inputs, in the first stage, we sample representative frames from the input video and utilize a multi-frame try-on model integrated with a vision-language model (VLM), to synthesize high-fidelity and semantically consistent keyframe try-on images. These images serve as complementary appearance guidance for subsequent video generation. In the second stage, skeleton maps together with fine-grained motion and appearance descriptions are extracted from the input content, and these along with the keyframe try-on images are then fed into a pretrained video generation model enhanced with LoRA adapters. This ensures long-term temporal coherence for unseen regions and enables highly plausible dynamic motions. Extensive quantitative and qualitative experiments demonstrate that DreamVVT surpasses existing methods in preserving detailed garment content and temporal stability in real-world scenarios. Our project page https://virtu-lab.github.io/
Towards Universal Object Detection by Domain Attention
Despite increasing efforts on universal representations for visual recognition, few have addressed object detection. In this paper, we develop an effective and efficient universal object detection system that is capable of working on various image domains, from human faces and traffic signs to medical CT images. Unlike multi-domain models, this universal model does not require prior knowledge of the domain of interest. This is achieved by the introduction of a new family of adaptation layers, based on the principles of squeeze and excitation, and a new domain-attention mechanism. In the proposed universal detector, all parameters and computations are shared across domains, and a single network processes all domains all the time. Experiments, on a newly established universal object detection benchmark of 11 diverse datasets, show that the proposed detector outperforms a bank of individual detectors, a multi-domain detector, and a baseline universal detector, with a 1.3x parameter increase over a single-domain baseline detector. The code and benchmark will be released at http://www.svcl.ucsd.edu/projects/universal-detection/.
PsycoLLM: Enhancing LLM for Psychological Understanding and Evaluation
Mental health has attracted substantial attention in recent years and LLM can be an effective technology for alleviating this problem owing to its capability in text understanding and dialogue. However, existing research in this domain often suffers from limitations, such as training on datasets lacking crucial prior knowledge and evidence, and the absence of comprehensive evaluation methods. In this paper, we propose a specialized psychological large language model (LLM), named PsycoLLM, trained on a proposed high-quality psychological dataset, including single-turn QA, multi-turn dialogues enriched with prior knowledge and knowledge-based QA. Additionally, to compare the performance of PsycoLLM with other LLMs, we develop a comprehensive psychological benchmark based on authoritative psychological counseling examinations in China, which includes assessments of professional ethics, theoretical proficiency, and case analysis. The experimental results on the benchmark illustrates the effectiveness of PsycoLLM, which demonstrates superior performance compared to other LLMs.
MinT: Boosting Generalization in Mathematical Reasoning via Multi-View Fine-Tuning
Reasoning in mathematical domains remains a significant challenge for relatively small language models (LMs). Many current methods focus on specializing LMs in mathematical reasoning and rely heavily on knowledge distillation from powerful but inefficient large LMs (LLMs). In this work, we explore a new direction that avoids over-reliance on LLM teachers, introducing a multi-view fine-tuning method that efficiently exploits existing mathematical problem datasets with diverse annotation styles. Our approach uniquely considers the various annotation formats as different "views" and leverages them in training the model. By postpending distinct instructions to input questions, models can learn to generate solutions in diverse formats in a flexible manner. Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches that utilize knowledge distillation, as well as carefully established baselines. Additionally, the proposed method grants the models promising generalization ability across various views and datasets, and the capability to learn from inaccurate or incomplete noisy data. We hope our multi-view training paradigm could inspire future studies in other machine reasoning domains.
Swiss Army Knife: Synergizing Biases in Knowledge from Vision Foundation Models for Multi-Task Learning
Vision Foundation Models (VFMs) have demonstrated outstanding performance on numerous downstream tasks. However, due to their inherent representation biases originating from different training paradigms, VFMs exhibit advantages and disadvantages across distinct vision tasks. Although amalgamating the strengths of multiple VFMs for downstream tasks is an intuitive strategy, effectively exploiting these biases remains a significant challenge. In this paper, we propose a novel and versatile "Swiss Army Knife" (SAK) solution, which adaptively distills knowledge from a committee of VFMs to enhance multi-task learning. Unlike existing methods that use a single backbone for knowledge transfer, our approach preserves the unique representation bias of each teacher by collaborating the lightweight Teacher-Specific Adapter Path modules with the Teacher-Agnostic Stem. Through dynamic selection and combination of representations with Mixture-of-Representations Routers, our SAK is capable of synergizing the complementary strengths of multiple VFMs. Extensive experiments show that our SAK remarkably outperforms prior state of the arts in multi-task learning by 10% on the NYUD-v2 benchmark, while also providing a flexible and robust framework that can readily accommodate more advanced model designs.
BearLLM: A Prior Knowledge-Enhanced Bearing Health Management Framework with Unified Vibration Signal Representation
We propose a bearing health management framework leveraging large language models (BearLLM), a novel multimodal model that unifies multiple bearing-related tasks by processing user prompts and vibration signals. Specifically, we introduce a prior knowledge-enhanced unified vibration signal representation to handle various working conditions across multiple datasets. This involves adaptively sampling the vibration signals based on the sampling rate of the sensor, incorporating the frequency domain to unify input dimensions, and using a fault-free reference signal as an auxiliary input. To extract features from vibration signals, we first train a fault classification network, then convert and align the extracted features into word embedding, and finally concatenate these with text embedding as input to an LLM. To evaluate the performance of the proposed method, we constructed the first large-scale multimodal bearing health management (MBHM) dataset, including paired vibration signals and textual descriptions. With our unified vibration signal representation, BearLLM using one set of pre-trained weights achieves state-of-the-art performance on nine publicly available fault diagnosis benchmarks, outperforming specific methods designed for individual datasets. We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models (https://github.com/hatton613/BearLLM).
SEFE: Superficial and Essential Forgetting Eliminator for Multimodal Continual Instruction Tuning
Multimodal Continual Instruction Tuning (MCIT) aims to enable Multimodal Large Language Models (MLLMs) to incrementally learn new tasks without catastrophic forgetting. In this paper, we explore forgetting in this context, categorizing it into superficial forgetting and essential forgetting. Superficial forgetting refers to cases where the model's knowledge may not be genuinely lost, but its responses to previous tasks deviate from expected formats due to the influence of subsequent tasks' answer styles, making the results unusable. By contrast, essential forgetting refers to situations where the model provides correctly formatted but factually inaccurate answers, indicating a true loss of knowledge. Assessing essential forgetting necessitates addressing superficial forgetting first, as severe superficial forgetting can obscure the model's knowledge state. Hence, we first introduce the Answer Style Diversification (ASD) paradigm, which defines a standardized process for transforming data styles across different tasks, unifying their training sets into similarly diversified styles to prevent superficial forgetting caused by style shifts. Building on this, we propose RegLoRA to mitigate essential forgetting. RegLoRA stabilizes key parameters where prior knowledge is primarily stored by applying regularization, enabling the model to retain existing competencies. Experimental results demonstrate that our overall method, SEFE, achieves state-of-the-art performance.
MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval, One More Step Towards Generalization
In this work we present a new State-of-The-Art on the text-to-video retrieval task on MSR-VTT, LSMDC, MSVD, YouCook2 and TGIF obtained by a single model. Three different data sources are combined: weakly-supervised videos, crowd-labeled text-image pairs and text-video pairs. A careful analysis of available pre-trained networks helps to choose the best prior-knowledge ones. We introduce three-stage training procedure that provides high transfer knowledge efficiency and allows to use noisy datasets during training without prior knowledge degradation. Additionally, double positional encoding is used for better fusion of different modalities and a simple method for non-square inputs processing is suggested.
Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning
Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.
Towards General Computer Control: A Multimodal Agent for Red Dead Redemption II as a Case Study
Despite the success in specific tasks and scenarios, existing foundation agents, empowered by large models (LMs) and advanced tools, still cannot generalize to different scenarios, mainly due to dramatic differences in the observations and actions across scenarios. In this work, we propose the General Computer Control (GCC) setting: building foundation agents that can master any computer task by taking only screen images (and possibly audio) of the computer as input, and producing keyboard and mouse operations as output, similar to human-computer interaction. The main challenges of achieving GCC are: 1) the multimodal observations for decision-making, 2) the requirements of accurate control of keyboard and mouse, 3) the need for long-term memory and reasoning, and 4) the abilities of efficient exploration and self-improvement. To target GCC, we introduce Cradle, an agent framework with six main modules, including: 1) information gathering to extract multi-modality information, 2) self-reflection to rethink past experiences, 3) task inference to choose the best next task, 4) skill curation for generating and updating relevant skills for given tasks, 5) action planning to generate specific operations for keyboard and mouse control, and 6) memory for storage and retrieval of past experiences and known skills. To demonstrate the capabilities of generalization and self-improvement of Cradle, we deploy it in the complex AAA game Red Dead Redemption II, serving as a preliminary attempt towards GCC with a challenging target. To our best knowledge, our work is the first to enable LMM-based agents to follow the main storyline and finish real missions in complex AAA games, with minimal reliance on prior knowledge or resources. The project website is at https://baai-agents.github.io/Cradle/.
Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models As an alternative, emerging multimodal large language models (LLMs) like BERT and LLaMA rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant nonverbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing fine-tuning for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.
HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation
With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.
Can Multimodal Large Language Models Understand Spatial Relations?
Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model's prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://github.com/ziyan-xiaoyu/SpatialMQA.git.
Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues
It is a common practice for recent works in vision language cross-modal reasoning to adopt a binary or multi-choice classification formulation taking as input a set of source image(s) and textual query. In this work, we take a sober look at such an unconditional formulation in the sense that no prior knowledge is specified with respect to the source image(s). Inspired by the designs of both visual commonsense reasoning and natural language inference tasks, we propose a new task termed Premise-based Multi-modal Reasoning(PMR) where a textual premise is the background presumption on each source image. The PMR dataset contains 15,360 manually annotated samples which are created by a multi-phase crowd-sourcing process. With selected high-quality movie screenshots and human-curated premise templates from 6 pre-defined categories, we ask crowd-source workers to write one true hypothesis and three distractors (4 choices) given the premise and image through a cross-check procedure. Besides, we generate adversarial samples to alleviate the annotation artifacts and double the size of PMR. We benchmark various state-of-the-art (pretrained) multi-modal inference models on PMR and conduct comprehensive experimental analyses to showcase the utility of our dataset.
InverTune: Removing Backdoors from Multimodal Contrastive Learning Models via Trigger Inversion and Activation Tuning
Multimodal contrastive learning models like CLIP have demonstrated remarkable vision-language alignment capabilities, yet their vulnerability to backdoor attacks poses critical security risks. Attackers can implant latent triggers that persist through downstream tasks, enabling malicious control of model behavior upon trigger presentation. Despite great success in recent defense mechanisms, they remain impractical due to strong assumptions about attacker knowledge or excessive clean data requirements. In this paper, we introduce InverTune, the first backdoor defense framework for multimodal models under minimal attacker assumptions, requiring neither prior knowledge of attack targets nor access to the poisoned dataset. Unlike existing defense methods that rely on the same dataset used in the poisoning stage, InverTune effectively identifies and removes backdoor artifacts through three key components, achieving robust protection against backdoor attacks. Specifically, InverTune first exposes attack signatures through adversarial simulation, probabilistically identifying the target label by analyzing model response patterns. Building on this, we develop a gradient inversion technique to reconstruct latent triggers through activation pattern analysis. Finally, a clustering-guided fine-tuning strategy is employed to erase the backdoor function with only a small amount of arbitrary clean data, while preserving the original model capabilities. Experimental results show that InverTune reduces the average attack success rate (ASR) by 97.87% against the state-of-the-art (SOTA) attacks while limiting clean accuracy (CA) degradation to just 3.07%. This work establishes a new paradigm for securing multimodal systems, advancing security in foundation model deployment without compromising performance.
HunyuanVideo-HOMA: Generic Human-Object Interaction in Multimodal Driven Human Animation
To address key limitations in human-object interaction (HOI) video generation -- specifically the reliance on curated motion data, limited generalization to novel objects/scenarios, and restricted accessibility -- we introduce HunyuanVideo-HOMA, a weakly conditioned multimodal-driven framework. HunyuanVideo-HOMA enhances controllability and reduces dependency on precise inputs through sparse, decoupled motion guidance. It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer (MMDiT), fusing them within a shared context space to synthesize temporally consistent and physically plausible interactions. To optimize training, we integrate a parameter-space HOI adapter initialized from pretrained MMDiT weights, preserving prior knowledge while enabling efficient adaptation, and a facial cross-attention adapter for anatomically accurate audio-driven lip synchronization. Extensive experiments confirm state-of-the-art performance in interaction naturalness and generalization under weak supervision. Finally, HunyuanVideo-HOMA demonstrates versatility in text-conditioned generation and interactive object manipulation, supported by a user-friendly demo interface. The project page is at https://anonymous.4open.science/w/homa-page-0FBE/.
Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model
In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer.
Towards Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-based Convolutional Encoders
In line with recent advances in neural drug design and sensitivity prediction, we propose a novel architecture for interpretable prediction of anticancer compound sensitivity using a multimodal attention-based convolutional encoder. Our model is based on the three key pillars of drug sensitivity: compounds' structure in the form of a SMILES sequence, gene expression profiles of tumors and prior knowledge on intracellular interactions from protein-protein interaction networks. We demonstrate that our multiscale convolutional attention-based (MCA) encoder significantly outperforms a baseline model trained on Morgan fingerprints, a selection of encoders based on SMILES as well as previously reported state of the art for multimodal drug sensitivity prediction (R2 = 0.86 and RMSE = 0.89). Moreover, the explainability of our approach is demonstrated by a thorough analysis of the attention weights. We show that the attended genes significantly enrich apoptotic processes and that the drug attention is strongly correlated with a standard chemical structure similarity index. Finally, we report a case study of two receptor tyrosine kinase (RTK) inhibitors acting on a leukemia cell line, showcasing the ability of the model to focus on informative genes and submolecular regions of the two compounds. The demonstrated generalizability and the interpretability of our model testify its potential for in-silico prediction of anticancer compound efficacy on unseen cancer cells, positioning it as a valid solution for the development of personalized therapies as well as for the evaluation of candidate compounds in de novo drug design.
Is 'Right' Right? Enhancing Object Orientation Understanding in Multimodal Large Language Models through Egocentric Instruction Tuning
Multimodal large language models (MLLMs) act as essential interfaces, connecting humans with AI technologies in multimodal applications. However, current MLLMs face challenges in accurately interpreting object orientation in images due to inconsistent orientation annotations in training data, hindering the development of a coherent orientation understanding. To overcome this, we propose egocentric instruction tuning, which aligns MLLMs' orientation understanding with the user's perspective, based on a consistent annotation standard derived from the user's egocentric viewpoint. We first generate egocentric instruction data that leverages MLLMs' ability to recognize object details and applies prior knowledge for orientation understanding. Using this data, we perform instruction tuning to enhance the model's capability for accurate orientation interpretation. In addition, we introduce EgoOrientBench, a benchmark that evaluates MLLMs' orientation understanding across three tasks using images collected from diverse domains. Experimental results on this benchmark show that egocentric instruction tuning significantly improves orientation understanding without compromising overall MLLM performance. The instruction data and benchmark dataset are available on our project page at https://github.com/jhCOR/EgoOrientBench.
SketchAgent: Language-Driven Sequential Sketch Generation
Sketching serves as a versatile tool for externalizing ideas, enabling rapid exploration and visual communication that spans various disciplines. While artificial systems have driven substantial advances in content creation and human-computer interaction, capturing the dynamic and abstract nature of human sketching remains challenging. In this work, we introduce SketchAgent, a language-driven, sequential sketch generation method that enables users to create, modify, and refine sketches through dynamic, conversational interactions. Our approach requires no training or fine-tuning. Instead, we leverage the sequential nature and rich prior knowledge of off-the-shelf multimodal large language models (LLMs). We present an intuitive sketching language, introduced to the model through in-context examples, enabling it to "draw" using string-based actions. These are processed into vector graphics and then rendered to create a sketch on a pixel canvas, which can be accessed again for further tasks. By drawing stroke by stroke, our agent captures the evolving, dynamic qualities intrinsic to sketching. We demonstrate that SketchAgent can generate sketches from diverse prompts, engage in dialogue-driven drawing, and collaborate meaningfully with human users.
VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI
Recent advancements in Multi-modal Large Language Models (MLLMs) have opened new avenues for applications in Embodied AI. Building on previous work, EgoThink, we introduce VidEgoThink, a comprehensive benchmark for evaluating egocentric video understanding capabilities. To bridge the gap between MLLMs and low-level control in Embodied AI, we design four key interrelated tasks: video question-answering, hierarchy planning, visual grounding and reward modeling. To minimize manual annotation costs, we develop an automatic data generation pipeline based on the Ego4D dataset, leveraging the prior knowledge and multimodal capabilities of GPT-4o. Three human annotators then filter the generated data to ensure diversity and quality, resulting in the VidEgoThink benchmark. We conduct extensive experiments with three types of models: API-based MLLMs, open-source image-based MLLMs, and open-source video-based MLLMs. Experimental results indicate that all MLLMs, including GPT-4o, perform poorly across all tasks related to egocentric video understanding. These findings suggest that foundation models still require significant advancements to be effectively applied to first-person scenarios in Embodied AI. In conclusion, VidEgoThink reflects a research trend towards employing MLLMs for egocentric vision, akin to human capabilities, enabling active observation and interaction in the complex real-world environments.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
Multimodal Knowledge Alignment with Reinforcement Learning
Large language models readily adapt to novel settings, even without task-specific training data. Can their zero-shot capacity be extended to multimodal inputs? In this work, we propose ESPER which extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning. Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision: for example, in the image case our reward optimization relies only on cosine similarity derived from CLIP, and thus requires no additional explicitly paired (image, caption) data. Because the parameters of the language model are left unchanged, the model maintains its capacity for zero-shot generalization. Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks; these include a new benchmark we collect+release, ESP dataset, which tasks models with generating several diversely-styled captions for each image.
A Multimodal Knowledge-enhanced Whole-slide Pathology Foundation Model
Remarkable strides in computational pathology have been made in the task-agnostic foundation model that advances the performance of a wide array of downstream clinical tasks. Despite the promising performance, there are still several challenges. First, prior works have resorted to either vision-only or image-caption data, disregarding pathology reports with more clinically authentic information from pathologists and gene expression profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the current progress in pathology FMs predominantly concentrates on the patch level, where the restricted context of patch-level pretraining fails to capture whole-slide patterns. Even recent slide-level FMs still struggle to provide whole-slide context for patch representation. In this study, for the first time, we develop a pathology foundation model incorporating three levels of modalities: pathology slides, pathology reports, and gene expression data, which resulted in 26,169 slide-level modality pairs from 10,275 patients across 32 cancer types, amounting to over 116 million pathological patch images. To leverage these data for CPath, we propose a novel whole-slide pretraining paradigm that injects the multimodal whole-slide context into the patch representation, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm revolutionizes the pretraining workflow for CPath, enabling the pathology FM to acquire the whole-slide context. To the best of our knowledge, this is the first attempt to incorporate three modalities at the whole-slide context for enhancing pathology FMs. To systematically evaluate the capabilities of mSTAR, we built the largest spectrum of oncological benchmark, spanning 7 categories of oncological applications in 15 types of 97 practical oncological tasks.
A Comprehensive Study of GPT-4V's Multimodal Capabilities in Medical Imaging
This paper presents a comprehensive evaluation of GPT-4V's capabilities across diverse medical imaging tasks, including Radiology Report Generation, Medical Visual Question Answering (VQA), and Visual Grounding. While prior efforts have explored GPT-4V's performance in medical image analysis, to the best of our knowledge, our study represents the first quantitative evaluation on publicly available benchmarks. Our findings highlight GPT-4V's potential in generating descriptive reports for chest X-ray images, particularly when guided by well-structured prompts. Meanwhile, its performance on the MIMIC-CXR dataset benchmark reveals areas for improvement in certain evaluation metrics, such as CIDEr. In the domain of Medical VQA, GPT-4V demonstrates proficiency in distinguishing between question types but falls short of the VQA-RAD benchmark in terms of accuracy. Furthermore, our analysis finds the limitations of conventional evaluation metrics like the BLEU scores, advocating for the development of more semantically robust assessment methods. In the field of Visual Grounding, GPT-4V exhibits preliminary promise in recognizing bounding boxes, but its precision is lacking, especially in identifying specific medical organs and signs. Our evaluation underscores the significant potential of GPT-4V in the medical imaging domain, while also emphasizing the need for targeted refinements to fully unlock its capabilities.
DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.
Adversarial Attacks on Multimodal Agents
Vision-enabled language models (VLMs) are now used to build autonomous multimodal agents capable of taking actions in real environments. In this paper, we show that multimodal agents raise new safety risks, even though attacking agents is more challenging than prior attacks due to limited access to and knowledge about the environment. Our attacks use adversarial text strings to guide gradient-based perturbation over one trigger image in the environment: (1) our captioner attack attacks white-box captioners if they are used to process images into captions as additional inputs to the VLM; (2) our CLIP attack attacks a set of CLIP models jointly, which can transfer to proprietary VLMs. To evaluate the attacks, we curated VisualWebArena-Adv, a set of adversarial tasks based on VisualWebArena, an environment for web-based multimodal agent tasks. Within an L-infinity norm of 16/256 on a single image, the captioner attack can make a captioner-augmented GPT-4V agent execute the adversarial goals with a 75% success rate. When we remove the captioner or use GPT-4V to generate its own captions, the CLIP attack can achieve success rates of 21% and 43%, respectively. Experiments on agents based on other VLMs, such as Gemini-1.5, Claude-3, and GPT-4o, show interesting differences in their robustness. Further analysis reveals several key factors contributing to the attack's success, and we also discuss the implications for defenses as well. Project page: https://chenwu.io/attack-agent Code and data: https://github.com/ChenWu98/agent-attack
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
End-to-end Knowledge Retrieval with Multi-modal Queries
We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model ``ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets.
One Model, Multiple Modalities: A Sparsely Activated Approach for Text, Sound, Image, Video and Code
People perceive the world with multiple senses (e.g., through hearing sounds, reading words and seeing objects). However, most existing AI systems only process an individual modality. This paper presents an approach that excels at handling multiple modalities of information with a single model. In our "{SkillNet}" model, different parts of the parameters are specialized for processing different modalities. Unlike traditional dense models that always activate all the model parameters, our model sparsely activates parts of the parameters whose skills are relevant to the task. Such model design enables SkillNet to learn skills in a more interpretable way. We develop our model for five modalities including text, image, sound, video and code. Results show that, SkillNet performs comparably to five modality-specific fine-tuned models. Moreover, our model supports self-supervised pretraining with the same sparsely activated way, resulting in better initialized parameters for different modalities. We find that pretraining significantly improves the performance of SkillNet on five modalities, on par with or even better than baselines with modality-specific pretraining. On the task of Chinese text-to-image retrieval, our final system achieves higher accuracy than existing leading systems including Wukong{ViT-B} and Wenlan 2.0 while using less number of activated parameters.
Dynamic Knowledge Integration for Enhanced Vision-Language Reasoning
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multimodal tasks, but their performance is often constrained by the lack of external knowledge integration, limiting their ability to handle knowledge-intensive tasks such as visual question answering and reasoning. To address this challenge, we propose a novel method, Adaptive Knowledge-Guided Pretraining for Large Vision-Language Models (AKGP-LVLM), which dynamically incorporates structured and unstructured knowledge into LVLMs during pretraining and fine-tuning. Our approach employs a knowledge encoder to represent external knowledge, a retrieval mechanism to select task-relevant information, and a dynamic adaptor to align multimodal and knowledge representations effectively. We evaluate our method on four benchmark datasets, demonstrating significant performance improvements over state-of-the-art models. Furthermore, human evaluations highlight the superior correctness and relevance of our model's outputs. Extensive analyses confirm the robustness, efficiency, and scalability of AKGP-LVLM, making it a compelling solution for real-world knowledge-intensive tasks.
Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond
Multi-modality image fusion, particularly infrared and visible, plays a crucial role in integrating diverse modalities to enhance scene understanding. Although early research prioritized visual quality, preserving fine details and adapting to downstream tasks remains challenging. Recent approaches attempt task-specific design but rarely achieve "The Best of Both Worlds" due to inconsistent optimization goals. To address these issues, we propose a novel method that leverages the semantic knowledge from the Segment Anything Model (SAM) to Grow the quality of fusion results and Enable downstream task adaptability, namely SAGE. Specifically, we design a Semantic Persistent Attention (SPA) Module that efficiently maintains source information via the persistent repository while extracting high-level semantic priors from SAM. More importantly, to eliminate the impractical dependence on SAM during inference, we introduce a bi-level optimization-driven distillation mechanism with triplet losses, which allow the student network to effectively extract knowledge. Extensive experiments show that our method achieves a balance between high-quality visual results and downstream task adaptability while maintaining practical deployment efficiency. The code is available at https://github.com/RollingPlain/SAGE_IVIF.
MV-Adapter: Multi-view Consistent Image Generation Made Easy
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image (T2I) models and require full fine-tuning, leading to (1) high computational costs, especially with large base models and high-resolution images, and (2) degradation in image quality due to optimization difficulties and scarce high-quality 3D data. In this paper, we propose the first adapter-based solution for multi-view image generation, and introduce MV-Adapter, a versatile plug-and-play adapter that enhances T2I models and their derivatives without altering the original network structure or feature space. By updating fewer parameters, MV-Adapter enables efficient training and preserves the prior knowledge embedded in pre-trained models, mitigating overfitting risks. To efficiently model the 3D geometric knowledge within the adapter, we introduce innovative designs that include duplicated self-attention layers and parallel attention architecture, enabling the adapter to inherit the powerful priors of the pre-trained models to model the novel 3D knowledge. Moreover, we present a unified condition encoder that seamlessly integrates camera parameters and geometric information, facilitating applications such as text- and image-based 3D generation and texturing. MV-Adapter achieves multi-view generation at 768 resolution on Stable Diffusion XL (SDXL), and demonstrates adaptability and versatility. It can also be extended to arbitrary view generation, enabling broader applications. We demonstrate that MV-Adapter sets a new quality standard for multi-view image generation, and opens up new possibilities due to its efficiency, adaptability and versatility.
Retrieving Multimodal Information for Augmented Generation: A Survey
In this survey, we review methods that retrieve multimodal knowledge to assist and augment generative models. This group of works focuses on retrieving grounding contexts from external sources, including images, codes, tables, graphs, and audio. As multimodal learning and generative AI have become more and more impactful, such retrieval augmentation offers a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. We provide an in-depth review of retrieval-augmented generation in different modalities and discuss potential future directions. As this is an emerging field, we continue to add new papers and methods.
Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text. C^3 is available at https://dataset.org/c3/.
KScope: A Framework for Characterizing the Knowledge Status of Language Models
Characterizing a large language model's (LLM's) knowledge of a given question is challenging. As a result, prior work has primarily examined LLM behavior under knowledge conflicts, where the model's internal parametric memory contradicts information in the external context. However, this does not fully reflect how well the model knows the answer to the question. In this paper, we first introduce a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We then propose KScope, a hierarchical framework of statistical tests that progressively refines hypotheses about knowledge modes and characterizes LLM knowledge into one of these five statuses. We apply KScope to nine LLMs across four datasets and systematically establish: (1) Supporting context narrows knowledge gaps across models. (2) Context features related to difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit similar feature preferences when partially correct or conflicted, but diverge sharply when consistently wrong. (4) Context summarization constrained by our feature analysis, together with enhanced credibility, further improves update effectiveness and generalizes across LLMs.
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
Integrating Knowledge Graph embedding and pretrained Language Models in Hypercomplex Spaces
Knowledge Graphs, such as Wikidata, comprise structural and textual knowledge in order to represent knowledge. For each of the two modalities dedicated approaches for graph embedding and language models learn patterns that allow for predicting novel structural knowledge. Few approaches have integrated learning and inference with both modalities and these existing ones could only partially exploit the interaction of structural and textual knowledge. In our approach, we build on existing strong representations of single modalities and we use hypercomplex algebra to represent both, (i), single-modality embedding as well as, (ii), the interaction between different modalities and their complementary means of knowledge representation. More specifically, we suggest Dihedron and Quaternion representations of 4D hypercomplex numbers to integrate four modalities namely structural knowledge graph embedding, word-level representations (e.g.\ Word2vec, Fasttext), sentence-level representations (Sentence transformer), and document-level representations (sentence transformer, Doc2vec). Our unified vector representation scores the plausibility of labelled edges via Hamilton and Dihedron products, thus modeling pairwise interactions between different modalities. Extensive experimental evaluation on standard benchmark datasets shows the superiority of our two new models using abundant textual information besides sparse structural knowledge to enhance performance in link prediction tasks.
Multi-Scale Self-Attention for Text Classification
In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguistic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets.
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
AudioBERT: Audio Knowledge Augmented Language Model
Recent studies have identified that language models, pretrained on text-only datasets, often lack elementary visual knowledge, e.g., colors of everyday objects. Motivated by this observation, we ask whether a similar shortcoming exists in terms of the auditory knowledge. To answer this question, we construct a new dataset called AuditoryBench, which consists of two novel tasks for evaluating auditory knowledge. Based on our analysis using the benchmark, we find that language models also suffer from a severe lack of auditory knowledge. To address this limitation, we propose AudioBERT, a novel method to augment the auditory knowledge of BERT through a retrieval-based approach. First, we detect auditory knowledge spans in prompts to query our retrieval model efficiently. Then, we inject audio knowledge into BERT and switch on low-rank adaptation for effective adaptation when audio knowledge is required. Our experiments demonstrate that AudioBERT is quite effective, achieving superior performance on the AuditoryBench. The dataset and code are available at https://github.com/HJ-Ok/AudioBERT.
mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation
Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning. However, they remain limited by static training data, susceptibility to hallucinations, and inability to verify claims against up-to-date, external evidence, compromising their performance in dynamic real-world applications. Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms, thereby grounding model outputs in factual, contextually relevant information. Here in this paper, we conduct the first systematic dissection of the multimodal RAG pipeline for LVLMs, explicitly investigating (1) the retrieval phase: on the modality configurations and retrieval strategies, (2) the re-ranking stage: on strategies to mitigate positional biases and improve the relevance of retrieved evidence, and (3) the generation phase: we further investigate how to best integrate retrieved candidates into the final generation process. Finally, we extend to explore a unified agentic framework that integrates re-ranking and generation through self-reflection, enabling LVLMs to select relevant evidence and suppress irrelevant context dynamically. Our full-stack exploration of RAG for LVLMs yields substantial insights, resulting in an average performance boost of 5% without any fine-tuning.
Unraveling Cross-Modality Knowledge Conflict in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs. However, these models are prone to parametric knowledge conflicts, which arise from inconsistencies of represented knowledge between their vision and language components. In this paper, we formally define the problem of cross-modality parametric knowledge conflict and present a systematic approach to detect, interpret, and mitigate them. We introduce a pipeline that identifies conflicts between visual and textual answers, showing a persistently high conflict rate across modalities in recent LVLMs regardless of the model size. We further investigate how these conflicts interfere with the inference process and propose a contrastive metric to discern the conflicting samples from the others. Building on these insights, we develop a novel dynamic contrastive decoding method that removes undesirable logits inferred from the less confident modality components based on answer confidence. For models that do not provide logits, we also introduce two prompt-based strategies to mitigate the conflicts. Our methods achieve promising improvements in accuracy on both the ViQuAE and InfoSeek datasets. Specifically, using LLaVA-34B, our proposed dynamic contrastive decoding improves an average accuracy of 2.24%.
Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.
PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Tackling Data Bias in MUSIC-AVQA: Crafting a Balanced Dataset for Unbiased Question-Answering
In recent years, there has been a growing emphasis on the intersection of audio, vision, and text modalities, driving forward the advancements in multimodal research. However, strong bias that exists in any modality can lead to the model neglecting the others. Consequently, the model's ability to effectively reason across these diverse modalities is compromised, impeding further advancement. In this paper, we meticulously review each question type from the original dataset, selecting those with pronounced answer biases. To counter these biases, we gather complementary videos and questions, ensuring that no answers have outstanding skewed distribution. In particular, for binary questions, we strive to ensure that both answers are almost uniformly spread within each question category. As a result, we construct a new dataset, named MUSIC-AVQA v2.0, which is more challenging and we believe could better foster the progress of AVQA task. Furthermore, we present a novel baseline model that delves deeper into the audio-visual-text interrelation. On MUSIC-AVQA v2.0, this model surpasses all the existing benchmarks, improving accuracy by 2% on MUSIC-AVQA v2.0, setting a new state-of-the-art performance.
MMR-V: What's Left Unsaid? A Benchmark for Multimodal Deep Reasoning in Videos
The sequential structure of videos poses a challenge to the ability of multimodal large language models (MLLMs) to locate multi-frame evidence and conduct multimodal reasoning. However, existing video benchmarks mainly focus on understanding tasks, which only require models to match frames mentioned in the question (hereafter referred to as "question frame") and perceive a few adjacent frames. To address this gap, we propose MMR-V: A Benchmark for Multimodal Deep Reasoning in Videos. The benchmark is characterized by the following features. (1) Long-range, multi-frame reasoning: Models are required to infer and analyze evidence frames that may be far from the question frame. (2) Beyond perception: Questions cannot be answered through direct perception alone but require reasoning over hidden information. (3) Reliability: All tasks are manually annotated, referencing extensive real-world user understanding to align with common perceptions. (4) Confusability: Carefully designed distractor annotation strategies to reduce model shortcuts. MMR-V consists of 317 videos and 1,257 tasks. Our experiments reveal that current models still struggle with multi-modal reasoning; even the best-performing model, o4-mini, achieves only 52.5% accuracy. Additionally, current reasoning enhancement strategies (Chain-of-Thought and scaling test-time compute) bring limited gains. Further analysis indicates that the CoT demanded for multi-modal reasoning differs from it in textual reasoning, which partly explains the limited performance gains. We hope that MMR-V can inspire further research into enhancing multi-modal reasoning capabilities.
Controllable Context Sensitivity and the Knob Behind It
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference
The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics.
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
Explore the Limits of Omni-modal Pretraining at Scale
We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
Multi-Modality Guidance Network For Missing Modality Inference
Multimodal models have gained significant success in recent years. Standard multimodal approaches often assume unchanged modalities from training stage to inference stage. In practice, however, many scenarios fail to satisfy such assumptions with missing modalities during inference, leading to limitations on where multimodal models can be applied. While existing methods mitigate the problem through reconstructing the missing modalities, it increases unnecessary computational cost, which could be just as critical, especially for large, deployed systems. To solve the problem from both sides, we propose a novel guidance network that promotes knowledge sharing during training, taking advantage of the multimodal representations to train better single-modality models for inference. Real-life experiment in violence detection shows that our proposed framework trains single-modality models that significantly outperform its traditionally trained counterparts while maintaining the same inference cost.
Learning semantic sentence representations from visually grounded language without lexical knowledge
Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
Can Pre-trained Vision and Language Models Answer Visual Information-Seeking Questions?
Large language models have demonstrated an emergent capability in answering knowledge intensive questions. With recent progress on web-scale visual and language pre-training, do these models also understand how to answer visual information seeking questions? To answer this question, we present InfoSeek, a Visual Question Answering dataset that focuses on asking information-seeking questions, where the information can not be answered by common sense knowledge. We perform a multi-stage human annotation to collect a natural distribution of high-quality visual information seeking question-answer pairs. We also construct a large-scale, automatically collected dataset by combining existing visual entity recognition datasets and Wikidata, which provides over one million examples for model fine-tuning and validation. Based on InfoSeek, we analyzed various pre-trained Visual QA systems to gain insights into the characteristics of different pre-trained models. Our analysis shows that it is challenging for the state-of-the-art multi-modal pre-trained models to answer visual information seeking questions, but this capability is improved through fine-tuning on the automated InfoSeek dataset. We hope our analysis paves the way to understand and develop the next generation of multi-modal pre-training.
Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
Establishing Knowledge Preference in Language Models
Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
When to Speak, When to Abstain: Contrastive Decoding with Abstention
Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust.
RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction (wedge), disjunction (vee), and negation (neg), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering
The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V and Gemini, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Additionally, we utilize a visual knowledge-enhanced training strategy and multimodal retrieval-augmented generation approach to enhance MLMs, highlighting the future need for advancements in this research direction. Extensive experiments indicate that: a) GPT-4V demonstrates enhanced explanation generation when using composite images as few-shots; b) GPT-4V and other MLMs produce severe hallucinations when dealing with world knowledge; c) Visual knowledge enhanced training and prompting technicals present potential to improve performance. Codes: https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
MuRAG: Multimodal Retrieval-Augmented Generator for Open Question Answering over Images and Text
While language Models store a massive amount of world knowledge implicitly in their parameters, even very large models often fail to encode information about rare entities and events, while incurring huge computational costs. Recently, retrieval-augmented models, such as REALM, RAG, and RETRO, have incorporated world knowledge into language generation by leveraging an external non-parametric index and have demonstrated impressive performance with constrained model sizes. However, these methods are restricted to retrieving only textual knowledge, neglecting the ubiquitous amount of knowledge in other modalities like images -- much of which contains information not covered by any text. To address this limitation, we propose the first Multimodal Retrieval-Augmented Transformer (MuRAG), which accesses an external non-parametric multimodal memory to augment language generation. MuRAG is pre-trained with a mixture of large-scale image-text and text-only corpora using a joint contrastive and generative loss. We perform experiments on two different datasets that require retrieving and reasoning over both images and text to answer a given query: WebQA, and MultimodalQA. Our results show that MuRAG achieves state-of-the-art accuracy, outperforming existing models by 10-20\% absolute on both datasets and under both distractor and full-wiki settings.
MMSearch-R1: Incentivizing LMMs to Search
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.
Knowledge Transfer Across Modalities with Natural Language Supervision
We present a way to learn novel concepts by only using their textual description. We call this method Knowledge Transfer. Similarly to human perception, we leverage cross-modal interaction to introduce new concepts. We hypothesize that in a pre-trained visual encoder there are enough low-level features already learned (e.g. shape, appearance, color) that can be used to describe previously unknown high-level concepts. Provided with a textual description of the novel concept, our method works by aligning the known low-level features of the visual encoder to its high-level textual description. We show that Knowledge Transfer can successfully introduce novel concepts in multimodal models, in a very efficient manner, by only requiring a single description of the target concept. Our approach is compatible with both separate textual and visual encoders (e.g. CLIP) and shared parameters across modalities. We also show that, following the same principle, Knowledge Transfer can improve concepts already known by the model. Leveraging Knowledge Transfer we improve zero-shot performance across different tasks such as classification, segmentation, image-text retrieval, and captioning.
Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
Variational Learning for Unsupervised Knowledge Grounded Dialogs
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document. These methods do not require the exact document to be known during training and rely on the use of a retrieval system to fetch relevant documents from a large index. The documents used to generate the responses are modeled as latent variables whose prior probabilities need to be estimated. Models such as RAG and REALM, marginalize the document probabilities over the documents retrieved from the index to define the log likelihood loss function which is optimized end-to-end. In this paper, we develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO). Using a collection of three publicly available open-conversation datasets, we demonstrate how the posterior distribution, that has information from the ground-truth response, allows for a better approximation of the objective function during training. To overcome the challenges associated with sampling over a large knowledge collection, we develop an efficient approach to approximate the ELBO. To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts
Large sparsely-activated models have obtained excellent performance in multiple domains. However, such models are typically trained on a single modality at a time. We present the Language-Image MoE, LIMoE, a sparse mixture of experts model capable of multimodal learning. LIMoE accepts both images and text simultaneously, while being trained using a contrastive loss. MoEs are a natural fit for a multimodal backbone, since expert layers can learn an appropriate partitioning of modalities. However, new challenges arise; in particular, training stability and balanced expert utilization, for which we propose an entropy-based regularization scheme. Across multiple scales, we demonstrate remarkable performance improvement over dense models of equivalent computational cost. LIMoE-L/16 trained comparably to CLIP-L/14 achieves 78.6% zero-shot ImageNet accuracy (vs. 76.2%), and when further scaled to H/14 (with additional data) it achieves 84.1%, comparable to state-of-the-art methods which use larger custom per-modality backbones and pre-training schemes. We analyse the quantitative and qualitative behavior of LIMoE, and demonstrate phenomena such as differing treatment of the modalities and the organic emergence of modality-specific experts.
Global and Local Entailment Learning for Natural World Imagery
Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-k entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning
Vision Language Models (VLMs), pre-trained on large-scale image-text datasets, enable zero-shot predictions for unseen data but may underperform on specific unseen tasks. Continual learning (CL) can help VLMs effectively adapt to new data distributions without joint training, but faces challenges of catastrophic forgetting and generalization forgetting. Although significant progress has been achieved by distillation-based methods, they exhibit two severe limitations. One is the popularly adopted single-teacher paradigm fails to impart comprehensive knowledge, The other is the existing methods inadequately leverage the multimodal information in the original training dataset, instead they rely on additional data for distillation, which increases computational and storage overhead. To mitigate both limitations, by drawing on Knowledge Integration Theory (KIT), we propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods. MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections. During the four stages, we first leverage prototypes to align across modalities, eliciting cross-modal knowledge, then adding new knowledge by constructing fine-grained intra- and inter-modality relationships with prototypes. After that, knowledge from two teacher models is adaptively distinguished and re-weighted. Finally, we connect between models from intra- and inter-task, integrating preceding and new knowledge. Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks, showcasing its potential in adapting VLMs to evolving data distributions.
CoAVT: A Cognition-Inspired Unified Audio-Visual-Text Pre-Training Model for Multimodal Processing
There has been a long-standing quest for a unified audio-visual-text model to enable various multimodal understanding tasks, which mimics the listening, seeing and reading process of human beings. Humans tends to represent knowledge using two separate systems: one for representing verbal (textual) information and one for representing non-verbal (visual and auditory) information. These two systems can operate independently but can also interact with each other. Motivated by this understanding of human cognition, in this paper, we introduce CoAVT -- a novel cognition-inspired Correlated Audio-Visual-Text pre-training model to connect the three modalities. It contains a joint audio-visual encoder that learns to encode audio-visual synchronization information together with the audio and visual content for non-verbal information, and a text encoder to handle textual input for verbal information. To bridge the gap between modalities, CoAVT employs a query encoder, which contains a set of learnable query embeddings, and extracts the most informative audiovisual features of the corresponding text. Additionally, to leverage the correspondences between audio and vision with language respectively, we also establish the audio-text and visual-text bi-modal alignments upon the foundational audiovisual-text tri-modal alignment to enhance the multimodal representation learning. Finally, we jointly optimize CoAVT model with three multimodal objectives: contrastive loss, matching loss and language modeling loss. Extensive experiments show that CoAVT can learn strong multimodal correlations and be generalized to various downstream tasks. CoAVT establishes new state-of-the-art performance on text-video retrieval task on AudioCaps for both zero-shot and fine-tuning settings, audio-visual event classification and audio-visual retrieval tasks on AudioSet and VGGSound.
Retrieval Augmentation Reduces Hallucination in Conversation
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
Causal-CoG: A Causal-Effect Look at Context Generation for Boosting Multi-modal Language Models
While Multi-modal Language Models (MLMs) demonstrate impressive multimodal ability, they still struggle on providing factual and precise responses for tasks like visual question answering (VQA). In this paper, we address this challenge from the perspective of contextual information. We propose Causal Context Generation, Causal-CoG, which is a prompting strategy that engages contextual information to enhance precise VQA during inference. Specifically, we prompt MLMs to generate contexts, i.e, text description of an image, and engage the generated contexts for question answering. Moreover, we investigate the advantage of contexts on VQA from a causality perspective, introducing causality filtering to select samples for which contextual information is helpful. To show the effectiveness of Causal-CoG, we run extensive experiments on 10 multimodal benchmarks and show consistent improvements, e.g., +6.30% on POPE, +13.69% on Vizwiz and +6.43% on VQAv2 compared to direct decoding, surpassing existing methods. We hope Casual-CoG inspires explorations of context knowledge in multimodal models, and serves as a plug-and-play strategy for MLM decoding.
Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws
Scaling laws describe the relationship between the size of language models and their capabilities. Unlike prior studies that evaluate a model's capability via loss or benchmarks, we estimate the number of knowledge bits a model stores. We focus on factual knowledge represented as tuples, such as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple controlled datasets, we establish that language models can and only can store 2 bits of knowledge per parameter, even when quantized to int8, and such knowledge can be flexibly extracted for downstream applications. Consequently, a 7B model can store 14B bits of knowledge, surpassing the English Wikipedia and textbooks combined based on our estimation. More broadly, we present 12 results on how (1) training duration, (2) model architecture, (3) quantization, (4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a model's knowledge storage capacity. Notable insights include: * The GPT-2 architecture, with rotary embedding, matches or even surpasses LLaMA/Mistral architectures in knowledge storage, particularly over shorter training durations. This arises because LLaMA/Mistral uses GatedMLP, which is less stable and harder to train. * Prepending training data with domain names (e.g., wikipedia.org) significantly increases a model's knowledge capacity. Language models can autonomously identify and prioritize domains rich in knowledge, optimizing their storage capacity.
MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.
Multimodal Neural Databases
The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries
Retrieval-augmented generation (RAG) augments large language models (LLM) by retrieving relevant knowledge, showing promising potential in mitigating LLM hallucinations and enhancing response quality, thereby facilitating the great adoption of LLMs in practice. However, we find that existing RAG systems are inadequate in answering multi-hop queries, which require retrieving and reasoning over multiple pieces of supporting evidence. Furthermore, to our knowledge, no existing RAG benchmarking dataset focuses on multi-hop queries. In this paper, we develop a novel dataset, MultiHop-RAG, which consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. We detail the procedure of building the dataset, utilizing an English news article dataset as the underlying RAG knowledge base. We demonstrate the benchmarking utility of MultiHop-RAG in two experiments. The first experiment compares different embedding models for retrieving evidence for multi-hop queries. In the second experiment, we examine the capabilities of various state-of-the-art LLMs, including GPT-4, PaLM, and Llama2-70B, in reasoning and answering multi-hop queries given the evidence. Both experiments reveal that existing RAG methods perform unsatisfactorily in retrieving and answering multi-hop queries. We hope MultiHop-RAG will be a valuable resource for the community in developing effective RAG systems, thereby facilitating greater adoption of LLMs in practice. The MultiHop-RAG and implemented RAG system is publicly available at https://github.com/yixuantt/MultiHop-RAG/.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
PaCE: Unified Multi-modal Dialogue Pre-training with Progressive and Compositional Experts
Perceiving multi-modal information and fulfilling dialogues with humans is a long-term goal of artificial intelligence. Pre-training is commonly regarded as an effective approach for multi-modal dialogue. However, due to the limited availability of multi-modal dialogue data, there is still scarce research on multi-modal dialogue pre-training. Yet another intriguing challenge emerges from the encompassing nature of multi-modal dialogue, which involves various modalities and tasks. Moreover, new forms of tasks may arise at unpredictable points in the future. Hence, it is essential for designed multi-modal dialogue models to possess sufficient flexibility to adapt to such scenarios. This paper proposes PaCE, a unified, structured, compositional multi-modal dialogue pre-training framework. It utilizes a combination of several fundamental experts to accommodate multiple dialogue-related tasks and can be pre-trained using limited dialogue and extensive non-dialogue multi-modal data. Furthermore, we propose a progressive training method where old experts from the past can assist new experts, facilitating the expansion of their capabilities. Experimental results demonstrate that PaCE achieves state-of-the-art results on eight multi-modal dialog benchmarks.
Emergent Visual-Semantic Hierarchies in Image-Text Representations
While recent vision-and-language models (VLMs) like CLIP are a powerful tool for analyzing text and images in a shared semantic space, they do not explicitly model the hierarchical nature of the set of texts which may describe an image. Conversely, existing multimodal hierarchical representation learning methods require costly training from scratch, failing to leverage the knowledge encoded by state-of-the-art multimodal foundation models. In this work, we study the knowledge of existing foundation models, finding that they exhibit emergent understanding of visual-semantic hierarchies despite not being directly trained for this purpose. We propose the Radial Embedding (RE) framework for probing and optimizing hierarchical understanding, and contribute the HierarCaps dataset, a benchmark facilitating the study of hierarchical knowledge in image--text representations, constructed automatically via large language models. Our results show that foundation VLMs exhibit zero-shot hierarchical understanding, surpassing the performance of prior models explicitly designed for this purpose. Furthermore, we show that foundation models may be better aligned to hierarchical reasoning via a text-only fine-tuning phase, while retaining pretraining knowledge.
Assessing GPT4-V on Structured Reasoning Tasks
Multi-modality promises to unlock further uses for large language models. Recently, the state-of-the-art language model GPT-4 was enhanced with vision capabilities. We carry out a prompting evaluation of GPT-4V and five other baselines on structured reasoning tasks, such as mathematical reasoning, visual data analysis, and code generation. We show that visual Chain-of-Thought, an extension of Chain-of-Thought to multi-modal LLMs, yields significant improvements over the vanilla model. We also present a categorized analysis of scenarios where these models perform well and where they struggle, highlighting challenges associated with coherent multimodal reasoning.
2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining
Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality multimodal textbook corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving~Our code are available at \url{https://github.com/DAMO-NLP-SG/multimodal_textbook}.
Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey
Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.
What is More Likely to Happen Next? Video-and-Language Future Event Prediction
Given a video with aligned dialogue, people can often infer what is more likely to happen next. Making such predictions requires not only a deep understanding of the rich dynamics underlying the video and dialogue, but also a significant amount of commonsense knowledge. In this work, we explore whether AI models are able to learn to make such multimodal commonsense next-event predictions. To support research in this direction, we collect a new dataset, named Video-and-Language Event Prediction (VLEP), with 28,726 future event prediction examples (along with their rationales) from 10,234 diverse TV Show and YouTube Lifestyle Vlog video clips. In order to promote the collection of non-trivial challenging examples, we employ an adversarial human-and-model-in-the-loop data collection procedure. We also present a strong baseline incorporating information from video, dialogue, and commonsense knowledge. Experiments show that each type of information is useful for this challenging task, and that compared to the high human performance on VLEP, our model provides a good starting point but leaves large room for future work. Our dataset and code are available at: https://github.com/jayleicn/VideoLanguageFuturePred
Knowledge Enhanced Contextual Word Representations
Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert's runtime is comparable to BERT's and it scales to large KBs.
VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering
The increasing availability of multimodal data across text, tables, and images presents new challenges for developing models capable of complex cross-modal reasoning. Existing methods for Multimodal Multi-hop Question Answering (MMQA) often suffer from limited reasoning capabilities, reliance on modality conversion, and inadequate alignment between visual and textual representations. To address these limitations, this paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a transformer-based vision encoder with a sequence-to-sequence language model. VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space, eliminating the need for intermediate projection layers. To enhance cross-modal alignment and reasoning, a three-stage pretraining strategy is proposed to progressively align vision-language representations and improve the model's capacity for multimodal understanding. Based on the pretrained backbone, two task-specific modules are instantiated to form a two-stage MMQA framework: a multimodal reranker that predicts document relevance scores and utilizes a relative threshold with top-k strategy for context retrieval, and a multimodal question answering model that generates contextually grounded answers based on the retrieved evidence. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach. On MultimodalQA validation set, VLMT-Large achieves 76.5% Exact Match and 80.1% F1, outperforming the previous state-of-the-art by +9.1% in Exact Match and +8.8% in F1. On WebQA, it attains a QA score of 47.6, surpassing prior models such as PERQA by +3.2. These results highlight VLMT's strong capabilities in multimodal reasoning and its potential to advance real-world information retrieval and question answering systems.
Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models
Multimodal learning typically relies on the assumption that all modalities are fully available during both the training and inference phases. However, in real-world scenarios, consistently acquiring complete multimodal data presents significant challenges due to various factors. This often leads to the issue of missing modalities, where data for certain modalities are absent, posing considerable obstacles not only for the availability of multimodal pretrained models but also for their fine-tuning and the preservation of robustness in downstream tasks. To address these challenges, we propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method. This framework enables the model to predict the embedding of a missing modality in the representation space during inference. Our method effectively predicts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
Augmenting LLMs with Knowledge: A survey on hallucination prevention
Large pre-trained language models have demonstrated their proficiency in storing factual knowledge within their parameters and achieving remarkable results when fine-tuned for downstream natural language processing tasks. Nonetheless, their capacity to access and manipulate knowledge with precision remains constrained, resulting in performance disparities on knowledge-intensive tasks when compared to task-specific architectures. Additionally, the challenges of providing provenance for model decisions and maintaining up-to-date world knowledge persist as open research frontiers. To address these limitations, the integration of pre-trained models with differentiable access mechanisms to explicit non-parametric memory emerges as a promising solution. This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources, including external knowledge bases and search engines. While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules to augment their contextual processing capabilities, departing from the conventional language modeling paradigm. Through an exploration of current advancements in augmenting large language models with knowledge, this work concludes that this emerging research direction holds the potential to address prevalent issues in traditional LMs, such as hallucinations, un-grounded responses, and scalability challenges.
Regularizing Dialogue Generation by Imitating Implicit Scenarios
Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.
MCQA: Multimodal Co-attention Based Network for Question Answering
We present MCQA, a learning-based algorithm for multimodal question answering. MCQA explicitly fuses and aligns the multimodal input (i.e. text, audio, and video), which forms the context for the query (question and answer). Our approach fuses and aligns the question and the answer within this context. Moreover, we use the notion of co-attention to perform cross-modal alignment and multimodal context-query alignment. Our context-query alignment module matches the relevant parts of the multimodal context and the query with each other and aligns them to improve the overall performance. We evaluate the performance of MCQA on Social-IQ, a benchmark dataset for multimodal question answering. We compare the performance of our algorithm with prior methods and observe an accuracy improvement of 4-7%.
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models
Multimodal large language models (MLLMs) can simultaneously process visual, textual, and auditory data, capturing insights that complement human analysis. However, existing video question-answering (VidQA) benchmarks and datasets often exhibit a bias toward a single modality, despite the goal of requiring advanced reasoning skills that integrate diverse modalities to answer the queries. In this work, we introduce the modality importance score (MIS) to identify such bias. It is designed to assess which modality embeds the necessary information to answer the question. Additionally, we propose an innovative method using state-of-the-art MLLMs to estimate the modality importance, which can serve as a proxy for human judgments of modality perception. With this MIS, we demonstrate the presence of unimodal bias and the scarcity of genuinely multimodal questions in existing datasets. We further validate the modality importance score with multiple ablation studies to evaluate the performance of MLLMs on permuted feature sets. Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets. Our proposed MLLM-derived MIS can guide the curation of modality-balanced datasets that advance multimodal learning and enhance MLLMs' capabilities to understand and utilize synergistic relations across modalities.
DM^2S^2: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increases, several potential problems with the mid-fusion model structure arise, such as an increase in the dimensionality of the concatenated multimodal features and missing modalities. To address these problems, we propose a new concept that considers multimodal inputs as a set of sequences, namely, deep multimodal sequence sets (DM^2S^2). Our set-aware concept consists of three components that capture the relationships among multiple modalities: (a) a BERT-based encoder to handle the inter- and intra-order of elements in the sequences, (b) intra-modality residual attention (IntraMRA) to capture the importance of the elements in a modality, and (c) inter-modality residual attention (InterMRA) to enhance the importance of elements with modality-level granularity further. Our concept exhibits performance that is comparable to or better than the previous set-aware models. Furthermore, we demonstrate that the visualization of the learned InterMRA and IntraMRA weights can provide an interpretation of the prediction results.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
VIOLIN: A Large-Scale Dataset for Video-and-Language Inference
We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text. Given a video clip with aligned subtitles as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip. A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips, spanning over 582 hours of video. These video clips contain rich content with diverse temporal dynamics, event shifts, and people interactions, collected from two sources: (i) popular TV shows, and (ii) movie clips from YouTube channels. In order to address our new multimodal inference task, a model is required to possess sophisticated reasoning skills, from surface-level grounding (e.g., identifying objects and characters in the video) to in-depth commonsense reasoning (e.g., inferring causal relations of events in the video). We present a detailed analysis of the dataset and an extensive evaluation over many strong baselines, providing valuable insights on the challenges of this new task.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Self-Knowledge Guided Retrieval Augmentation for Large Language Models
Large language models (LLMs) have shown superior performance without task-specific fine-tuning. Despite the success, the knowledge stored in the parameters of LLMs could still be incomplete and difficult to update due to the computational costs. As complementary, retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering. However, we find that the retrieved knowledge does not always help and even has a negative impact on original responses occasionally. To better make use of both internal knowledge and external world knowledge, we investigate eliciting the model's ability to recognize what they know and do not know (which is also called self-knowledge) and propose Self-Knowledge guided Retrieval augmentation (SKR), a simple yet effective method which can let LLMs refer to the questions they have previously encountered and adaptively call for external resources when dealing with new questions. We evaluate SKR on multiple datasets and demonstrate that it outperforms chain-of-thought based and fully retrieval-based methods by using either InstructGPT or ChatGPT.
MULTI: Multimodal Understanding Leaderboard with Text and Images
Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short context. In this paper, we present MULTI as a cutting-edge benchmark for evaluating MLLMs on understanding complex tables and images, and reasoning with long context. MULTI provides multimodal inputs and requires responses that are either precise or open-ended, reflecting real-life examination styles. MULTI includes over 18,000 questions and challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis and cross-modality reasoning. We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend, with more than 4,500 external knowledge context pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on MULTI, in contrast to other MLLMs scoring between 28.5% and 55.3%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal Structured Representations
Large-scale vision-language pre-training has achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require structured representations, i.e., representations of objects, attributes, and relations. As illustrated in Fig.~reffig:case (a), the models cannot make a distinction between ``An astronaut rides a horse" and ``A horse rides an astronaut". This is because they fail to fully leverage structured knowledge when learning representations in multi-modal scenarios. In this paper, we present an end-to-end framework Structure-CLIP, which integrates Scene Graph Knowledge (SGK) to enhance multi-modal structured representations. Firstly, we use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations. Moreover, a Knowledge-Enhance Encoder (KEE) is proposed to leverage SGK as input to further enhance structured representations. To verify the effectiveness of the proposed framework, we pre-train our model with the aforementioned approaches and conduct experiments on downstream tasks. Experimental results demonstrate that Structure-CLIP achieves state-of-the-art (SOTA) performance on VG-Attribution and VG-Relation datasets, with 12.5% and 4.1% ahead of the multi-modal SOTA model respectively. Meanwhile, the results on MSCOCO indicate that Structure-CLIP significantly enhances the structured representations while maintaining the ability of general representations. Our code is available at https://github.com/zjukg/Structure-CLIP.
Hierarchical Cross-modal Prompt Learning for Vision-Language Models
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.
From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Considering such modality impact, we further utilize modality-driven demonstration strategies to boost ICL performance. We also identify that demonstration selection is closely related to the models' ability to capture task inductive biases from multimodal ICL. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks even if those tasks are not seen in or even contradict pretraining data.
Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge
With the breakthrough of multi-modal large language models, answering complex visual questions that demand advanced reasoning abilities and world knowledge has become a much more important testbed for developing AI models than ever. However, equipping AI models with robust cross-modality reasoning ability remains challenging since the cognition scheme of humans has not been understood systematically. In this paper, we believe that if we can collect visual clues in the given image as much as possible, we will recognize the image more accurately, understand the question better, recall relevant knowledge more easily, and finally reason out the answer. We discover these rich visual clues by mining question-answer pairs in images and sending them into multi-modal large language models as prompts. We call the proposed method Q&A Prompts. Specifically, we first use the image-answer pairs and the corresponding questions in the training set as inputs and outputs to train a visual question generation model. Then, we use an image tagging model to identify various instances and send packaged image-tag pairs into the visual question generation model to generate relevant questions with the extracted image tags as answers. Finally, we encode these generated question-answer pairs as prompts with a visual-aware prompting module and send them into pre-trained multi-modal large language models to reason out the final answers. Experimental results show that, compared with state-of-the-art methods, our Q&A Prompts achieves substantial improvements on the challenging visual question answering datasets requiring reasoning over diverse world knowledge, such as OK-VQA and A-OKVQA.
Video-MMMU: Evaluating Knowledge Acquisition from Multi-Discipline Professional Videos
Humans acquire knowledge through three cognitive stages: perceiving information, comprehending knowledge, and adapting knowledge to solve novel problems. Videos serve as an effective medium for this learning process, facilitating a progression through these cognitive stages. However, existing video benchmarks fail to systematically evaluate the knowledge acquisition capabilities in Large Multimodal Models (LMMs). To address this gap, we introduce Video-MMMU, a multi-modal, multi-disciplinary benchmark designed to assess LMMs' ability to acquire and utilize knowledge from videos. Video-MMMU features a curated collection of 300 expert-level videos and 900 human-annotated questions across six disciplines, evaluating knowledge acquisition through stage-aligned question-answer pairs: Perception, Comprehension, and Adaptation. A proposed knowledge gain metric, {\Delta}knowledge, quantifies improvement in performance after video viewing. Evaluation of LMMs reveals a steep decline in performance as cognitive demands increase and highlights a significant gap between human and model knowledge acquisition, underscoring the need for methods to enhance LMMs' capability to learn and adapt from videos.
Context versus Prior Knowledge in Language Models
To answer a question, language models often need to integrate prior knowledge learned during pretraining and new information presented in context. We hypothesize that models perform this integration in a predictable way across different questions and contexts: models will rely more on prior knowledge for questions about entities (e.g., persons, places, etc.) that they are more familiar with due to higher exposure in the training corpus, and be more easily persuaded by some contexts than others. To formalize this problem, we propose two mutual information-based metrics to measure a model's dependency on a context and on its prior about an entity: first, the persuasion score of a given context represents how much a model depends on the context in its decision, and second, the susceptibility score of a given entity represents how much the model can be swayed away from its original answer distribution about an entity. Following well-established measurement modeling methods, we empirically test for the validity and reliability of these metrics. Finally, we explore and find a relationship between the scores and the model's expected familiarity with an entity, and provide two use cases to illustrate their benefits.
Probabilistic Embeddings for Cross-Modal Retrieval
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particularly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Large language models are known to suffer from the hallucination problem in that they are prone to output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution to this is to provide the model with additional data modalities that complements the knowledge obtained through text. We investigate the use of visual data to complement the knowledge of large language models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal language models. The method is based on two steps, 1) a novel task querying for knowledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that involves a visual imagination step and evaluate it with our proposed method. We find that our method can successfully be used to measure visual knowledge transfer capabilities in models and that our novel model architecture shows promising results for leveraging multimodal knowledge in a unimodal setting.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large Language Models
The advancement of Large Language Models(LLMs) has brought substantial attention to the Chain of Thought(CoT) approach, primarily due to its ability to enhance the capability of LLMs on tasks requiring complex reasoning. Moreover, the significance of CoT approaches extends to the application of LLMs for multi-modal tasks, such as multi-modal question answering. However, the selection of optimal CoT demonstration examples in multi-modal reasoning for LLMs remains less explored for LLMs due to the inherent complexity of multi-modal examples. In this paper, we introduce a novel approach that addresses this challenge by using retrieval mechanisms to dynamically and automatically select demonstration examples based on cross-modal similarities. This method aims to refine the CoT reasoning process in multi-modal scenarios via informing LLMs with more relevant and informative examples. Furthermore, we employ a stratified sampling method categorising demonstration examples into groups based on their types and retrieving examples from different groups respectively to promote the diversity of demonstration examples. Through a series of experiments, we demonstrate that our approach significantly improves the performance of LLMs, achieving state-of-the-art results in multi-modal reasoning tasks. Specifically, our methods demonstrate significant advancements on the ScienceQA dataset. While our method based on ChatGPT outperforms the Chameleon(ChatGPT) by 2.74% with an accuracy of 82.67%, the GPT4-based approach surpasses the Chameleon(GPT-4) by 0.89%, achieving 87.43% on accuracy under the same setting. Moreover, our best performing show a 6.05% increase over Chameleon for ChatGPT-based models and a 4.57% increase for GPT-4-based models.
Generative Cross-Modal Retrieval: Memorizing Images in Multimodal Language Models for Retrieval and Beyond
The recent advancements in generative language models have demonstrated their ability to memorize knowledge from documents and recall knowledge to respond to user queries effectively. Building upon this capability, we propose to enable multimodal large language models (MLLMs) to memorize and recall images within their parameters. Given a user query for visual content, the MLLM is anticipated to "recall" the relevant image from its parameters as the response. Achieving this target presents notable challenges, including inbuilt visual memory and visual recall schemes within MLLMs. To address these challenges, we introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images and involves two training steps: learning to memorize and learning to retrieve. The first step focuses on training the MLLM to memorize the association between images and their respective identifiers. The latter step teaches the MLLM to generate the corresponding identifier of the target image, given the textual query input. By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches. The experiments demonstrate that the generative paradigm performs effectively and efficiently even with large-scale image candidate sets.
Abstractive Visual Understanding of Multi-modal Structured Knowledge: A New Perspective for MLLM Evaluation
Multi-modal large language models (MLLMs) incorporate heterogeneous modalities into LLMs, enabling a comprehensive understanding of diverse scenarios and objects. Despite the proliferation of evaluation benchmarks and leaderboards for MLLMs, they predominantly overlook the critical capacity of MLLMs to comprehend world knowledge with structured abstractions that appear in visual form. To address this gap, we propose a novel evaluation paradigm and devise M3STR, an innovative benchmark grounded in the Multi-Modal Map for STRuctured understanding. This benchmark leverages multi-modal knowledge graphs to synthesize images encapsulating subgraph architectures enriched with multi-modal entities. M3STR necessitates that MLLMs not only recognize the multi-modal entities within the visual inputs but also decipher intricate relational topologies among them. We delineate the benchmark's statistical profiles and automated construction pipeline, accompanied by an extensive empirical analysis of 26 state-of-the-art MLLMs. Our findings reveal persistent deficiencies in processing abstractive visual information with structured knowledge, thereby charting a pivotal trajectory for advancing MLLMs' holistic reasoning capacities. Our code and data are released at https://github.com/zjukg/M3STR
ReSee: Responding through Seeing Fine-grained Visual Knowledge in Open-domain Dialogue
Incorporating visual knowledge into text-only dialogue systems has become a potential direction to imitate the way humans think, imagine, and communicate. However, existing multimodal dialogue systems are either confined by the scale and quality of available datasets or the coarse concept of visual knowledge. To address these issues, we provide a new paradigm of constructing multimodal dialogues as well as two datasets extended from text-only dialogues under such paradigm (ReSee-WoW, ReSee-DD). We propose to explicitly split the visual knowledge into finer granularity (``turn-level'' and ``entity-level''). To further boost the accuracy and diversity of augmented visual information, we retrieve them from the Internet or a large image dataset. To demonstrate the superiority and universality of the provided visual knowledge, we propose a simple but effective framework ReSee to add visual representation into vanilla dialogue models by modality concatenations. We also conduct extensive experiments and ablations w.r.t. different model configurations and visual knowledge settings. Empirical, encouraging results not only demonstrate the effectiveness of introducing visual knowledge at both entity and turn level but also verify the proposed model ReSee outperforms several state-of-the-art methods on automatic and human evaluations. By leveraging text and vision knowledge, ReSee can produce informative responses with real-world visual concepts. Our code is available at https://github.com/ImKeTT/ReSee.
Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning
Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.
The Short Text Matching Model Enhanced with Knowledge via Contrastive Learning
In recent years, short Text Matching tasks have been widely applied in the fields ofadvertising search and recommendation. The difficulty lies in the lack of semantic information and word ambiguity caused by the short length of the text. Previous works have introduced complement sentences or knowledge bases to provide additional feature information. However, these methods have not fully interacted between the original sentence and the complement sentence, and have not considered the noise issue that may arise from the introduction of external knowledge bases. Therefore, this paper proposes a short Text Matching model that combines contrastive learning and external knowledge. The model uses a generative model to generate corresponding complement sentences and uses the contrastive learning method to guide the model to obtain more semantically meaningful encoding of the original sentence. In addition, to avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base, and construct a knowledge graph. The graph encoding model is used to integrate the knowledge base information into the model. Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets, demonstrating the effectiveness of our model.
Multimodal Difference Learning for Sequential Recommendation
Sequential recommendations have drawn significant attention in modeling the user's historical behaviors to predict the next item. With the booming development of multimodal data (e.g., image, text) on internet platforms, sequential recommendation also benefits from the incorporation of multimodal data. Most methods introduce modal features of items as side information and simply concatenates them to learn unified user interests. Nevertheless, these methods encounter the limitation in modeling multimodal differences. We argue that user interests and item relationships vary across different modalities. To address this problem, we propose a novel Multimodal Difference Learning framework for Sequential Recommendation, MDSRec for brevity. Specifically, we first explore the differences in item relationships by constructing modal-aware item relation graphs with behavior signal to enhance item representations. Then, to capture the differences in user interests across modalities, we design a interest-centralized attention mechanism to independently model user sequence representations in different modalities. Finally, we fuse the user embeddings from multiple modalities to achieve accurate item recommendation. Experimental results on five real-world datasets demonstrate the superiority of MDSRec over state-of-the-art baselines and the efficacy of multimodal difference learning.
Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification with Cross-Modal Retrieval
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability, namely image classification using novel text labels. Existing works have attempted to enhance CLIP by fine-tuning on downstream tasks, but these have inadvertently led to performance degradation on unseen classes, thus harming zero-shot generalization. This paper aims to address this challenge by leveraging readily available image-text pairs from an external dataset for cross-modal guidance during inference. To this end, we propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble. Given a query image, we harness the power of CLIP's cross-modal representations to retrieve relevant textual information from an external image-text pair dataset. Then, we assign higher weights to the more reliable modality between the original query image and retrieved text, contributing to the final prediction. X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training, showcasing the effectiveness of utilizing cross-modal features to maximize CLIP's zero-shot ability.
Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning
Large language models equipped with retrieval-augmented generation (RAG) represent a burgeoning field aimed at enhancing answering capabilities by leveraging external knowledge bases. Although the application of RAG with language-only models has been extensively explored, its adaptation into multimodal vision-language models remains nascent. Going beyond mere answer generation, the primary goal of multimodal RAG is to cultivate the models' ability to reason in response to relevant queries. To this end, we introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning). The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs, which then serve as scaffolds for the multimodal reasoning process. This training-free approach not only encourages the model to engage deeply with the reasoning processes inherent in the retrieved content but also facilitates the generation of answers that are precise and richly interpretable. Surprisingly, utilizing solely the ScienceQA dataset, collected from elementary and high school science curricula, RMR significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets, including A-OKVQA, MMBench, and SEED. These outcomes highlight the substantial potential of our multimodal retrieval and reasoning mechanism to improve the reasoning capabilities of vision-language models.
TikTalk: A Video-Based Dialogue Dataset for Multi-Modal Chitchat in Real World
To facilitate the research on intelligent and human-like chatbots with multi-modal context, we introduce a new video-based multi-modal dialogue dataset, called TikTalk. We collect 38K videos from a popular video-sharing platform, along with 367K conversations posted by users beneath them. Users engage in spontaneous conversations based on their multi-modal experiences from watching videos, which helps recreate real-world chitchat context. Compared to previous multi-modal dialogue datasets, the richer context types in TikTalk lead to more diverse conversations, but also increase the difficulty in capturing human interests from intricate multi-modal information to generate personalized responses. Moreover, external knowledge is more frequently evoked in our dataset. These facts reveal new challenges for multi-modal dialogue models. We quantitatively demonstrate the characteristics of TikTalk, propose a video-based multi-modal chitchat task, and evaluate several dialogue baselines. Experimental results indicate that the models incorporating large language models (LLM) can generate more diverse responses, while the model utilizing knowledge graphs to introduce external knowledge performs the best overall. Furthermore, no existing model can solve all the above challenges well. There is still a large room for future improvements, even for LLM with visual extensions. Our dataset is available at https://ruc-aimind.github.io/projects/TikTalk/.
MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding Benchmark
This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models' true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly "see" and "read" simultaneously, testing a fundamental human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future research in multimodal AI.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
Language as the Medium: Multimodal Video Classification through text only
Despite an exciting new wave of multimodal machine learning models, current approaches still struggle to interpret the complex contextual relationships between the different modalities present in videos. Going beyond existing methods that emphasize simple activities or objects, we propose a new model-agnostic approach for generating detailed textual descriptions that captures multimodal video information. Our method leverages the extensive knowledge learnt by large language models, such as GPT-3.5 or Llama2, to reason about textual descriptions of the visual and aural modalities, obtained from BLIP-2, Whisper and ImageBind. Without needing additional finetuning of video-text models or datasets, we demonstrate that available LLMs have the ability to use these multimodal textual descriptions as proxies for ``sight'' or ``hearing'' and perform zero-shot multimodal classification of videos in-context. Our evaluations on popular action recognition benchmarks, such as UCF-101 or Kinetics, show these context-rich descriptions can be successfully used in video understanding tasks. This method points towards a promising new research direction in multimodal classification, demonstrating how an interplay between textual, visual and auditory machine learning models can enable more holistic video understanding.
Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy
We introduce Long-VITA, a simple yet effective large multi-modal model for long-context visual-language understanding tasks. It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens while delivering advanced performances on short-context multi-modal tasks. We propose an effective multi-modal training schema that starts with large language models and proceeds through vision-language alignment, general knowledge learning, and two sequential stages of long-sequence fine-tuning. We further implement context-parallelism distributed inference and logits-masked language modeling head to scale Long-VITA to infinitely long inputs of images and texts during model inference. Regarding training data, Long-VITA is built on a mix of 17M samples from public datasets only and demonstrates the state-of-the-art performance on various multi-modal benchmarks, compared against recent cutting-edge models with internal data. Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing. By leveraging our inference designs, Long-VITA models achieve a remarkable 2x prefill speedup and 4x context length extension in single node with 8 GPUs. We hope Long-VITA can serve as a competitive baseline and offer valuable insights for the open-source community in advancing long-context multi-modal understanding.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts?
We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining.
Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration
Multimodal learning has advanced significantly by aligning different modalities within shared latent spaces, enabling tasks such as cross-modal understanding and generation. Current alignment strategies in multimodal learning primarily include direct alignment using pre-trained or unified encoders and single-directional alignment via modality-specific connectors. Direct alignment struggles to fully leverage rich intra-modal knowledge, often requiring extensive training data to achieve cross-modal representation. Meanwhile, single-directional alignment methods, despite leveraging pre-trained knowledge, restrict task adaptability and hinder the model's ability to capture bidirectional relationships, leading to incomplete knowledge fusion and underutilization of complementary modality-specific information. To address these limitations, we introduce Alt-MoE, a scalable multimodal alignment framework that employs a mixture of experts (MoE) model as a multi-directional connector across modalities. By utilizing a sequential alternating one-way alignment strategy, Alt-MoE iteratively refines the model to achieve bidirectional alignment. Alt-MoE operates in latent space, enabling efficient vector pre-storage and real-time retrieval via MoE, optimizing large-scale data processing. Extensive empirical studies demonstrate that Alt-MoE achieves competitive performance on cross-modal retrieval and visual question answering by integrating diverse modality-specific knowledge, generalizing to unseen data, and easily scaling to new tasks and modalities through dynamic adjustment of MoE capacity and expert activation.
Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
Encyclopedic VQA: Visual questions about detailed properties of fine-grained categories
We propose Encyclopedic-VQA, a large scale visual question answering (VQA) dataset featuring visual questions about detailed properties of fine-grained categories and instances. It contains 221k unique question+answer pairs each matched with (up to) 5 images, resulting in a total of 1M VQA samples. Moreover, our dataset comes with a controlled knowledge base derived from Wikipedia, marking the evidence to support each answer. Empirically, we show that our dataset poses a hard challenge for large vision+language models as they perform poorly on our dataset: PaLI [14] is state-of-the-art on OK-VQA [37], yet it only achieves 13.0% accuracy on our dataset. Moreover, we experimentally show that progress on answering our encyclopedic questions can be achieved by augmenting large models with a mechanism that retrieves relevant information from the knowledge base. An oracle experiment with perfect retrieval achieves 87.0% accuracy on the single-hop portion of our dataset, and an automatic retrieval-augmented prototype yields 48.8%. We believe that our dataset enables future research on retrieval-augmented vision+language models. It is available at https://github.com/google-research/google-research/tree/master/encyclopedic_vqa .
Few-shot Adaptation of Multi-modal Foundation Models: A Survey
Multi-modal (vision-language) models, such as CLIP, are replacing traditional supervised pre-training models (e.g., ImageNet-based pre-training) as the new generation of visual foundation models. These models with robust and aligned semantic representations learned from billions of internet image-text pairs and can be applied to various downstream tasks in a zero-shot manner. However, in some fine-grained domains like medical imaging and remote sensing, the performance of multi-modal foundation models often leaves much to be desired. Consequently, many researchers have begun to explore few-shot adaptation methods for these models, gradually deriving three main technical approaches: 1) prompt-based methods, 2) adapter-based methods, and 3) external knowledge-based methods. Nevertheless, this rapidly developing field has produced numerous results without a comprehensive survey to systematically organize the research progress. Therefore, in this survey, we introduce and analyze the research advancements in few-shot adaptation methods for multi-modal models, summarizing commonly used datasets and experimental setups, and comparing the results of different methods. In addition, due to the lack of reliable theoretical support for existing methods, we derive the few-shot adaptation generalization error bound for multi-modal models. The theorem reveals that the generalization error of multi-modal foundation models is constrained by three factors: domain gap, model capacity, and sample size. Based on this, we propose three possible solutions from the following aspects: 1) adaptive domain generalization, 2) adaptive model selection, and 3) adaptive knowledge utilization.
Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models
The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better {bf visual} dog classifier by {bf read}ing about dogs and {bf listen}ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP are inherently cross-modal, mapping different modalities to the same representation space. Specifically, we propose a simple cross-modal adaptation approach that learns from few-shot examples spanning different modalities. By repurposing class names as additional one-shot training samples, we achieve SOTA results with an embarrassingly simple linear classifier for vision-language adaptation. Furthermore, we show that our approach can benefit existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix
We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.
Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion
With the bloom of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks. However, they fall short to comprehend context involving multiple images. A primary reason for this shortcoming is that the visual features for each images are encoded individually by frozen encoders before feeding into the LLM backbone, lacking awareness of other images and the multimodal instructions. We term this issue as prior-LLM modality isolation and propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion prior to feeding the features into LLMs. This paradigm initially "browses" through the inputs for essential insights, and then revisits the inputs to "concentrate" on crucial details, guided by these insights, to achieve a more comprehensive understanding of the multimodal inputs. Additionally, we develop training strategies specifically to enhance the understanding of multi-image inputs. Our method markedly boosts the performance on 7 multi-image scenarios, contributing to increments on average accuracy by 2.13% and 7.60% against strong MLLMs baselines with 3B and 11B LLMs, respectively.
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies
Many recent datasets contain a variety of different data modalities, for instance, image, question, and answer data in visual question answering (VQA). When training deep net classifiers on those multi-modal datasets, the modalities get exploited at different scales, i.e., some modalities can more easily contribute to the classification results than others. This is suboptimal because the classifier is inherently biased towards a subset of the modalities. To alleviate this shortcoming, we propose a novel regularization term based on the functional entropy. Intuitively, this term encourages to balance the contribution of each modality to the classification result. However, regularization with the functional entropy is challenging. To address this, we develop a method based on the log-Sobolev inequality, which bounds the functional entropy with the functional-Fisher-information. Intuitively, this maximizes the amount of information that the modalities contribute. On the two challenging multi-modal datasets VQA-CPv2 and SocialIQ, we obtain state-of-the-art results while more uniformly exploiting the modalities. In addition, we demonstrate the efficacy of our method on Colored MNIST.
LEGO:Language Enhanced Multi-modal Grounding Model
Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose LEGO, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //github.com/lzw-lzw/LEGO.
M^3CoT: A Novel Benchmark for Multi-Domain Multi-step Multi-modal Chain-of-Thought
Multi-modal Chain-of-Thought (MCoT) requires models to leverage knowledge from both textual and visual modalities for step-by-step reasoning, which gains increasing attention. Nevertheless, the current MCoT benchmark still faces some challenges: (1) absence of visual modal reasoning, (2) single-step visual modal reasoning, and (3) Domain missing, thereby hindering the development of MCoT. Motivated by this, we introduce a novel benchmark (M^3CoT) to address the above challenges, advancing the multi-domain, multi-step, and multi-modal CoT. Additionally, we conduct a thorough evaluation involving abundant MCoT approaches on Vision Large Language Models (VLLMs). In addition, we highlight that the current VLLMs still struggle to correctly reason in M^3CoT and there remains a large gap between existing VLLMs and human performance in M^3CoT, despite their superior results on previous MCoT benchmarks. To our knowledge, we take the first meaningful step toward the multi-domain, multi-step, and multi-modal scenario in MCoT. We hope that M^3CoT can serve as a valuable resource, providing a pioneering foundation in multi-domain, multi-step, multi-modal chain-of-thought research.
Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction
We propose an approach for estimating the latent knowledge embedded inside large language models (LLMs). We leverage the in-context learning (ICL) abilities of LLMs to estimate the extent to which an LLM knows the facts stored in a knowledge base. Our knowledge estimator avoids reliability concerns with previous prompting-based methods, is both conceptually simpler and easier to apply, and we demonstrate that it can surface more of the latent knowledge embedded in LLMs. We also investigate how different design choices affect the performance of ICL-based knowledge estimation. Using the proposed estimator, we perform a large-scale evaluation of the factual knowledge of a variety of open source LLMs, like OPT, Pythia, Llama(2), Mistral, Gemma, etc. over a large set of relations and facts from the Wikidata knowledge base. We observe differences in the factual knowledge between different model families and models of different sizes, that some relations are consistently better known than others but that models differ in the precise facts they know, and differences in the knowledge of base models and their finetuned counterparts.
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
As a crucial extension of entity alignment (EA), multi-modal entity alignment (MMEA) aims to identify identical entities across disparate knowledge graphs (KGs) by exploiting associated visual information. However, existing MMEA approaches primarily concentrate on the fusion paradigm of multi-modal entity features, while neglecting the challenges presented by the pervasive phenomenon of missing and intrinsic ambiguity of visual images. In this paper, we present a further analysis of visual modality incompleteness, benchmarking latest MMEA models on our proposed dataset MMEA-UMVM, where the types of alignment KGs covering bilingual and monolingual, with standard (non-iterative) and iterative training paradigms to evaluate the model performance. Our research indicates that, in the face of modality incompleteness, models succumb to overfitting the modality noise, and exhibit performance oscillations or declines at high rates of missing modality. This proves that the inclusion of additional multi-modal data can sometimes adversely affect EA. To address these challenges, we introduce UMAEA , a robust multi-modal entity alignment approach designed to tackle uncertainly missing and ambiguous visual modalities. It consistently achieves SOTA performance across all 97 benchmark splits, significantly surpassing existing baselines with limited parameters and time consumption, while effectively alleviating the identified limitations of other models. Our code and benchmark data are available at https://github.com/zjukg/UMAEA.
Are We on the Right Way for Evaluating Large Vision-Language Models?
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities. However, we dig into current evaluation works and identify two primary issues: 1) Visual content is unnecessary for many samples. The answers can be directly inferred from the questions and options, or the world knowledge embedded in LLMs. This phenomenon is prevalent across current benchmarks. For instance, GeminiPro achieves 42.9% on the MMMU benchmark without any visual input, and outperforms the random choice baseline across six benchmarks over 20% on average. 2) Unintentional data leakage exists in LLM and LVLM training. LLM and LVLM could still answer some visual-necessary questions without visual content, indicating the memorizing of these samples within large-scale training data. For example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its LLM backbone with 17.9%. Both problems lead to misjudgments of actual multi-modal gains and potentially misguide the study of LVLM. To this end, we present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans. MMStar benchmarks 6 core capabilities and 18 detailed axes, aiming to evaluate LVLMs' multi-modal capacities with carefully balanced and purified samples. These samples are first roughly selected from current benchmarks with an automated pipeline, human review is then involved to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities. Moreover, two metrics are developed to measure data leakage and actual performance gain in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to investigate their data leakage and actual multi-modal gain.
Predicting Implicit Arguments in Procedural Video Instructions
Procedural texts help AI enhance reasoning about context and action sequences. Transforming these into Semantic Role Labeling (SRL) improves understanding of individual steps by identifying predicate-argument structure like {verb,what,where/with}. Procedural instructions are highly elliptic, for instance, (i) add cucumber to the bowl and (ii) add sliced tomatoes, the second step's where argument is inferred from the context, referring to where the cucumber was placed. Prior SRL benchmarks often miss implicit arguments, leading to incomplete understanding. To address this, we introduce Implicit-VidSRL, a dataset that necessitates inferring implicit and explicit arguments from contextual information in multimodal cooking procedures. Our proposed dataset benchmarks multimodal models' contextual reasoning, requiring entity tracking through visual changes in recipes. We study recent multimodal LLMs and reveal that they struggle to predict implicit arguments of what and where/with from multi-modal procedural data given the verb. Lastly, we propose iSRL-Qwen2-VL, which achieves a 17% relative improvement in F1-score for what-implicit and a 14.7% for where/with-implicit semantic roles over GPT-4o.
Multimodal Deep Learning
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
Multi-level Matching Network for Multimodal Entity Linking
Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.
CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning
We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving.
MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal Contrastive Learning
Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e. text or image) or limited multi-modal data (i.e. image-text pairs). In this work, we propose a unified-modal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections can be utilized to improve the capability of visual and textual understanding, and cross-modal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space over a corpus of image-text pairs. As the non-paired single-modal data is very rich, our model can utilize much larger scale of data to learn more generalizable representations. Moreover, the textual knowledge and visual knowledge can enhance each other in the unified semantic space. The experimental results show that UNIMO significantly improves the performance of several single-modal and multi-modal downstream tasks. Our code and pre-trained models are public at the UNIMO project page https://unimo-ptm.github.io/
Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA
Many visual scenes contain text that carries crucial information, and it is thus essential to understand text in images for downstream reasoning tasks. For example, a deep water label on a warning sign warns people about the danger in the scene. Recent work has explored the TextVQA task that requires reading and understanding text in images to answer a question. However, existing approaches for TextVQA are mostly based on custom pairwise fusion mechanisms between a pair of two modalities and are restricted to a single prediction step by casting TextVQA as a classification task. In this work, we propose a novel model for the TextVQA task based on a multimodal transformer architecture accompanied by a rich representation for text in images. Our model naturally fuses different modalities homogeneously by embedding them into a common semantic space where self-attention is applied to model inter- and intra- modality context. Furthermore, it enables iterative answer decoding with a dynamic pointer network, allowing the model to form an answer through multi-step prediction instead of one-step classification. Our model outperforms existing approaches on three benchmark datasets for the TextVQA task by a large margin.
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks
Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
REALM: Retrieval-Augmented Language Model Pre-Training
Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.
Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models
Pre-trained Language Models (PLMs) are trained on vast unlabeled data, rich in world knowledge. This fact has sparked the interest of the community in quantifying the amount of factual knowledge present in PLMs, as this explains their performance on downstream tasks, and potentially justifies their use as knowledge bases. In this work, we survey methods and datasets that are used to probe PLMs for factual knowledge. Our contributions are: (1) We propose a categorization scheme for factual probing methods that is based on how their inputs, outputs and the probed PLMs are adapted; (2) We provide an overview of the datasets used for factual probing; (3) We synthesize insights about knowledge retention and prompt optimization in PLMs, analyze obstacles to adopting PLMs as knowledge bases and outline directions for future work.
MolFM: A Multimodal Molecular Foundation Model
Molecular knowledge resides within three different modalities of information sources: molecular structures, biomedical documents, and knowledge bases. Effective incorporation of molecular knowledge from these modalities holds paramount significance in facilitating biomedical research. However, existing multimodal molecular foundation models exhibit limitations in capturing intricate connections between molecular structures and texts, and more importantly, none of them attempt to leverage a wealth of molecular expertise derived from knowledge graphs. In this study, we introduce MolFM, a multimodal molecular foundation model designed to facilitate joint representation learning from molecular structures, biomedical texts, and knowledge graphs. We propose cross-modal attention between atoms of molecular structures, neighbors of molecule entities and semantically related texts to facilitate cross-modal comprehension. We provide theoretical analysis that our cross-modal pre-training captures local and global molecular knowledge by minimizing the distance in the feature space between different modalities of the same molecule, as well as molecules sharing similar structures or functions. MolFM achieves state-of-the-art performance on various downstream tasks. On cross-modal retrieval, MolFM outperforms existing models with 12.13% and 5.04% absolute gains under the zero-shot and fine-tuning settings, respectively. Furthermore, qualitative analysis showcases MolFM's implicit ability to provide grounding from molecular substructures and knowledge graphs. Code and models are available on https://github.com/BioFM/OpenBioMed.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining
The current research direction in generative models, such as the recently developed GPT4, aims to find relevant knowledge information for multimodal and multilingual inputs to provide answers. Under these research circumstances, the demand for multilingual evaluation of visual question answering (VQA) tasks, a representative task of multimodal systems, has increased. Accordingly, we propose a bilingual outside-knowledge VQA (BOK-VQA) dataset in this study that can be extended to multilingualism. The proposed data include 17K images, 17K question-answer pairs for both Korean and English and 280K instances of knowledge information related to question-answer content. We also present a framework that can effectively inject knowledge information into a VQA system by pretraining the knowledge information of BOK-VQA data in the form of graph embeddings. Finally, through in-depth analysis, we demonstrated the actual effect of the knowledge information contained in the constructed training data on VQA.
Aria: An Open Multimodal Native Mixture-of-Experts Model
Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.
Adaptive Contrastive Decoding in Retrieval-Augmented Generation for Handling Noisy Contexts
When using large language models (LLMs) in knowledge-intensive tasks, such as open-domain question answering, external context can bridge the gap between external knowledge and the LLMs' parametric knowledge. Recent research has been developed to amplify contextual knowledge over the parametric knowledge of LLMs with contrastive decoding approaches. While these approaches could yield truthful responses when relevant context is provided, they are prone to vulnerabilities when faced with noisy contexts. We extend the scope of previous studies to encompass noisy contexts and propose adaptive contrastive decoding (ACD) to leverage contextual influence effectively. ACD demonstrates improvements in open-domain question answering tasks compared to baselines, especially in robustness by remaining undistracted by noisy contexts in retrieval-augmented generation.
Knowledge-Aware Procedural Text Understanding with Multi-Stage Training
Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
Knowledge-based visual question answering (VQA) requires external knowledge beyond the image to answer the question. Early studies retrieve required knowledge from explicit knowledge bases (KBs), which often introduces irrelevant information to the question, hence restricting the performance of their models. Recent works have sought to use a large language model (i.e., GPT-3) as an implicit knowledge engine to acquire the necessary knowledge for answering. Despite the encouraging results achieved by these methods, we argue that they have not fully activated the capacity of GPT-3 as the provided input information is insufficient. In this paper, we present Prophet -- a conceptually simple framework designed to prompt GPT-3 with answer heuristics for knowledge-based VQA. Specifically, we first train a vanilla VQA model on a specific knowledge-based VQA dataset without external knowledge. After that, we extract two types of complementary answer heuristics from the model: answer candidates and answer-aware examples. Finally, the two types of answer heuristics are encoded into the prompts to enable GPT-3 to better comprehend the task thus enhancing its capacity. Prophet significantly outperforms all existing state-of-the-art methods on two challenging knowledge-based VQA datasets, OK-VQA and A-OKVQA, delivering 61.1% and 55.7% accuracies on their testing sets, respectively.
Re3val: Reinforced and Reranked Generative Retrieval
Generative retrieval models encode pointers to information in a corpus as an index within the model's parameters. These models serve as part of a larger pipeline, where retrieved information conditions generation for knowledge-intensive NLP tasks. However, we identify two limitations: the generative retrieval does not account for contextual information. Secondly, the retrieval can't be tuned for the downstream readers as decoding the page title is a non-differentiable operation. This paper introduces Re3val, trained with generative reranking and reinforcement learning using limited data. Re3val leverages context acquired via Dense Passage Retrieval to rerank the retrieved page titles and utilizes REINFORCE to maximize rewards generated by constrained decoding. Additionally, we generate questions from our pre-training dataset to mitigate epistemic uncertainty and bridge the domain gap between the pre-training and fine-tuning datasets. Subsequently, we extract and rerank contexts from the KILT database using the rerank page titles. Upon grounding the top five reranked contexts, Re3val demonstrates the Top 1 KILT scores compared to all other generative retrieval models across five KILT datasets.
Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 180 benchmarks and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Knowledge-based visual question answering (VQA) involves answering questions that require external knowledge not present in the image. Existing methods first retrieve knowledge from external resources, then reason over the selected knowledge, the input image, and question for answer prediction. However, this two-step approach could lead to mismatches that potentially limit the VQA performance. For example, the retrieved knowledge might be noisy and irrelevant to the question, and the re-embedded knowledge features during reasoning might deviate from their original meanings in the knowledge base (KB). To address this challenge, we propose PICa, a simple yet effective method that Prompts GPT3 via the use of Image Captions, for knowledge-based VQA. Inspired by GPT-3's power in knowledge retrieval and question answering, instead of using structured KBs as in previous work, we treat GPT-3 as an implicit and unstructured KB that can jointly acquire and process relevant knowledge. Specifically, we first convert the image into captions (or tags) that GPT-3 can understand, then adapt GPT-3 to solve the VQA task in a few-shot manner by just providing a few in-context VQA examples. We further boost performance by carefully investigating: (i) what text formats best describe the image content, and (ii) how in-context examples can be better selected and used. PICa unlocks the first use of GPT-3 for multimodal tasks. By using only 16 examples, PICa surpasses the supervised state of the art by an absolute +8.6 points on the OK-VQA dataset. We also benchmark PICa on VQAv2, where PICa also shows a decent few-shot performance.
RoRA-VLM: Robust Retrieval-Augmented Vision Language Models
Current vision-language models (VLMs) still exhibit inferior performance on knowledge-intensive tasks, primarily due to the challenge of accurately encoding all the associations between visual objects and scenes to their corresponding entities and background knowledge. While retrieval augmentation methods offer an efficient way to integrate external knowledge, extending them to vision-language domain presents unique challenges in (1) precisely retrieving relevant information from external sources due to the inherent discrepancy within the multimodal queries, and (2) being resilient to the irrelevant, extraneous and noisy information contained in the retrieved multimodal knowledge snippets. In this work, we introduce RORA-VLM, a novel and robust retrieval augmentation framework specifically tailored for VLMs, with two key innovations: (1) a 2-stage retrieval process with image-anchored textual-query expansion to synergistically combine the visual and textual information in the query and retrieve the most relevant multimodal knowledge snippets; and (2) a robust retrieval augmentation method that strengthens the resilience of VLMs against irrelevant information in the retrieved multimodal knowledge by injecting adversarial noises into the retrieval-augmented training process, and filters out extraneous visual information, such as unrelated entities presented in images, via a query-oriented visual token refinement strategy. We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets. Our results demonstrate that with a minimal amount of training instance, RORA-VLM enables the base model to achieve significant performance improvement and constantly outperform state-of-the-art retrieval-augmented VLMs on all benchmarks while also exhibiting a novel zero-shot domain transfer capability.
Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos
This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos. This task not only requires to answer visual questions, but also to localize multiple relevant time intervals within the video as visual evidences. We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence, enabling to construct a large-scale dataset for instruction-tuning. To monitor the progress of this new task, we further curate a high-quality benchmark, MultiHop-EgoQA, with careful manual verification and refinement. Experimental results reveal that existing multi-modal systems exhibit inadequate multi-hop grounding and reasoning abilities, resulting in unsatisfactory performance. We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models (MLLMs) by incorporating a grounding module to retrieve temporal evidence from videos using flexible grounding tokens. Trained on our visual instruction data, GeLM demonstrates improved multi-hop grounding and reasoning capabilities, setting a new baseline for this challenging task. Furthermore, when trained on third-person view videos, the same architecture also achieves state-of-the-art performance on the single-hop VidQA benchmark, ActivityNet-RTL, demonstrating its effectiveness.
Progressive Multimodal Reasoning via Active Retrieval
Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search (MCTS). Our approach begins with the development of a unified retrieval module that retrieves key supporting insights for solving complex reasoning problems from a hybrid-modal retrieval corpus. To bridge the gap in automated multimodal reasoning verification, we employ the MCTS algorithm combined with an active retrieval mechanism, which enables the automatic generation of step-wise annotations. This strategy dynamically retrieves key insights for each reasoning step, moving beyond traditional beam search sampling to improve the diversity and reliability of the reasoning space. Additionally, we introduce a process reward model that aligns progressively to support the automatic verification of multimodal reasoning tasks. Experimental results across three complex multimodal reasoning benchmarks confirm the effectiveness of the AR-MCTS framework in enhancing the performance of various multimodal models. Further analysis demonstrates that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
Can Large Language Models Recall Reference Location Like Humans?
When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks.
Align, Reason and Learn: Enhancing Medical Vision-and-Language Pre-training with Knowledge
Medical vision-and-language pre-training (Med-VLP) has received considerable attention owing to its applicability to extracting generic vision-and-language representations from medical images and texts. Most existing methods mainly contain three elements: uni-modal encoders (i.e., a vision encoder and a language encoder), a multi-modal fusion module, and pretext tasks, with few studies considering the importance of medical domain expert knowledge and explicitly exploiting such knowledge to facilitate Med-VLP. Although there exist knowledge-enhanced vision-and-language pre-training (VLP) methods in the general domain, most require off-the-shelf toolkits (e.g., object detectors and scene graph parsers), which are unavailable in the medical domain. In this paper, we propose a systematic and effective approach to enhance Med-VLP by structured medical knowledge from three perspectives. First, considering knowledge can be regarded as the intermediate medium between vision and language, we align the representations of the vision encoder and the language encoder through knowledge. Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text. Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks. To perform a comprehensive evaluation and facilitate further research, we construct a medical vision-and-language benchmark including three tasks. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on all downstream tasks. Further analyses explore the effects of different components of our approach and various settings of pre-training.
Multimodal Graph Learning for Generative Tasks
Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.
Multimodal Few-Shot Learning with Frozen Language Models
When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model prompted with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of multiple interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
Progressive Collaborative and Semantic Knowledge Fusion for Generative Recommendation
With the recent surge in interest surrounding generative paradigms, generative recommendation has increasingly attracted the attention of researchers in the recommendation community. This paradigm generally consists of two stages. In the first stage, pretrained semantic embeddings or collaborative ID embeddings are quantized to create item codes, aiming to capture and preserve rich semantic or collaborative knowledge within these codes. The second stage involves utilizing these discrete codes to perform an autoregressive sequence generation task. Existing methods often either overlook collaborative or semantic knowledge, or combine the two roughly. In this paper, we observe that naively concatenating representations from semantic and collaborative modality leads to a semantic domination issue, where the resulting representation is overly influenced by semantic information, effectively overshadowing the collaborative representation. Consequently, downstream recommendation tasks fail to fully exploit the knowledge from both modalities, resulting in suboptimal performance. To address this, we propose a progressive collaborative and semantic knowledge fusion model for generative recommendation, named PRORec, which integrates semantic and collaborative knowledge with a unified code through a two-stage framework. Specifically, in the first stage, we propose a cross-modality knowledge alignment task, which integrates semantic knowledge into collaborative embeddings, enhancing their representational capability. In the second stage, we propose an in-modality knowledge distillation task, designed to effectively capture and integrate knowledge from both semantic and collaborative modalities. Extensive experiments on three widely used benchmarks validate the effectiveness of our approach, demonstrating its superiority compared to existing methods.
Learning Task Representations from In-Context Learning
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning (ICL), where models adapt to new tasks through example-based prompts without requiring parameter updates. However, understanding how tasks are internally encoded and generalized remains a challenge. To address some of the empirical and technical gaps in the literature, we introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads within the transformer architecture. This approach computes a single task vector as a weighted sum of attention heads, with the weights optimized causally via gradient descent. Our findings show that existing methods fail to generalize effectively to modalities beyond text. In response, we also design a benchmark to evaluate whether a task vector can preserve task fidelity in functional regression tasks. The proposed method successfully extracts task-specific information from in-context demonstrations and excels in both text and regression tasks, demonstrating its generalizability across modalities. Moreover, ablation studies show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
Multi-Modal Experience Inspired AI Creation
AI creation, such as poem or lyrics generation, has attracted increasing attention from both industry and academic communities, with many promising models proposed in the past few years. Existing methods usually estimate the outputs based on single and independent visual or textual information. However, in reality, humans usually make creations according to their experiences, which may involve different modalities and be sequentially correlated. To model such human capabilities, in this paper, we define and solve a novel AI creation problem based on human experiences. More specifically, we study how to generate texts based on sequential multi-modal information. Compared with the previous works, this task is much more difficult because the designed model has to well understand and adapt the semantics among different modalities and effectively convert them into the output in a sequential manner. To alleviate these difficulties, we firstly design a multi-channel sequence-to-sequence architecture equipped with a multi-modal attention network. For more effective optimization, we then propose a curriculum negative sampling strategy tailored for the sequential inputs. To benchmark this problem and demonstrate the effectiveness of our model, we manually labeled a new multi-modal experience dataset. With this dataset, we conduct extensive experiments by comparing our model with a series of representative baselines, where we can demonstrate significant improvements in our model based on both automatic and human-centered metrics. The code and data are available at: https://github.com/Aman-4-Real/MMTG.
OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
Visual Question Answering (VQA) in its ideal form lets us study reasoning in the joint space of vision and language and serves as a proxy for the AI task of scene understanding. However, most VQA benchmarks to date are focused on questions such as simple counting, visual attributes, and object detection that do not require reasoning or knowledge beyond what is in the image. In this paper, we address the task of knowledge-based visual question answering and provide a benchmark, called OK-VQA, where the image content is not sufficient to answer the questions, encouraging methods that rely on external knowledge resources. Our new dataset includes more than 14,000 questions that require external knowledge to answer. We show that the performance of the state-of-the-art VQA models degrades drastically in this new setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult, and large compared to previous knowledge-based VQA datasets. We hope that this dataset enables researchers to open up new avenues for research in this domain. See http://okvqa.allenai.org to download and browse the dataset.
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories
Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with tasks requiring rich world knowledge, implying the limitations of relying solely on their parameters to encode a wealth of world knowledge. This paper aims to understand LMs' strengths and limitations in memorizing factual knowledge, by conducting large-scale knowledge probing experiments of 10 models and 4 augmentation methods on PopQA, our new open-domain QA dataset with 14k questions. We find that LMs struggle with less popular factual knowledge, and that scaling fails to appreciably improve memorization of factual knowledge in the long tail. We then show that retrieval-augmented LMs largely outperform orders of magnitude larger LMs, while unassisted LMs remain competitive in questions about high-popularity entities. Based on those findings, we devise a simple, yet effective, method for powerful and efficient retrieval-augmented LMs, which retrieves non-parametric memories only when necessary. Experimental results show that this significantly improves models' performance while reducing the inference costs.
Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment
Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively.
Retrieval-Enhanced Contrastive Vision-Text Models
Contrastive image-text models such as CLIP form the building blocks of many state-of-the-art systems. While they excel at recognizing common generic concepts, they still struggle on fine-grained entities which are rare, or even absent from the pre-training dataset. Hence, a key ingredient to their success has been the use of large-scale curated pre-training data aiming at expanding the set of concepts that they can memorize during the pre-training stage. In this work, we explore an alternative to encoding fine-grained knowledge directly into the model's parameters: we instead train the model to retrieve this knowledge from an external memory. Specifically, we propose to equip existing vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time, which greatly improves their zero-shot predictions. Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP. Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks: for example +10.9 on Stanford Cars, +10.2 on CUB-2011 and +7.3 on the recent OVEN benchmark.
Visual-RAG: Benchmarking Text-to-Image Retrieval Augmented Generation for Visual Knowledge Intensive Queries
Retrieval-Augmented Generation (RAG) is a popular approach for enhancing Large Language Models (LLMs) by addressing their limitations in verifying facts and answering knowledge-intensive questions. As the research in LLM extends their capability to handle input modality other than text, e.g. image, several multimodal RAG benchmarks are proposed. Nonetheless, they mainly use textual knowledge bases as the primary source of evidences for augmentation. There still lack benchmarks designed to evaluate images as augmentation in RAG systems and how they leverage visual knowledge. We propose Visual-RAG, a novel Question Answering benchmark that emphasizes visual knowledge intensive questions. Unlike prior works relying on text-based evidence, Visual-RAG necessitates text-to-image retrieval and integration of relevant clue images to extract visual knowledge as evidence. With Visual-RAG, we evaluate 5 open-sourced and 3 proprietary Multimodal LLMs (MLLMs), revealing that images can serve as good evidence in RAG; however, even the SoTA models struggle with effectively extracting and utilizing visual knowledge
DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests
Large vision-language models (LVLMs) augment language models with visual understanding, enabling multimodal reasoning. However, due to the modality gap between textual and visual data, they often face significant challenges, such as over-reliance on text priors, hallucinations, and limited capacity for complex visual reasoning. Existing benchmarks to evaluate visual reasoning in LVLMs often rely on schematic or synthetic images and on imprecise machine-generated explanations. To bridge the modality gap, we present DrivingVQA, a new benchmark derived from driving theory tests to evaluate visual chain-of-thought reasoning in complex real-world scenarios. It offers 3,931 expert-crafted multiple-choice problems and interleaved explanations grounded with entities relevant to the reasoning process. We leverage this dataset to perform an extensive study of LVLMs' ability to reason about complex visual scenarios. Our experiments reveal that open-source and proprietary LVLMs struggle with visual chain-of-thought reasoning under zero-shot settings. We investigate training strategies that leverage relevant entities to improve visual reasoning. Notably, we observe a performance boost of up to 7\% when reasoning over image tokens of cropped regions tied to these entities.
DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
MAP: Multimodal Uncertainty-Aware Vision-Language Pre-training Model
Multimodal semantic understanding often has to deal with uncertainty, which means the obtained messages tend to refer to multiple targets. Such uncertainty is problematic for our interpretation, including inter- and intra-modal uncertainty. Little effort has studied the modeling of this uncertainty, particularly in pre-training on unlabeled datasets and fine-tuning in task-specific downstream datasets. In this paper, we project the representations of all modalities as probabilistic distributions via a Probability Distribution Encoder (PDE) by utilizing sequence-level interactions. Compared to the existing deterministic methods, such uncertainty modeling can convey richer multimodal semantic information and more complex relationships. Furthermore, we integrate uncertainty modeling with popular pre-training frameworks and propose suitable pre-training tasks: Distribution-based Vision-Language Contrastive learning (D-VLC), Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching (D-ITM). The fine-tuned models are applied to challenging downstream tasks, including image-text retrieval, visual question answering, visual reasoning, and visual entailment, and achieve state-of-the-art results.
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval
Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance.
Robust and Scalable Model Editing for Large Language Models
Large language models (LLMs) can make predictions using parametric knowledge--knowledge encoded in the model weights--or contextual knowledge--knowledge presented in the context. In many scenarios, a desirable behavior is that LLMs give precedence to contextual knowledge when it conflicts with the parametric knowledge, and fall back to using their parametric knowledge when the context is irrelevant. This enables updating and correcting the model's knowledge by in-context editing instead of retraining. Previous works have shown that LLMs are inclined to ignore contextual knowledge and fail to reliably fall back to parametric knowledge when presented with irrelevant context. In this work, we discover that, with proper prompting methods, instruction-finetuned LLMs can be highly controllable by contextual knowledge and robust to irrelevant context. Utilizing this feature, we propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing. To better evaluate the robustness of model editors, we collect a new dataset, that contains irrelevant questions that are more challenging than the ones in existing datasets. Empirical results show that our method outperforms current state-of-the-art methods by a large margin. Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs (and vice versa). The source code can be found at https://github.com/thunlp/EREN.
Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage and Sharing in LLMs
Recent advancements in multimodal large language models (MLLMs) have achieved significant multimodal generation capabilities, akin to GPT-4. These models predominantly map visual information into language representation space, leveraging the vast knowledge and powerful text generation abilities of LLMs to produce multimodal instruction-following responses. We could term this method as LLMs for Vision because of its employing LLMs for visual-language understanding, yet observe that these MLLMs neglect the potential of harnessing visual knowledge to enhance overall capabilities of LLMs, which could be regraded as Vision Enhancing LLMs. In this paper, we propose an approach called MKS2, aimed at enhancing LLMs through empowering Multimodal Knowledge Storage and Sharing in LLMs. Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently. Additionally, we present a soft Mixtures-of-Multimodal Experts architecture in LLMs to invoke multimodal knowledge collaboration during generation. Our comprehensive experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge. It also delivers competitive results on multimodal benchmarks.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.