Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization
Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
LEGAL-BERT: The Muppets straight out of Law School
BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.
Building a Parallel Corpus and Training Translation Models Between Luganda and English
Neural machine translation (NMT) has achieved great successes with large datasets, so NMT is more premised on high-resource languages. This continuously underpins the low resource languages such as Luganda due to the lack of high-quality parallel corpora, so even 'Google translate' does not serve Luganda at the time of this writing. In this paper, we build a parallel corpus with 41,070 pairwise sentences for Luganda and English which is based on three different open-sourced corpora. Then, we train NMT models with hyper-parameter search on the dataset. Experiments gave us a BLEU score of 21.28 from Luganda to English and 17.47 from English to Luganda. Some translation examples show high quality of the translation. We believe that our model is the first Luganda-English NMT model. The bilingual dataset we built will be available to the public.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
TFG: Unified Training-Free Guidance for Diffusion Models
Given an unconditional diffusion model and a predictor for a target property of interest (e.g., a classifier), the goal of training-free guidance is to generate samples with desirable target properties without additional training. Existing methods, though effective in various individual applications, often lack theoretical grounding and rigorous testing on extensive benchmarks. As a result, they could even fail on simple tasks, and applying them to a new problem becomes unavoidably difficult. This paper introduces a novel algorithmic framework encompassing existing methods as special cases, unifying the study of training-free guidance into the analysis of an algorithm-agnostic design space. Via theoretical and empirical investigation, we propose an efficient and effective hyper-parameter searching strategy that can be readily applied to any downstream task. We systematically benchmark across 7 diffusion models on 16 tasks with 40 targets, and improve performance by 8.5% on average. Our framework and benchmark offer a solid foundation for conditional generation in a training-free manner.
TAN Without a Burn: Scaling Laws of DP-SGD
Differentially Private methods for training Deep Neural Networks (DNNs) have progressed recently, in particular with the use of massive batches and aggregated data augmentations for a large number of training steps. These techniques require much more computing resources than their non-private counterparts, shifting the traditional privacy-accuracy trade-off to a privacy-accuracy-compute trade-off and making hyper-parameter search virtually impossible for realistic scenarios. In this work, we decouple privacy analysis and experimental behavior of noisy training to explore the trade-off with minimal computational requirements. We first use the tools of R\'enyi Differential Privacy (RDP) to highlight that the privacy budget, when not overcharged, only depends on the total amount of noise (TAN) injected throughout training. We then derive scaling laws for training models with DP-SGD to optimize hyper-parameters with more than a 100times reduction in computational budget. We apply the proposed method on CIFAR-10 and ImageNet and, in particular, strongly improve the state-of-the-art on ImageNet with a +9 points gain in top-1 accuracy for a privacy budget epsilon=8.
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with two optimized evaluation metrics. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with iterative random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing models first is preferable to the prevalent practice of optimizing sequentially according to the RAG pipeline order.
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 approx 0.8 for scenarios with prominent gradients in search space, using only sim20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
Stabilizing DARTS with Amended Gradient Estimation on Architectural Parameters
DARTS is a popular algorithm for neural architecture search (NAS). Despite its great advantage in search efficiency, DARTS often suffers weak stability, which reflects in the large variation among individual trials as well as the sensitivity to the hyper-parameters of the search process. This paper owes such instability to an optimization gap between the super-network and its sub-networks, namely, improving the validation accuracy of the super-network does not necessarily lead to a higher expectation on the performance of the sampled sub-networks. Then, we point out that the gap is due to the inaccurate estimation of the architectural gradients, based on which we propose an amended estimation method. Mathematically, our method guarantees a bounded error from the true gradients while the original estimation does not. Our approach bridges the gap from two aspects, namely, amending the estimation on the architectural gradients, and unifying the hyper-parameter settings in the search and re-training stages. Experiments on CIFAR10 and ImageNet demonstrate that our approach largely improves search stability and, more importantly, enables DARTS-based approaches to explore much larger search spaces that have not been investigated before.
A Scalable AutoML Approach Based on Graph Neural Networks
AutoML systems build machine learning models automatically by performing a search over valid data transformations and learners, along with hyper-parameter optimization for each learner. Many AutoML systems use meta-learning to guide search for optimal pipelines. In this work, we present a novel meta-learning system called KGpip which, (1) builds a database of datasets and corresponding pipelines by mining thousands of scripts with program analysis, (2) uses dataset embeddings to find similar datasets in the database based on its content instead of metadata-based features, (3) models AutoML pipeline creation as a graph generation problem, to succinctly characterize the diverse pipelines seen for a single dataset. KGpip's meta-learning is a sub-component for AutoML systems. We demonstrate this by integrating KGpip with two AutoML systems. Our comprehensive evaluation using 126 datasets, including those used by the state-of-the-art systems, shows that KGpip significantly outperforms these systems.
Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy
This work focuses on addressing two major challenges in the context of large-scale nonconvex Bi-Level Optimization (BLO) problems, which are increasingly applied in machine learning due to their ability to model nested structures. These challenges involve ensuring computational efficiency and providing theoretical guarantees. While recent advances in scalable BLO algorithms have primarily relied on lower-level convexity simplification, our work specifically tackles large-scale BLO problems involving nonconvexity in both the upper and lower levels. We simultaneously address computational and theoretical challenges by introducing an innovative single-loop gradient-based algorithm, utilizing the Moreau envelope-based reformulation, and providing non-asymptotic convergence analysis for general nonconvex BLO problems. Notably, our algorithm relies solely on first-order gradient information, enhancing its practicality and efficiency, especially for large-scale BLO learning tasks. We validate our approach's effectiveness through experiments on various synthetic problems, two typical hyper-parameter learning tasks, and a real-world neural architecture search application, collectively demonstrating its superior performance.
Automated Machine Learning on Graphs: A Survey
Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.
Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models
The Sparse Mixture of Experts (SMoE) has been widely employed to enhance the efficiency of training and inference for Transformer-based foundational models, yielding promising results. However, the performance of SMoE heavily depends on the choice of hyper-parameters, such as the number of experts and the number of experts to be activated (referred to as top-k), resulting in significant computational overhead due to the extensive model training by searching over various hyper-parameter configurations. As a remedy, we introduce the Dynamic Mixture of Experts (DynMoE) technique. DynMoE incorporates (1) a novel gating method that enables each token to automatically determine the number of experts to activate. (2) An adaptive process automatically adjusts the number of experts during training. Extensive numerical results across Vision, Language, and Vision-Language tasks demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks, while maintaining efficiency by activating fewer parameters. Our code is available at https://github.com/LINs-lab/DynMoE.
Length Generalization of Causal Transformers without Position Encoding
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE's generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads' best temperature hyper-parameters, which substantially expands NoPE's context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
Efficient pre-training objectives for Transformers
The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA model's new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.
FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining
Neural Architecture Search (NAS) yields state-of-the-art neural networks that outperform their best manually-designed counterparts. However, previous NAS methods search for architectures under one set of training hyper-parameters (i.e., a training recipe), overlooking superior architecture-recipe combinations. To address this, we present Neural Architecture-Recipe Search (NARS) to search both (a) architectures and (b) their corresponding training recipes, simultaneously. NARS utilizes an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking. Furthermore, to compensate for the enlarged search space, we leverage "free" architecture statistics (e.g., FLOP count) to pretrain the predictor, significantly improving its sample efficiency and prediction reliability. After training the predictor via constrained iterative optimization, we run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints, called FBNetV3. FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors. For example, FBNetV3 matches both EfficientNet and ResNeSt accuracy on ImageNet with up to 2.0x and 7.1x fewer FLOPs, respectively. Furthermore, FBNetV3 yields significant performance gains for downstream object detection tasks, improving mAP despite 18% fewer FLOPs and 34% fewer parameters than EfficientNet-based equivalents.
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning
Transductive few-shot learning has recently triggered wide attention in computer vision. Yet, current methods introduce key hyper-parameters, which control the prediction statistics of the test batches, such as the level of class balance, affecting performances significantly. Such hyper-parameters are empirically grid-searched over validation data, and their configurations may vary substantially with the target dataset and pre-training model, making such empirical searches both sub-optimal and computationally intractable. In this work, we advocate and introduce the unrolling paradigm, also referred to as "learning to optimize", in the context of few-shot learning, thereby learning efficiently and effectively a set of optimized hyper-parameters. Specifically, we unroll a generalization of the ubiquitous Expectation-Maximization (EM) optimizer into a neural network architecture, mapping each of its iterates to a layer and learning a set of key hyper-parameters over validation data. Our unrolling approach covers various statistical feature distributions and pre-training paradigms, including recent foundational vision-language models and standard vision-only classifiers. We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks, showing significant gains brought by the proposed unrolled EM algorithm over iterative variants. The achieved improvements reach up to 10% and 7.5% on vision-only and vision-language benchmarks, respectively.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Iterative Deepening Hyperband
Hyperparameter optimization (HPO) is concerned with the automated search for the most appropriate hyperparameter configuration (HPC) of a parameterized machine learning algorithm. A state-of-the-art HPO method is Hyperband, which, however, has its own parameters that influence its performance. One of these parameters, the maximal budget, is especially problematic: If chosen too small, the budget needs to be increased in hindsight and, as Hyperband is not incremental by design, the entire algorithm must be re-run. This is not only costly but also comes with a loss of valuable knowledge already accumulated. In this paper, we propose incremental variants of Hyperband that eliminate these drawbacks, and show that these variants satisfy theoretical guarantees qualitatively similar to those for the original Hyperband with the "right" budget. Moreover, we demonstrate their practical utility in experiments with benchmark data sets.
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Due to the high computational demands executing a rigorous comparison between hyperparameter optimization (HPO) methods is often cumbersome. The goal of this paper is to facilitate a better empirical evaluation of HPO methods by providing benchmarks that are cheap to evaluate, but still represent realistic use cases. We believe these benchmarks provide an easy and efficient way to conduct reproducible experiments for neural hyperparameter search. Our benchmarks consist of a large grid of configurations of a feed forward neural network on four different regression datasets including architectural hyperparameters and hyperparameters concerning the training pipeline. Based on this data, we performed an in-depth analysis to gain a better understanding of the properties of the optimization problem, as well as of the importance of different types of hyperparameters. Second, we exhaustively compared various different state-of-the-art methods from the hyperparameter optimization literature on these benchmarks in terms of performance and robustness.
Adam: A Method for Stochastic Optimization
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Optimizing Neural Network Hyperparameters with Gaussian Processes for Dialog Act Classification
Systems based on artificial neural networks (ANNs) have achieved state-of-the-art results in many natural language processing tasks. Although ANNs do not require manually engineered features, ANNs have many hyperparameters to be optimized. The choice of hyperparameters significantly impacts models' performances. However, the ANN hyperparameters are typically chosen by manual, grid, or random search, which either requires expert experiences or is computationally expensive. Recent approaches based on Bayesian optimization using Gaussian processes (GPs) is a more systematic way to automatically pinpoint optimal or near-optimal machine learning hyperparameters. Using a previously published ANN model yielding state-of-the-art results for dialog act classification, we demonstrate that optimizing hyperparameters using GP further improves the results, and reduces the computational time by a factor of 4 compared to a random search. Therefore it is a useful technique for tuning ANN models to yield the best performances for natural language processing tasks.
DeepArchitect: Automatically Designing and Training Deep Architectures
In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.
AutoHAS: Efficient Hyperparameter and Architecture Search
Efficient hyperparameter or architecture search methods have shown remarkable results, but each of them is only applicable to searching for either hyperparameters (HPs) or architectures. In this work, we propose a unified pipeline, AutoHAS, to efficiently search for both architectures and hyperparameters. AutoHAS learns to alternately update the shared network weights and a reinforcement learning (RL) controller, which learns the probability distribution for the architecture candidates and HP candidates. A temporary weight is introduced to store the updated weight from the selected HPs (by the controller), and a validation accuracy based on this temporary weight serves as a reward to update the controller. In experiments, we show AutoHAS is efficient and generalizable to different search spaces, baselines and datasets. In particular, AutoHAS can improve the accuracy over popular network architectures, such as ResNet and EfficientNet, on CIFAR-10/100, ImageNet, and four more other datasets.
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
Although deep learning has produced dazzling successes for applications of image, speech, and video processing in the past few years, most trainings are with suboptimal hyper-parameters, requiring unnecessarily long training times. Setting the hyper-parameters remains a black art that requires years of experience to acquire. This report proposes several efficient ways to set the hyper-parameters that significantly reduce training time and improves performance. Specifically, this report shows how to examine the training validation/test loss function for subtle clues of underfitting and overfitting and suggests guidelines for moving toward the optimal balance point. Then it discusses how to increase/decrease the learning rate/momentum to speed up training. Our experiments show that it is crucial to balance every manner of regularization for each dataset and architecture. Weight decay is used as a sample regularizer to show how its optimal value is tightly coupled with the learning rates and momentums. Files to help replicate the results reported here are available.
ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning
Hyperparameters are a critical factor in reliably training well-performing reinforcement learning (RL) agents. Unfortunately, developing and evaluating automated approaches for tuning such hyperparameters is both costly and time-consuming. As a result, such approaches are often only evaluated on a single domain or algorithm, making comparisons difficult and limiting insights into their generalizability. We propose ARLBench, a benchmark for hyperparameter optimization (HPO) in RL that allows comparisons of diverse HPO approaches while being highly efficient in evaluation. To enable research into HPO in RL, even in settings with low compute resources, we select a representative subset of HPO tasks spanning a variety of algorithm and environment combinations. This selection allows for generating a performance profile of an automated RL (AutoRL) method using only a fraction of the compute previously necessary, enabling a broader range of researchers to work on HPO in RL. With the extensive and large-scale dataset on hyperparameter landscapes that our selection is based on, ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL. Both the benchmark and the dataset are available at https://github.com/automl/arlbench.
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
While existing work on neural architecture search (NAS) tunes hyperparameters in a separate post-processing step, we demonstrate that architectural choices and other hyperparameter settings interact in a way that can render this separation suboptimal. Likewise, we demonstrate that the common practice of using very few epochs during the main NAS and much larger numbers of epochs during a post-processing step is inefficient due to little correlation in the relative rankings for these two training regimes. To combat both of these problems, we propose to use a recent combination of Bayesian optimization and Hyperband for efficient joint neural architecture and hyperparameter search.
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
Hyperparameter optimization can be formulated as a bilevel optimization problem, where the optimal parameters on the training set depend on the hyperparameters. We aim to adapt regularization hyperparameters for neural networks by fitting compact approximations to the best-response function, which maps hyperparameters to optimal weights and biases. We show how to construct scalable best-response approximations for neural networks by modeling the best-response as a single network whose hidden units are gated conditionally on the regularizer. We justify this approximation by showing the exact best-response for a shallow linear network with L2-regularized Jacobian can be represented by a similar gating mechanism. We fit this model using a gradient-based hyperparameter optimization algorithm which alternates between approximating the best-response around the current hyperparameters and optimizing the hyperparameters using the approximate best-response function. Unlike other gradient-based approaches, we do not require differentiating the training loss with respect to the hyperparameters, allowing us to tune discrete hyperparameters, data augmentation hyperparameters, and dropout probabilities. Because the hyperparameters are adapted online, our approach discovers hyperparameter schedules that can outperform fixed hyperparameter values. Empirically, our approach outperforms competing hyperparameter optimization methods on large-scale deep learning problems. We call our networks, which update their own hyperparameters online during training, Self-Tuning Networks (STNs).
Tune As You Scale: Hyperparameter Optimization For Compute Efficient Training
Hyperparameter tuning of deep learning models can lead to order-of-magnitude performance gains for the same amount of compute. Despite this, systematic tuning is uncommon, particularly for large models, which are expensive to evaluate and tend to have many hyperparameters, necessitating difficult judgment calls about tradeoffs, budgets, and search bounds. To address these issues and propose a practical method for robustly tuning large models, we present Cost-Aware Pareto Region Bayesian Search (CARBS), a Bayesian optimization algorithm that performs local search around the performance-cost Pareto frontier. CARBS does well even in unbounded search spaces with many hyperparameters, learns scaling relationships so that it can tune models even as they are scaled up, and automates much of the "black magic" of tuning. Among our results, we effectively solve the entire ProcGen benchmark just by tuning a simple baseline (PPO, as provided in the original ProcGen paper). We also reproduce the model size vs. training tokens scaling result from the Chinchilla project (Hoffmann et al. 2022), while simultaneously discovering scaling laws for every other hyperparameter, via an easy automated process that uses significantly less compute and is applicable to any deep learning problem (not just language models).
Hyperparameter Tuning with Renyi Differential Privacy
For many differentially private algorithms, such as the prominent noisy stochastic gradient descent (DP-SGD), the analysis needed to bound the privacy leakage of a single training run is well understood. However, few studies have reasoned about the privacy leakage resulting from the multiple training runs needed to fine tune the value of the training algorithm's hyperparameters. In this work, we first illustrate how simply setting hyperparameters based on non-private training runs can leak private information. Motivated by this observation, we then provide privacy guarantees for hyperparameter search procedures within the framework of Renyi Differential Privacy. Our results improve and extend the work of Liu and Talwar (STOC 2019). Our analysis supports our previous observation that tuning hyperparameters does indeed leak private information, but we prove that, under certain assumptions, this leakage is modest, as long as each candidate training run needed to select hyperparameters is itself differentially private.
DEHB: Evolutionary Hyperband for Scalable, Robust and Efficient Hyperparameter Optimization
Modern machine learning algorithms crucially rely on several design decisions to achieve strong performance, making the problem of Hyperparameter Optimization (HPO) more important than ever. Here, we combine the advantages of the popular bandit-based HPO method Hyperband (HB) and the evolutionary search approach of Differential Evolution (DE) to yield a new HPO method which we call DEHB. Comprehensive results on a very broad range of HPO problems, as well as a wide range of tabular benchmarks from neural architecture search, demonstrate that DEHB achieves strong performance far more robustly than all previous HPO methods we are aware of, especially for high-dimensional problems with discrete input dimensions. For example, DEHB is up to 1000x faster than random search. It is also efficient in computational time, conceptually simple and easy to implement, positioning it well to become a new default HPO method.
Improving Hyperparameter Optimization with Checkpointed Model Weights
When training deep learning models, the performance depends largely on the selected hyperparameters. However, hyperparameter optimization (HPO) is often one of the most expensive parts of model design. Classical HPO methods treat this as a black-box optimization problem. However, gray-box HPO methods, which incorporate more information about the setup, have emerged as a promising direction for more efficient optimization. For example, using intermediate loss evaluations to terminate bad selections. In this work, we propose an HPO method for neural networks using logged checkpoints of the trained weights to guide future hyperparameter selections. Our method, Forecasting Model Search (FMS), embeds weights into a Gaussian process deep kernel surrogate model, using a permutation-invariant graph metanetwork to be data-efficient with the logged network weights. To facilitate reproducibility and further research, we open-source our code at https://github.com/NVlabs/forecasting-model-search.
Hyperparameters in Reinforcement Learning and How To Tune Them
In order to improve reproducibility, deep reinforcement learning (RL) has been adopting better scientific practices such as standardized evaluation metrics and reporting. However, the process of hyperparameter optimization still varies widely across papers, which makes it challenging to compare RL algorithms fairly. In this paper, we show that hyperparameter choices in RL can significantly affect the agent's final performance and sample efficiency, and that the hyperparameter landscape can strongly depend on the tuning seed which may lead to overfitting. We therefore propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO) across a broad search space. We support this by comparing multiple state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating that HPO approaches often have higher performance and lower compute overhead. As a result of our findings, we recommend a set of best practices for the RL community, which should result in stronger empirical results with fewer computational costs, better reproducibility, and thus faster progress. In order to encourage the adoption of these practices, we provide plug-and-play implementations of the tuning algorithms used in this paper at https://github.com/facebookresearch/how-to-autorl.
Research without Re-search: Maximal Update Parametrization Yields Accurate Loss Prediction across Scales
As language models scale up, it becomes increasingly expensive to verify research ideas because conclusions on small models do not trivially transfer to large ones. A possible solution is to establish a generic system that directly predicts some metrics for large models solely based on the results and hyperparameters from small models. Existing methods based on scaling laws require hyperparameter search on the largest models, which is impractical with limited resources. We address this issue by presenting our discoveries indicating that Maximal Update parametrization (Mup) enables accurate fitting of scaling laws for hyperparameters close to common loss basins, without any search. Thus, different models can be directly compared on large scales with loss prediction even before the training starts. We propose a new paradigm as a first step towards reliable academic research for any model scale without heavy computation. Code is publicly available at https://github.com/cofe-ai/Mu-scaling.
Archon: An Architecture Search Framework for Inference-Time Techniques
Inference-time techniques are emerging as highly effective tools to enhance large language model (LLM) capabilities. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of individual inference-time techniques and the interactions between them. Additionally, efficiently and automatically searching the space of model choices, inference-time techniques, and their compositions is challenging due to the large design space. To address these challenges, we introduce Archon, a modular framework for selecting, combining, and stacking layers of inference-time techniques to construct optimized LLM systems for target benchmarks. Rather than relying on a single LLM called once, we leverage a diverse set of LLMs and inference-time techniques, creating LLM systems greater than the sum of their parts. Archon defines an extensible design space, encompassing techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing, verification, and unit testing. It transforms the problem of building LLM systems into a hyperparameter optimization objective. Given the available LLMs, inference-time techniques, and compute budget, Archon utilizes hyperparameter search techniques to discover optimized architectures for target benchmark(s). We evaluate Archon architectures across a range of instruction-following, reasoning, and coding benchmarks, including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard, MATH, and CodeContests. Archon architectures outperform frontier models, such as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy increase of 15.1 percentage points by using all available LLMs. We make our code and datasets available publicly on Github: https://github.com/ScalingIntelligence/Archon.
Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks
In this paper, we present a cross-entropy optimization method for hyperparameter optimization in stochastic gradient-based approaches to train deep neural networks. The value of a hyperparameter of a learning algorithm often has great impact on the performance of a model such as the convergence speed, the generalization performance metrics, etc. While in some cases the hyperparameters of a learning algorithm can be part of learning parameters, in other scenarios the hyperparameters of a stochastic optimization algorithm such as Adam [5] and its variants are either fixed as a constant or are kept changing in a monotonic way over time. We give an in-depth analysis of the presented method in the framework of expectation maximization (EM). The presented algorithm of cross-entropy optimization for hyperparameter optimization of a learning algorithm (CEHPO) can be equally applicable to other areas of optimization problems in deep learning. We hope that the presented methods can provide different perspectives and offer some insights for optimization problems in different areas of machine learning and beyond.
Bayesian Optimization for Selecting Efficient Machine Learning Models
The performance of many machine learning models depends on their hyper-parameter settings. Bayesian Optimization has become a successful tool for hyper-parameter optimization of machine learning algorithms, which aims to identify optimal hyper-parameters during an iterative sequential process. However, most of the Bayesian Optimization algorithms are designed to select models for effectiveness only and ignore the important issue of model training efficiency. Given that both model effectiveness and training time are important for real-world applications, models selected for effectiveness may not meet the strict training time requirements necessary to deploy in a production environment. In this work, we present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency. We propose an objective that captures the tradeoff between these two metrics and demonstrate how we can jointly optimize them in a principled Bayesian Optimization framework. Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency while maintaining strong effectiveness as compared to state-of-the-art Bayesian Optimization algorithms.
Weight Compander: A Simple Weight Reparameterization for Regularization
Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce weight compander (WC), a novel effective method to improve generalization by reparameterizing each weight in deep neural networks using a nonlinear function. It is a general, intuitive, cheap and easy to implement method, which can be combined with various other regularization techniques. Large weights in deep neural networks are a sign of a more complex network that is overfitted to the training data. Moreover, regularized networks tend to have a greater range of weights around zero with fewer weights centered at zero. We introduce a weight reparameterization function which is applied to each weight and implicitly reduces overfitting by restricting the magnitude of the weights while forcing them away from zero at the same time. This leads to a more democratic decision-making in the network. Firstly, individual weights cannot have too much influence in the prediction process due to the restriction of their magnitude. Secondly, more weights are used in the prediction process, since they are forced away from zero during the training. This promotes the extraction of more features from the input data and increases the level of weight redundancy, which makes the network less sensitive to statistical differences between training and test data. We extend our method to learn the hyperparameters of the introduced weight reparameterization function. This avoids hyperparameter search and gives the network the opportunity to align the weight reparameterization with the training progress. We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.
Focused Large Language Models are Stable Many-Shot Learners
In-Context Learning (ICL) enables large language models (LLMs) to achieve rapid task adaptation by learning from demonstrations. With the increase in available context length of LLMs, recent experiments have shown that the performance of ICL does not necessarily scale well in many-shot (demonstration) settings. We theoretically and experimentally confirm that the reason lies in more demonstrations dispersing the model attention from the query, hindering its understanding of key content. Inspired by how humans learn from examples, we propose a training-free method FocusICL, which conducts triviality filtering to avoid attention being diverted by unimportant contents at token-level and operates hierarchical attention to further ensure sufficient attention towards current query at demonstration-level. We also design an efficient hyperparameter searching strategy for FocusICL based on model perplexity of demonstrations. Comprehensive experiments validate that FocusICL achieves an average performance improvement of 5.2% over vanilla ICL and scales well with many-shot demonstrations.
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian neural networks while benefiting from better computational scalability. However, building ensembles of neural networks is a challenging task because, in addition to choosing the right neural architecture or hyperparameters for each member of the ensemble, there is an added cost of training each model. We propose AutoDEUQ, an automated approach for generating an ensemble of deep neural networks. Our approach leverages joint neural architecture and hyperparameter search to generate ensembles. We use the law of total variance to decompose the predictive variance of deep ensembles into aleatoric (data) and epistemic (model) uncertainties. We show that AutoDEUQ outperforms probabilistic backpropagation, Monte Carlo dropout, deep ensemble, distribution-free ensembles, and hyper ensemble methods on a number of regression benchmarks.
Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler
Finding the optimal learning rate for language model pretraining is a challenging task. This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored. In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (muP) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models. We open-source these pretrained models at https://ibm.biz/BdKhLa.
STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables
Learning with few labeled tabular samples is often an essential requirement for industrial machine learning applications as varieties of tabular data suffer from high annotation costs or have difficulties in collecting new samples for novel tasks. Despite the utter importance, such a problem is quite under-explored in the field of tabular learning, and existing few-shot learning schemes from other domains are not straightforward to apply, mainly due to the heterogeneous characteristics of tabular data. In this paper, we propose a simple yet effective framework for few-shot semi-supervised tabular learning, coined Self-generated Tasks from UNlabeled Tables (STUNT). Our key idea is to self-generate diverse few-shot tasks by treating randomly chosen columns as a target label. We then employ a meta-learning scheme to learn generalizable knowledge with the constructed tasks. Moreover, we introduce an unsupervised validation scheme for hyperparameter search (and early stopping) by generating a pseudo-validation set using STUNT from unlabeled data. Our experimental results demonstrate that our simple framework brings significant performance gain under various tabular few-shot learning benchmarks, compared to prior semi- and self-supervised baselines. Code is available at https://github.com/jaehyun513/STUNT.
Optimizing Deep Learning Models to Address Class Imbalance in Code Comment Classification
Developers rely on code comments to document their work, track issues, and understand the source code. As such, comments provide valuable insights into developers' understanding of their code and describe their various intentions in writing the surrounding code. Recent research leverages natural language processing and deep learning to classify comments based on developers' intentions. However, such labelled data are often imbalanced, causing learning models to perform poorly. This work investigates the use of different weighting strategies of the loss function to mitigate the scarcity of certain classes in the dataset. In particular, various RoBERTa-based transformer models are fine-tuned by means of a hyperparameter search to identify their optimal parameter configurations. Additionally, we fine-tuned the transformers with different weighting strategies for the loss function to address class imbalances. Our approach outperforms the STACC baseline by 8.9 per cent on the NLBSE'25 Tool Competition dataset in terms of the average F1_c score, and exceeding the baseline approach in 17 out of 19 cases with a gain ranging from -5.0 to 38.2. The source code is publicly available at https://github.com/moritzmock/NLBSE2025.
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections
Parameter-efficient finetuning (PEFT) has become ubiquitous to adapt foundation models to downstream task requirements while retaining their generalization ability. However, the amount of additionally introduced parameters and compute for successful adaptation and hyperparameter searches can explode quickly, especially when deployed at scale to serve numerous individual requests. To ensure effective, parameter-efficient, and hyperparameter-robust adaptation, we propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections. By design, ETHER transformations require a minimal number of parameters, are less likely to deteriorate model performance, and exhibit robustness to hyperparameter and learning rate choices. In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters (sim10-100 times lower than LoRA or OFT) across multiple image synthesis and natural language tasks without exhaustive hyperparameter tuning. Finally, we investigate the recent emphasis on Hyperspherical Energy retention for adaptation and raise questions on its practical utility. The code is available at https://github.com/mwbini/ether.
Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function
Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.
LinguAlchemy: Fusing Typological and Geographical Elements for Unseen Language Generalization
Pretrained language models (PLMs) have shown remarkable generalization toward multiple tasks and languages. Nonetheless, the generalization of PLMs towards unseen languages is poor, resulting in significantly worse language performance, or even generating nonsensical responses that are comparable to a random baseline. This limitation has been a longstanding problem of PLMs raising the problem of diversity and equal access to language modeling technology. In this work, we solve this limitation by introducing LinguAlchemy, a regularization technique that incorporates various aspects of languages covering typological, geographical, and phylogenetic constraining the resulting representation of PLMs to better characterize the corresponding linguistics constraints. LinguAlchemy significantly improves the accuracy performance of mBERT and XLM-R on unseen languages by ~18% and ~2%, respectively compared to fully finetuned models and displaying a high degree of unseen language generalization. We further introduce AlchemyScale and AlchemyTune, extension of LinguAlchemy which adjusts the linguistic regularization weights automatically, alleviating the need for hyperparameter search. LinguAlchemy enables better cross-lingual generalization to unseen languages which is vital for better inclusivity and accessibility of PLMs.
Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models
Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval.
FairAutoML: Embracing Unfairness Mitigation in AutoML
In this work, we propose an Automated Machine Learning (AutoML) system to search for models not only with good prediction accuracy but also fair. We first investigate the necessity and impact of unfairness mitigation in the AutoML context. We establish the FairAutoML framework. The framework provides a novel design based on pragmatic abstractions, which makes it convenient to incorporate existing fairness definitions, unfairness mitigation techniques, and hyperparameter search methods into the model search and evaluation process. Following this framework, we develop a fair AutoML system based on an existing AutoML system. The augmented system includes a resource allocation strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness, and resource consumption on the fly. Extensive empirical evaluation shows that our system can achieve a good `fair accuracy' and high resource efficiency.
Wasserstein GAN
We introduce a new algorithm named WGAN, an alternative to traditional GAN training. In this new model, we show that we can improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches. Furthermore, we show that the corresponding optimization problem is sound, and provide extensive theoretical work highlighting the deep connections to other distances between distributions.
AutoLoRa: A Parameter-Free Automated Robust Fine-Tuning Framework
Robust Fine-Tuning (RFT) is a low-cost strategy to obtain adversarial robustness in downstream applications, without requiring a lot of computational resources and collecting significant amounts of data. This paper uncovers an issue with the existing RFT, where optimizing both adversarial and natural objectives through the feature extractor (FE) yields significantly divergent gradient directions. This divergence introduces instability in the optimization process, thereby hindering the attainment of adversarial robustness and rendering RFT highly sensitive to hyperparameters. To mitigate this issue, we propose a low-rank (LoRa) branch that disentangles RFT into two distinct components: optimizing natural objectives via the LoRa branch and adversarial objectives via the FE. Besides, we introduce heuristic strategies for automating the scheduling of the learning rate and the scalars of loss terms. Extensive empirical evaluations demonstrate that our proposed automated RFT disentangled via the LoRa branch (AutoLoRa) achieves new state-of-the-art results across a range of downstream tasks. AutoLoRa holds significant practical utility, as it automatically converts a pre-trained FE into an adversarially robust model for downstream tasks without the need for searching hyperparameters.
[Re] Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias
Singh et al. (2020) point out the dangers of contextual bias in visual recognition datasets. They propose two methods, CAM-based and feature-split, that better recognize an object or attribute in the absence of its typical context while maintaining competitive within-context accuracy. To verify their performance, we attempted to reproduce all 12 tables in the original paper, including those in the appendix. We also conducted additional experiments to better understand the proposed methods, including increasing the regularization in CAM-based and removing the weighted loss in feature-split. As the original code was not made available, we implemented the entire pipeline from scratch in PyTorch 1.7.0. Our implementation is based on the paper and email exchanges with the authors. We found that both proposed methods in the original paper help mitigate contextual bias, although for some methods, we could not completely replicate the quantitative results in the paper even after completing an extensive hyperparameter search. For example, on COCO-Stuff, DeepFashion, and UnRel, our feature-split model achieved an increase in accuracy on out-of-context images over the standard baseline, whereas on AwA, we saw a drop in performance. For the proposed CAM-based method, we were able to reproduce the original paper's results to within 0.5% mAP. Our implementation can be found at https://github.com/princetonvisualai/ContextualBias.
Layer-adaptive sparsity for the Magnitude-based Pruning
Recent discoveries on neural network pruning reveal that, with a carefully chosen layerwise sparsity, a simple magnitude-based pruning achieves state-of-the-art tradeoff between sparsity and performance. However, without a clear consensus on "how to choose," the layerwise sparsities are mostly selected algorithm-by-algorithm, often resorting to handcrafted heuristics or an extensive hyperparameter search. To fill this gap, we propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score; the score is a rescaled version of weight magnitude that incorporates the model-level ell_2 distortion incurred by pruning, and does not require any hyperparameter tuning or heavy computation. Under various image classification setups, LAMP consistently outperforms popular existing schemes for layerwise sparsity selection. Furthermore, we observe that LAMP continues to outperform baselines even in weight-rewinding setups, while the connectivity-oriented layerwise sparsity (the strongest baseline overall) performs worse than a simple global magnitude-based pruning in this case. Code: https://github.com/jaeho-lee/layer-adaptive-sparsity
ExcelFormer: Can a DNN be a Sure Bet for Tabular Prediction?
Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively so for neural networks (NNs) with billions of parameters. We show that, in the recently discovered Maximal Update Parametrization (muP), many optimal HPs remain stable even as model size changes. This leads to a new HP tuning paradigm we call muTransfer: parametrize the target model in muP, tune the HP indirectly on a smaller model, and zero-shot transfer them to the full-sized model, i.e., without directly tuning the latter at all. We verify muTransfer on Transformer and ResNet. For example, 1) by transferring pretraining HPs from a model of 13M parameters, we outperform published numbers of BERT-large (350M parameters), with a total tuning cost equivalent to pretraining BERT-large once; 2) by transferring from 40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with tuning cost only 7% of total pretraining cost. A Pytorch implementation of our technique can be found at github.com/microsoft/mup and installable via `pip install mup`.
sharpDARTS: Faster and More Accurate Differentiable Architecture Search
Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
Hyperparameter optimization (HPO) is a core problem for the machine learning community and remains largely unsolved due to the significant computational resources required to evaluate hyperparameter configurations. As a result, a series of recent related works have focused on the direction of transfer learning for quickly fine-tuning hyperparameters on a dataset. Unfortunately, the community does not have a common large-scale benchmark for comparing HPO algorithms. Instead, the de facto practice consists of empirical protocols on arbitrary small-scale meta-datasets that vary inconsistently across publications, making reproducibility a challenge. To resolve this major bottleneck and enable a fair and fast comparison of black-box HPO methods on a level playing field, we propose HPO-B, a new large-scale benchmark in the form of a collection of meta-datasets. Our benchmark is assembled and preprocessed from the OpenML repository and consists of 176 search spaces (algorithms) evaluated sparsely on 196 datasets with a total of 6.4 million hyperparameter evaluations. For ensuring reproducibility on our benchmark, we detail explicit experimental protocols, splits, and evaluation measures for comparing methods for both non-transfer, as well as, transfer learning HPO.
Stochastic Hyperparameter Optimization through Hypernetworks
Machine learning models are often tuned by nesting optimization of model weights inside the optimization of hyperparameters. We give a method to collapse this nested optimization into joint stochastic optimization of weights and hyperparameters. Our process trains a neural network to output approximately optimal weights as a function of hyperparameters. We show that our technique converges to locally optimal weights and hyperparameters for sufficiently large hypernetworks. We compare this method to standard hyperparameter optimization strategies and demonstrate its effectiveness for tuning thousands of hyperparameters.
What augmentations are sensitive to hyper-parameters and why?
We apply augmentations to our dataset to enhance the quality of our predictions and make our final models more resilient to noisy data and domain drifts. Yet the question remains, how are these augmentations going to perform with different hyper-parameters? In this study we evaluate the sensitivity of augmentations with regards to the model's hyper parameters along with their consistency and influence by performing a Local Surrogate (LIME) interpretation on the impact of hyper-parameters when different augmentations are applied to a machine learning model. We have utilized Linear regression coefficients for weighing each augmentation. Our research has proved that there are some augmentations which are highly sensitive to hyper-parameters and others which are more resilient and reliable.
How far away are truly hyperparameter-free learning algorithms?
Despite major advances in methodology, hyperparameter tuning remains a crucial (and expensive) part of the development of machine learning systems. Even ignoring architectural choices, deep neural networks have a large number of optimization and regularization hyperparameters that need to be tuned carefully per workload in order to obtain the best results. In a perfect world, training algorithms would not require workload-specific hyperparameter tuning, but would instead have default settings that performed well across many workloads. Recently, there has been a growing literature on optimization methods which attempt to reduce the number of hyperparameters -- particularly the learning rate and its accompanying schedule. Given these developments, how far away is the dream of neural network training algorithms that completely obviate the need for painful tuning? In this paper, we evaluate the potential of learning-rate-free methods as components of hyperparameter-free methods. We freeze their (non-learning rate) hyperparameters to default values, and score their performance using the recently-proposed AlgoPerf: Training Algorithms benchmark. We found that literature-supplied default settings performed poorly on the benchmark, so we performed a search for hyperparameter configurations that performed well across all workloads simultaneously. The best AlgoPerf-calibrated learning-rate-free methods had much improved performance but still lagged slightly behind a similarly calibrated NadamW baseline in overall benchmark score. Our results suggest that there is still much room for improvement for learning-rate-free methods, and that testing against a strong, workload-agnostic baseline is important to improve hyperparameter reduction techniques.
HyperTree Proof Search for Neural Theorem Proving
We propose an online training procedure for a transformer-based automated theorem prover. Our approach leverages a new search algorithm, HyperTree Proof Search (HTPS), inspired by the recent success of AlphaZero. Our model learns from previous proof searches through online training, allowing it to generalize to domains far from the training distribution. We report detailed ablations of our pipeline's main components by studying performance on three environments of increasing complexity. In particular, we show that with HTPS alone, a model trained on annotated proofs manages to prove 65.4% of a held-out set of Metamath theorems, significantly outperforming the previous state of the art of 56.5% by GPT-f. Online training on these unproved theorems increases accuracy to 82.6%. With a similar computational budget, we improve the state of the art on the Lean-based miniF2F-curriculum dataset from 31% to 42% proving accuracy.
Is Hyper-Parameter Optimization Different for Software Analytics?
Yes. SE data can have "smoother" boundaries between classes (compared to traditional AI data sets). To be more precise, the magnitude of the second derivative of the loss function found in SE data is typically much smaller. A new hyper-parameter optimizer, called SMOOTHIE, can exploit this idiosyncrasy of SE data. We compare SMOOTHIE and a state-of-the-art AI hyper-parameter optimizer on three tasks: (a) GitHub issue lifetime prediction (b) detecting static code warnings false alarm; (c) defect prediction. For completeness, we also show experiments on some standard AI datasets. SMOOTHIE runs faster and predicts better on the SE data--but ties on non-SE data with the AI tool. Hence we conclude that SE data can be different to other kinds of data; and those differences mean that we should use different kinds of algorithms for our data. To support open science and other researchers working in this area, all our scripts and datasets are available on-line at https://github.com/yrahul3910/smoothness-hpo/.
Efficient Hyperparameter Optimization in Deep Learning Using a Variable Length Genetic Algorithm
Convolutional Neural Networks (CNN) have gained great success in many artificial intelligence tasks. However, finding a good set of hyperparameters for a CNN remains a challenging task. It usually takes an expert with deep knowledge, and trials and errors. Genetic algorithms have been used in hyperparameter optimizations. However, traditional genetic algorithms with fixed-length chromosomes may not be a good fit for optimizing deep learning hyperparameters, because deep learning models have variable number of hyperparameters depending on the model depth. As the depth increases, the number of hyperparameters grows exponentially, and searching becomes exponentially harder. It is important to have an efficient algorithm that can find a good model in reasonable time. In this article, we propose to use a variable length genetic algorithm (GA) to systematically and automatically tune the hyperparameters of a CNN to improve its performance. Experimental results show that our algorithm can find good CNN hyperparameters efficiently. It is clear from our experiments that if more time is spent on optimizing the hyperparameters, better results could be achieved. Theoretically, if we had unlimited time and CPU power, we could find the optimized hyperparameters and achieve the best results in the future.
Facilitating Database Tuning with Hyper-Parameter Optimization: A Comprehensive Experimental Evaluation
Recently, using automatic configuration tuning to improve the performance of modern database management systems (DBMSs) has attracted increasing interest from the database community. This is embodied with a number of systems featuring advanced tuning capabilities being developed. However, it remains a challenge to select the best solution for database configuration tuning, considering the large body of algorithm choices. In addition, beyond the applications on database systems, we could find more potential algorithms designed for configuration tuning. To this end, this paper provides a comprehensive evaluation of configuration tuning techniques from a broader perspective, hoping to better benefit the database community. In particular, we summarize three key modules of database configuration tuning systems and conduct extensive ablation studies using various challenging cases. Our evaluation demonstrates that the hyper-parameter optimization algorithms can be borrowed to further enhance the database configuration tuning. Moreover, we identify the best algorithm choices for different modules. Beyond the comprehensive evaluations, we offer an efficient and unified database configuration tuning benchmark via surrogates that reduces the evaluation cost to a minimum, allowing for extensive runs and analysis of new techniques.
Optimizing Millions of Hyperparameters by Implicit Differentiation
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results about the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyper-parameters. For example, we learn a data-augmentation network - where every weight is a hyperparameter tuned for validation performance - outputting augmented training examples. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.
Benchmark Analysis of Various Pre-trained Deep Learning Models on ASSIRA Cats and Dogs Dataset
As the most basic application and implementation of deep learning, image classification has grown in popularity. Various datasets are provided by renowned data science communities for benchmarking machine learning algorithms and pre-trained models. The ASSIRA Cats & Dogs dataset is one of them and is being used in this research for its overall acceptance and benchmark standards. A comparison of various pre-trained models is demonstrated by using different types of optimizers and loss functions. Hyper-parameters are changed to gain the best result from a model. By applying this approach, we have got higher accuracy without major changes in the training model. To run the experiment, we used three different computer architectures: a laptop equipped with NVIDIA GeForce GTX 1070, a laptop equipped with NVIDIA GeForce RTX 3080Ti, and a desktop equipped with NVIDIA GeForce RTX 3090. The acquired results demonstrate supremacy in terms of accuracy over the previously done experiments on this dataset. From this experiment, the highest accuracy which is 99.65% is gained using the NASNet Large.
MARIOH: Multiplicity-Aware Hypergraph Reconstruction
Hypergraphs offer a powerful framework for modeling higher-order interactions that traditional pairwise graphs cannot fully capture. However, practical constraints often lead to their simplification into projected graphs, resulting in substantial information loss and ambiguity in representing higher-order relationships. In this work, we propose MARIOH, a supervised approach for reconstructing the original hypergraph from its projected graph by leveraging edge multiplicity. To overcome the difficulties posed by the large search space, MARIOH integrates several key ideas: (a) identifying provable size-2 hyperedges, which reduces the candidate search space, (b) predicting the likelihood of candidates being hyperedges by utilizing both structural and multiplicity-related features, and (c) not only targeting promising hyperedge candidates but also examining less confident ones to explore alternative possibilities. Together, these ideas enable MARIOH to efficiently and effectively explore the search space. In our experiments using 10 real-world datasets, MARIOH achieves up to 74.51% higher reconstruction accuracy compared to state-of-the-art methods.
Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.07\% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
Hyperparameter optimization with approximate gradient
Most models in machine learning contain at least one hyperparameter to control for model complexity. Choosing an appropriate set of hyperparameters is both crucial in terms of model accuracy and computationally challenging. In this work we propose an algorithm for the optimization of continuous hyperparameters using inexact gradient information. An advantage of this method is that hyperparameters can be updated before model parameters have fully converged. We also give sufficient conditions for the global convergence of this method, based on regularity conditions of the involved functions and summability of errors. Finally, we validate the empirical performance of this method on the estimation of regularization constants of L2-regularized logistic regression and kernel Ridge regression. Empirical benchmarks indicate that our approach is highly competitive with respect to state of the art methods.
BabyLlama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data
We present BabyLlama-2, a 345 million parameter model distillation-pretrained from two teachers on a 10 million word corpus for the BabyLM competition. On BLiMP and SuperGLUE benchmarks, BabyLlama-2 outperforms baselines trained on both 10 and 100 million word datasets with the same data mix, as well as its teacher models. Through an extensive hyperparameter sweep, we demonstrate that the advantages of distillation cannot be attributed to suboptimal hyperparameter selection of the teachers. Our findings underscore the need for further investigation into distillation techniques, particularly in data-limited settings.
Hyperparameters in Continual Learning: a Reality Check
Various algorithms for continual learning (CL) have been designed with the goal of effectively alleviating the trade-off between stability and plasticity during the CL process. To achieve this goal, tuning appropriate hyperparameters for each algorithm is essential. As an evaluation protocol, it has been common practice to train a CL algorithm using diverse hyperparameter values on a CL scenario constructed with a benchmark dataset. Subsequently, the best performance attained with the optimal hyperparameter value serves as the criterion for evaluating the CL algorithm. In this paper, we contend that this evaluation protocol is not only impractical but also incapable of effectively assessing the CL capability of a CL algorithm. Returning to the fundamental principles of model evaluation in machine learning, we propose an evaluation protocol that involves Hyperparameter Tuning and Evaluation phases. Those phases consist of different datasets but share the same CL scenario. In the Hyperparameter Tuning phase, each algorithm is iteratively trained with different hyperparameter values to find the optimal hyperparameter values. Subsequently, in the Evaluation phase, the optimal hyperparameter values is directly applied for training each algorithm, and their performance in the Evaluation phase serves as the criterion for evaluating them. Through experiments on CIFAR-100 and ImageNet-100 based on the proposed protocol in class-incremental learning, we not only observed that the existing evaluation method fail to properly assess the CL capability of each algorithm but also observe that some recently proposed state-of-the-art algorithms, which reported superior performance, actually exhibit inferior performance compared to the previous algorithm.
Efficient Automatic CASH via Rising Bandits
The Combined Algorithm Selection and Hyperparameter optimization (CASH) is one of the most fundamental problems in Automatic Machine Learning (AutoML). The existing Bayesian optimization (BO) based solutions turn the CASH problem into a Hyperparameter Optimization (HPO) problem by combining the hyperparameters of all machine learning (ML) algorithms, and use BO methods to solve it. As a result, these methods suffer from the low-efficiency problem due to the huge hyperparameter space in CASH. To alleviate this issue, we propose the alternating optimization framework, where the HPO problem for each ML algorithm and the algorithm selection problem are optimized alternately. In this framework, the BO methods are used to solve the HPO problem for each ML algorithm separately, incorporating a much smaller hyperparameter space for BO methods. Furthermore, we introduce Rising Bandits, a CASH-oriented Multi-Armed Bandits (MAB) variant, to model the algorithm selection in CASH. This framework can take the advantages of both BO in solving the HPO problem with a relatively small hyperparameter space and the MABs in accelerating the algorithm selection. Moreover, we further develop an efficient online algorithm to solve the Rising Bandits with provably theoretical guarantees. The extensive experiments on 30 OpenML datasets demonstrate the superiority of the proposed approach over the competitive baselines.
How Does Critical Batch Size Scale in Pre-training?
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
Learning Hyperparameters via a Data-Emphasized Variational Objective
When training large flexible models, practitioners often rely on grid search to select hyperparameters that control over-fitting. This grid search has several disadvantages: the search is computationally expensive, requires carving out a validation set that reduces the available data for training, and requires users to specify candidate values. In this paper, we propose an alternative: directly learning regularization hyperparameters on the full training set via the evidence lower bound ("ELBo") objective from variational methods. For deep neural networks with millions of parameters, we recommend a modified ELBo that upweights the influence of the data likelihood relative to the prior. Our proposed technique overcomes all three disadvantages of grid search. In a case study on transfer learning of image classifiers, we show how our method reduces the 88+ hour grid search of past work to under 3 hours while delivering comparable accuracy. We further demonstrate how our approach enables efficient yet accurate approximations of Gaussian processes with learnable length-scale kernels.
How to Train Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing NAS
Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics and hyperparameters substantially vary across different methods, a fair comparison between them can only be achieved by systematically analyzing the influence of these factors. In this paper, we therefore provide a systematic evaluation of the heuristics and hyperparameters that are frequently employed by weight-sharing NAS algorithms. Our analysis uncovers that some commonly-used heuristics for super-net training negatively impact the correlation between super-net and stand-alone performance, and evidences the strong influence of certain hyperparameters and architectural choices. Our code and experiments set a strong and reproducible baseline that future works can build on.
Model-based Asynchronous Hyperparameter and Neural Architecture Search
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. At the heart of our method is a probabilistic model that can simultaneously reason across hyperparameters and resource levels, and supports decision-making in the presence of pending evaluations. We demonstrate the effectiveness of our method on a wide range of challenging benchmarks, for tabular data, image classification and language modelling, and report substantial speed-ups over current state-of-the-art methods. Our new methods, along with asynchronous baselines, are implemented in a distributed framework which will be open sourced along with this publication.
ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design
Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.
Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning
We introduce Gravity, another algorithm for gradient-based optimization. In this paper, we explain how our novel idea change parameters to reduce the deep learning model's loss. It has three intuitive hyper-parameters that the best values for them are proposed. Also, we propose an alternative to moving average. To compare the performance of the Gravity optimizer with two common optimizers, Adam and RMSProp, five standard datasets were trained on two VGGNet models with a batch size of 128 for 100 epochs. Gravity hyper-parameters did not need to be tuned for different models. As will be explained more in the paper, to investigate the direct impact of the optimizer itself on loss reduction no overfitting prevention technique was used. The obtained results show that the Gravity optimizer has more stable performance than Adam and RMSProp and gives greater values of validation accuracy for datasets with more output classes like CIFAR-100 (Fine).
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Adaptive optimization methods are widely recognized as among the most popular approaches for training Deep Neural Networks (DNNs). Techniques such as Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search direction by incorporating information about the curvature of the objective function. However, despite their adaptive characteristics, these methods still require manual fine-tuning of the step-size. This, in turn, impacts the time required to solve a particular problem. This paper presents an optimization framework named SANIA to tackle these challenges. Beyond eliminating the need for manual step-size hyperparameter settings, SANIA incorporates techniques to address poorly scaled or ill-conditioned problems. We also explore several preconditioning methods, including Hutchinson's method, which approximates the Hessian diagonal of the loss function. We conclude with an extensive empirical examination of the proposed techniques across classification tasks, covering both convex and non-convex contexts.
Magnitude Invariant Parametrizations Improve Hypernetwork Learning
Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.
Optimizing Hyperparameters with Conformal Quantile Regression
Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.
How to Train Your LLM Web Agent: A Statistical Diagnosis
LLM-based web agents have recently made significant progress, but much of it has occurred in closed-source systems, widening the gap with open-source alternatives. Progress has been held back by two key challenges: first, a narrow focus on single-step tasks that overlooks the complexity of multi-step web interactions; and second, the high compute costs required to post-train LLM-based web agents. To address this, we present the first statistically grounded study on compute allocation for LLM web-agent post-training. Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT), followed by on-policy reinforcement learning. We find this process highly sensitive to hyperparameter choices, making exhaustive sweeps impractical. To spare others from expensive trial-and-error, we sample 1,370 configurations and use bootstrapping to estimate effective hyperparameters. Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++. Further, this strategy requires only 55% of the compute to match the peak performance of pure SFT on MiniWob++, effectively pushing the compute-performance Pareto frontier, and is the only strategy that can close the gap with closed-source models.
HyperRouter: Towards Efficient Training and Inference of Sparse Mixture of Experts
By routing input tokens to only a few split experts, Sparse Mixture-of-Experts has enabled efficient training of large language models. Recent findings suggest that fixing the routers can achieve competitive performance by alleviating the collapsing problem, where all experts eventually learn similar representations. However, this strategy has two key limitations: (i) the policy derived from random routers might be sub-optimal, and (ii) it requires extensive resources during training and evaluation, leading to limited efficiency gains. This work introduces \HyperRout, which dynamically generates the router's parameters through a fixed hypernetwork and trainable embeddings to achieve a balance between training the routers and freezing them to learn an improved routing policy. Extensive experiments across a wide range of tasks demonstrate the superior performance and efficiency gains of \HyperRouter compared to existing routing methods. Our implementation is publicly available at {{https://github.com/giangdip2410/HyperRouter}}.
Multilingual Machine Translation with Hyper-Adapters
Multilingual machine translation suffers from negative interference across languages. A common solution is to relax parameter sharing with language-specific modules like adapters. However, adapters of related languages are unable to transfer information, and their total number of parameters becomes prohibitively expensive as the number of languages grows. In this work, we overcome these drawbacks using hyper-adapters -- hyper-networks that generate adapters from language and layer embeddings. While past work had poor results when scaling hyper-networks, we propose a rescaling fix that significantly improves convergence and enables training larger hyper-networks. We find that hyper-adapters are more parameter efficient than regular adapters, reaching the same performance with up to 12 times less parameters. When using the same number of parameters and FLOPS, our approach consistently outperforms regular adapters. Also, hyper-adapters converge faster than alternative approaches and scale better than regular dense networks. Our analysis shows that hyper-adapters learn to encode language relatedness, enabling positive transfer across languages.
PyGlove: Symbolic Programming for Automated Machine Learning
Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.
Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS
In this paper, we compare the three most popular algorithms for hyperparameter optimization (Grid Search, Random Search, and Genetic Algorithm) and attempt to use them for neural architecture search (NAS). We use these algorithms for building a convolutional neural network (search architecture). Experimental results on CIFAR-10 dataset further demonstrate the performance difference between compared algorithms. The comparison results are based on the execution time of the above algorithms and accuracy of the proposed models.
CoRe Optimizer: An All-in-One Solution for Machine Learning
The optimization algorithm and its hyperparameters can significantly affect the training speed and resulting model accuracy in machine learning applications. The wish list for an ideal optimizer includes fast and smooth convergence to low error, low computational demand, and general applicability. Our recently introduced continual resilient (CoRe) optimizer has shown superior performance compared to other state-of-the-art first-order gradient-based optimizers for training lifelong machine learning potentials. In this work we provide an extensive performance comparison of the CoRe optimizer and nine other optimization algorithms including the Adam optimizer and resilient backpropagation (RPROP) for diverse machine learning tasks. We analyze the influence of different hyperparameters and provide generally applicable values. The CoRe optimizer yields best or competitive performance in every investigated application, while only one hyperparameter needs to be changed depending on mini-batch or batch learning.
Illuminating search spaces by mapping elites
Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering.
Hyperparameter Tuning is All You Need for LISTA
Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) introduces the concept of unrolling an iterative algorithm and training it like a neural network. It has had great success on sparse recovery. In this paper, we show that adding momentum to intermediate variables in the LISTA network achieves a better convergence rate and, in particular, the network with instance-optimal parameters is superlinearly convergent. Moreover, our new theoretical results lead to a practical approach of automatically and adaptively calculating the parameters of a LISTA network layer based on its previous layers. Perhaps most surprisingly, such an adaptive-parameter procedure reduces the training of LISTA to tuning only three hyperparameters from data: a new record set in the context of the recent advances on trimming down LISTA complexity. We call this new ultra-light weight network HyperLISTA. Compared to state-of-the-art LISTA models, HyperLISTA achieves almost the same performance on seen data distributions and performs better when tested on unseen distributions (specifically, those with different sparsity levels and nonzero magnitudes). Code is available: https://github.com/VITA-Group/HyperLISTA.
HyperInterval: Hypernetwork approach to training weight interval regions in continual learning
Recently, a new Continual Learning (CL) paradigm was presented to control catastrophic forgetting, called Interval Continual Learning (InterContiNet), which relies on enforcing interval constraints on the neural network parameter space. Unfortunately, InterContiNet training is challenging due to the high dimensionality of the weight space, making intervals difficult to manage. To address this issue, we introduce HyperInterval, a technique that employs interval arithmetic within the embedding space and utilizes a hypernetwork to map these intervals to the target network parameter space. We train interval embeddings for consecutive tasks and train a hypernetwork to transform these embeddings into weights of the target network. An embedding for a given task is trained along with the hypernetwork, preserving the response of the target network for the previous task embeddings. Interval arithmetic works with a more manageable, lower-dimensional embedding space rather than directly preparing intervals in a high-dimensional weight space. Our model allows faster and more efficient training. Furthermore, HyperInterval maintains the guarantee of not forgetting. At the end of training, we can choose one universal embedding to produce a single network dedicated to all tasks. In such a framework, hypernetwork is used only for training and can be seen as a meta-trainer. HyperInterval obtains significantly better results than InterContiNet and gives SOTA results on several benchmarks.
Don't be lazy: CompleteP enables compute-efficient deep transformers
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
Sequential Policy Gradient for Adaptive Hyperparameter Optimization
Reinforcement learning is essential for neural architecture search and hyperparameter optimization, but the conventional approaches impede widespread use due to prohibitive time and computational costs. Inspired by DeepSeek-V3 multi-token prediction architecture, we propose Sequential Policy Gradient modeling (SPG), a novel trajectory generation paradigm for lightweight online hyperparameter optimization. In contrast to conventional policy gradient methods, SPG extends the base model with temporary modules, enabling it to generate state-action (padded) trajectories in a single forward pass. Our experiments demonstrate that models gain performance when retrained with SPG on their original datasets and also outperform standard transfer fine-tuning. We evaluate on five datasets spanning computer vision (ImageNet, COCO), natural language processing (GLUE, SQuAD), and audio (SUPERB) to assess the industrial applicability of SPG. The proposed method demonstrates consistent improvements across widely adopted models, achieving performance gains of +0.2sim7%, with significantly low computational costs. Fully reproducible code and pre-trained models: https://huggingface.co/UniversalAlgorithmic/SPG.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
From Hypergraph Energy Functions to Hypergraph Neural Networks
Hypergraphs are a powerful abstraction for representing higher-order interactions between entities of interest. To exploit these relationships in making downstream predictions, a variety of hypergraph neural network architectures have recently been proposed, in large part building upon precursors from the more traditional graph neural network (GNN) literature. Somewhat differently, in this paper we begin by presenting an expressive family of parameterized, hypergraph-regularized energy functions. We then demonstrate how minimizers of these energies effectively serve as node embeddings that, when paired with a parameterized classifier, can be trained end-to-end via a supervised bilevel optimization process. Later, we draw parallels between the implicit architecture of the predictive models emerging from the proposed bilevel hypergraph optimization, and existing GNN architectures in common use. Empirically, we demonstrate state-of-the-art results on various hypergraph node classification benchmarks. Code is available at https://github.com/yxzwang/PhenomNN.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
Neural Solvers for Fast and Accurate Numerical Optimal Control
Synthesizing optimal controllers for dynamical systems often involves solving optimization problems with hard real-time constraints. These constraints determine the class of numerical methods that can be applied: computationally expensive but accurate numerical routines are replaced by fast and inaccurate methods, trading inference time for solution accuracy. This paper provides techniques to improve the quality of optimized control policies given a fixed computational budget. We achieve the above via a hypersolvers approach, which hybridizes a differential equation solver and a neural network. The performance is evaluated in direct and receding-horizon optimal control tasks in both low and high dimensions, where the proposed approach shows consistent Pareto improvements in solution accuracy and control performance.
Unified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
Adaptive Rollout Length for Model-Based RL Using Model-Free Deep RL
Model-based reinforcement learning promises to learn an optimal policy from fewer interactions with the environment compared to model-free reinforcement learning by learning an intermediate model of the environment in order to predict future interactions. When predicting a sequence of interactions, the rollout length, which limits the prediction horizon, is a critical hyperparameter as accuracy of the predictions diminishes in the regions that are further away from real experience. As a result, with a longer rollout length, an overall worse policy is learned in the long run. Thus, the hyperparameter provides a trade-off between quality and efficiency. In this work, we frame the problem of tuning the rollout length as a meta-level sequential decision-making problem that optimizes the final policy learned by model-based reinforcement learning given a fixed budget of environment interactions by adapting the hyperparameter dynamically based on feedback from the learning process, such as accuracy of the model and the remaining budget of interactions. We use model-free deep reinforcement learning to solve the meta-level decision problem and demonstrate that our approach outperforms common heuristic baselines on two well-known reinforcement learning environments.
Hypencoder: Hypernetworks for Information Retrieval
The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
Sampling Streaming Data with Parallel Vector Quantization -- PVQ
Accumulation of corporate data in the cloud has attracted more enterprise applications to the cloud creating data gravity. As a consequence, network traffic has become more cloud centric. This increase in cloud centric traffic poses new challenges in designing learning systems for streaming data due to class imbalance. The number of classes plays a vital role in the accuracy of the classifiers built from the data streams. In this paper, we present a vector quantization-based sampling method, which substantially reduces the class imbalance in data streams. We demonstrate its effectiveness by conducting experiments on network traffic and anomaly dataset with commonly used ML model building methods; Multilayered Perceptron on TensorFlow backend, Support Vector Machines, K-Nearest Neighbour, and Random Forests. We built models using parallel processing, batch processing, and randomly selecting samples. We show that the accuracy of classification models improves when the data streams are pre-processed with our method. We used out of the box hyper-parameters of these classifiers and auto sklearn for hyperparameter optimization.
Meta-Learning to Improve Pre-Training
Pre-training (PT) followed by fine-tuning (FT) is an effective method for training neural networks, and has led to significant performance improvements in many domains. PT can incorporate various design choices such as task and data reweighting strategies, augmentation policies, and noise models, all of which can significantly impact the quality of representations learned. The hyperparameters introduced by these strategies therefore must be tuned appropriately. However, setting the values of these hyperparameters is challenging. Most existing methods either struggle to scale to high dimensions, are too slow and memory-intensive, or cannot be directly applied to the two-stage PT and FT learning process. In this work, we propose an efficient, gradient-based algorithm to meta-learn PT hyperparameters. We formalize the PT hyperparameter optimization problem and propose a novel method to obtain PT hyperparameter gradients by combining implicit differentiation and backpropagation through unrolled optimization. We demonstrate that our method improves predictive performance on two real-world domains. First, we optimize high-dimensional task weighting hyperparameters for multitask pre-training on protein-protein interaction graphs and improve AUROC by up to 3.9%. Second, we optimize a data augmentation neural network for self-supervised PT with SimCLR on electrocardiography data and improve AUROC by up to 1.9%.
CoCoSoDa: Effective Contrastive Learning for Code Search
Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.
Automated Machine Learning: State-of-The-Art and Open Challenges
With the continuous and vast increase in the amount of data in our digital world, it has been acknowledged that the number of knowledgeable data scientists can not scale to address these challenges. Thus, there was a crucial need for automating the process of building good machine learning models. In the last few years, several techniques and frameworks have been introduced to tackle the challenge of automating the process of Combined Algorithm Selection and Hyper-parameter tuning (CASH) in the machine learning domain. The main aim of these techniques is to reduce the role of the human in the loop and fill the gap for non-expert machine learning users by playing the role of the domain expert. In this paper, we present a comprehensive survey for the state-of-the-art efforts in tackling the CASH problem. In addition, we highlight the research work of automating the other steps of the full complex machine learning pipeline (AutoML) from data understanding till model deployment. Furthermore, we provide comprehensive coverage for the various tools and frameworks that have been introduced in this domain. Finally, we discuss some of the research directions and open challenges that need to be addressed in order to achieve the vision and goals of the AutoML process.
On the Parameterization of Second-Order Optimization Effective Towards the Infinite Width
Second-order optimization has been developed to accelerate the training of deep neural networks and it is being applied to increasingly larger-scale models. In this study, towards training on further larger scales, we identify a specific parameterization for second-order optimization that promotes feature learning in a stable manner even if the network width increases significantly. Inspired by a maximal update parameterization, we consider a one-step update of the gradient and reveal the appropriate scales of hyperparameters including random initialization, learning rates, and damping terms. Our approach covers two major second-order optimization algorithms, K-FAC and Shampoo, and we demonstrate that our parameterization achieves higher generalization performance in feature learning. In particular, it enables us to transfer the hyperparameters across models with different widths.
HyperPPO: A scalable method for finding small policies for robotic control
Models with fewer parameters are necessary for the neural control of memory-limited, performant robots. Finding these smaller neural network architectures can be time-consuming. We propose HyperPPO, an on-policy reinforcement learning algorithm that utilizes graph hypernetworks to estimate the weights of multiple neural architectures simultaneously. Our method estimates weights for networks that are much smaller than those in common-use networks yet encode highly performant policies. We obtain multiple trained policies at the same time while maintaining sample efficiency and provide the user the choice of picking a network architecture that satisfies their computational constraints. We show that our method scales well - more training resources produce faster convergence to higher-performing architectures. We demonstrate that the neural policies estimated by HyperPPO are capable of decentralized control of a Crazyflie2.1 quadrotor. Website: https://sites.google.com/usc.edu/hyperppo
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
Fast hyperboloid decision tree algorithms
Hyperbolic geometry is gaining traction in machine learning for its effectiveness at capturing hierarchical structures in real-world data. Hyperbolic spaces, where neighborhoods grow exponentially, offer substantial advantages and consistently deliver state-of-the-art results across diverse applications. However, hyperbolic classifiers often grapple with computational challenges. Methods reliant on Riemannian optimization frequently exhibit sluggishness, stemming from the increased computational demands of operations on Riemannian manifolds. In response to these challenges, we present hyperDT, a novel extension of decision tree algorithms into hyperbolic space. Crucially, hyperDT eliminates the need for computationally intensive Riemannian optimization, numerically unstable exponential and logarithmic maps, or pairwise comparisons between points by leveraging inner products to adapt Euclidean decision tree algorithms to hyperbolic space. Our approach is conceptually straightforward and maintains constant-time decision complexity while mitigating the scalability issues inherent in high-dimensional Euclidean spaces. Building upon hyperDT we introduce hyperRF, a hyperbolic random forest model. Extensive benchmarking across diverse datasets underscores the superior performance of these models, providing a swift, precise, accurate, and user-friendly toolkit for hyperbolic data analysis.
Active Ranking of Experts Based on their Performances in Many Tasks
We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round, the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter delta in (0, 1), we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least 1 -- delta. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a poly-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results.
The Numerical Stability of Hyperbolic Representation Learning
Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.
Scaling Exponents Across Parameterizations and Optimizers
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices. In this work, we propose a new perspective on parameterization by investigating a key assumption in prior work about the alignment between parameters and data and derive new theoretical results under weaker assumptions and a broader set of optimizers. Our extensive empirical investigation includes tens of thousands of models trained with all combinations of three optimizers, four parameterizations, several alignment assumptions, more than a dozen learning rates, and fourteen model sizes up to 26.8B parameters. We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work. Our results show that all parameterizations, not just maximal update parameterization (muP), can achieve hyperparameter transfer; moreover, our novel per-layer learning rate prescription for standard parameterization outperforms muP. Finally, we demonstrate that an overlooked aspect of parameterization, the epsilon parameter in Adam, must be scaled correctly to avoid gradient underflow and propose Adam-atan2, a new numerically stable, scale-invariant version of Adam that eliminates the epsilon hyperparameter entirely.
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization
With the increasing computational costs associated with deep learning, automated hyperparameter optimization methods, strongly relying on black-box Bayesian optimization (BO), face limitations. Freeze-thaw BO offers a promising grey-box alternative, strategically allocating scarce resources incrementally to different configurations. However, the frequent surrogate model updates inherent to this approach pose challenges for existing methods, requiring retraining or fine-tuning their neural network surrogates online, introducing overhead, instability, and hyper-hyperparameters. In this work, we propose FT-PFN, a novel surrogate for Freeze-thaw style BO. FT-PFN is a prior-data fitted network (PFN) that leverages the transformers' in-context learning ability to efficiently and reliably do Bayesian learning curve extrapolation in a single forward pass. Our empirical analysis across three benchmark suites shows that the predictions made by FT-PFN are more accurate and 10-100 times faster than those of the deep Gaussian process and deep ensemble surrogates used in previous work. Furthermore, we show that, when combined with our novel acquisition mechanism (MFPI-random), the resulting in-context freeze-thaw BO method (ifBO), yields new state-of-the-art performance in the same three families of deep learning HPO benchmarks considered in prior work.
Function-space Parameterization of Neural Networks for Sequential Learning
Sequential learning paradigms pose challenges for gradient-based deep learning due to difficulties incorporating new data and retaining prior knowledge. While Gaussian processes elegantly tackle these problems, they struggle with scalability and handling rich inputs, such as images. To address these issues, we introduce a technique that converts neural networks from weight space to function space, through a dual parameterization. Our parameterization offers: (i) a way to scale function-space methods to large data sets via sparsification, (ii) retention of prior knowledge when access to past data is limited, and (iii) a mechanism to incorporate new data without retraining. Our experiments demonstrate that we can retain knowledge in continual learning and incorporate new data efficiently. We further show its strengths in uncertainty quantification and guiding exploration in model-based RL. Further information and code is available on the project website.
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets.
Exact Inference in High-order Structured Prediction
In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality.
The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines
The recent surge of open-source large language models (LLMs) enables developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance, thereby providing governance and ownership of the model deployment process. To utilize these LLMs, inference engines are needed. These engines load the model's weights onto available resources, such as GPUs, and process queries to generate responses. The speed of inference, or performance, of the LLM, is critical for real-time applications, as it computes millions or billions of floating point operations per inference. Recently, advanced inference engines such as vLLM have emerged, incorporating novel mechanisms such as efficient memory management to achieve state-of-the-art performance. In this paper, we analyze the performance, particularly the throughput (tokens generated per unit of time), of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines. We investigate how various hyperparameters, which developers must configure, influence inference performance. Our results reveal that throughput landscapes are irregular, with distinct peaks, highlighting the importance of hyperparameter optimization to achieve maximum performance. We also show that applying hyperparameter optimization when upgrading or downgrading the GPU model used for inference can improve throughput from HuggingFace pipelines by an average of 9.16% and 13.7%, respectively.
DQA: An Efficient Method for Deep Quantization of Deep Neural Network Activations
Quantization of Deep Neural Network (DNN) activations is a commonly used technique to reduce compute and memory demands during DNN inference, which can be particularly beneficial on resource-constrained devices. To achieve high accuracy, existing methods for quantizing activations rely on complex mathematical computations or perform extensive searches for the best hyper-parameters. However, these expensive operations are impractical on devices with limited computation capabilities, memory capacities, and energy budgets. Furthermore, many existing methods do not focus on sub-6-bit (or deep) quantization. To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new method that focuses on sub-6-bit quantization of activations and leverages simple shifting-based operations and Huffman coding to be efficient and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization levels and three different DNN models for two different tasks, image classification and image segmentation, on two different datasets. DQA shows significantly better accuracy (up to 29.28%) compared to the direct quantization method and the state-of-the-art NoisyQuant for sub-6-bit quantization.
AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains.
Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I
This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.
Large Language Models to Enhance Bayesian Optimization
Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
Embedding-based Retrieval in Facebook Search
Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets.
The Impacts of Data, Ordering, and Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds
Vector search systems, pivotal in AI applications, often rely on the Hierarchical Navigable Small Worlds (HNSW) algorithm. However, the behaviour of HNSW under real-world scenarios using vectors generated with deep learning models remains under-explored. Existing Approximate Nearest Neighbours (ANN) benchmarks and research typically has an over-reliance on simplistic datasets like MNIST or SIFT1M and fail to reflect the complexity of current use-cases. Our investigation focuses on HNSW's efficacy across a spectrum of datasets, including synthetic vectors tailored to mimic specific intrinsic dimensionalities, widely-used retrieval benchmarks with popular embedding models, and proprietary e-commerce image data with CLIP models. We survey the most popular HNSW vector databases and collate their default parameters to provide a realistic fixed parameterisation for the duration of the paper. We discover that the recall of approximate HNSW search, in comparison to exact K Nearest Neighbours (KNN) search, is linked to the vector space's intrinsic dimensionality and significantly influenced by the data insertion sequence. Our methodology highlights how insertion order, informed by measurable properties such as the pointwise Local Intrinsic Dimensionality (LID) or known categories, can shift recall by up to 12 percentage points. We also observe that running popular benchmark datasets with HNSW instead of KNN can shift rankings by up to three positions for some models. This work underscores the need for more nuanced benchmarks and design considerations in developing robust vector search systems using approximate vector search algorithms. This study presents a number of scenarios with varying real world applicability which aim to better increase understanding and future development of ANN algorithms and embedding
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Vector Search with OpenAI Embeddings: Lucene Is All You Need
We provide a reproducible, end-to-end demonstration of vector search with OpenAI embeddings using Lucene on the popular MS MARCO passage ranking test collection. The main goal of our work is to challenge the prevailing narrative that a dedicated vector store is necessary to take advantage of recent advances in deep neural networks as applied to search. Quite the contrary, we show that hierarchical navigable small-world network (HNSW) indexes in Lucene are adequate to provide vector search capabilities in a standard bi-encoder architecture. This suggests that, from a simple cost-benefit analysis, there does not appear to be a compelling reason to introduce a dedicated vector store into a modern "AI stack" for search, since such applications have already received substantial investments in existing, widely deployed infrastructure.
Truncated Back-propagation for Bilevel Optimization
Bilevel optimization has been recently revisited for designing and analyzing algorithms in hyperparameter tuning and meta learning tasks. However, due to its nested structure, evaluating exact gradients for high-dimensional problems is computationally challenging. One heuristic to circumvent this difficulty is to use the approximate gradient given by performing truncated back-propagation through the iterative optimization procedure that solves the lower-level problem. Although promising empirical performance has been reported, its theoretical properties are still unclear. In this paper, we analyze the properties of this family of approximate gradients and establish sufficient conditions for convergence. We validate this on several hyperparameter tuning and meta learning tasks. We find that optimization with the approximate gradient computed using few-step back-propagation often performs comparably to optimization with the exact gradient, while requiring far less memory and half the computation time.
L^{2}NAS: Learning to Optimize Neural Architectures via Continuous-Action Reinforcement Learning
Neural architecture search (NAS) has achieved remarkable results in deep neural network design. Differentiable architecture search converts the search over discrete architectures into a hyperparameter optimization problem which can be solved by gradient descent. However, questions have been raised regarding the effectiveness and generalizability of gradient methods for solving non-convex architecture hyperparameter optimization problems. In this paper, we propose L^{2}NAS, which learns to intelligently optimize and update architecture hyperparameters via an actor neural network based on the distribution of high-performing architectures in the search history. We introduce a quantile-driven training procedure which efficiently trains L^{2}NAS in an actor-critic framework via continuous-action reinforcement learning. Experiments show that L^{2}NAS achieves state-of-the-art results on NAS-Bench-201 benchmark as well as DARTS search space and Once-for-All MobileNetV3 search space. We also show that search policies generated by L^{2}NAS are generalizable and transferable across different training datasets with minimal fine-tuning.
Survey of Active Learning Hyperparameters: Insights from a Large-Scale Experimental Grid
Annotating data is a time-consuming and costly task, but it is inherently required for supervised machine learning. Active Learning (AL) is an established method that minimizes human labeling effort by iteratively selecting the most informative unlabeled samples for expert annotation, thereby improving the overall classification performance. Even though AL has been known for decades, AL is still rarely used in real-world applications. As indicated in the two community web surveys among the NLP community about AL, two main reasons continue to hold practitioners back from using AL: first, the complexity of setting AL up, and second, a lack of trust in its effectiveness. We hypothesize that both reasons share the same culprit: the large hyperparameter space of AL. This mostly unexplored hyperparameter space often leads to misleading and irreproducible AL experiment results. In this study, we first compiled a large hyperparameter grid of over 4.6 million hyperparameter combinations, second, recorded the performance of all combinations in the so-far biggest conducted AL study, and third, analyzed the impact of each hyperparameter in the experiment results. In the end, we give recommendations about the influence of each hyperparameter, demonstrate the surprising influence of the concrete AL strategy implementation, and outline an experimental study design for reproducible AL experiments with minimal computational effort, thus contributing to more reproducible and trustworthy AL research in the future.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks
State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.
Neural Parameter Allocation Search
Training neural networks requires increasing amounts of memory. Parameter sharing can reduce memory and communication costs, but existing methods assume networks have many identical layers and utilize hand-crafted sharing strategies that fail to generalize. We introduce Neural Parameter Allocation Search (NPAS), a novel task where the goal is to train a neural network given an arbitrary, fixed parameter budget. NPAS covers both low-budget regimes, which produce compact networks, as well as a novel high-budget regime, where additional capacity can be added to boost performance without increasing inference FLOPs. To address NPAS, we introduce Shapeshifter Networks (SSNs), which automatically learn where and how to share parameters in a network to support any parameter budget without requiring any changes to the architecture or loss function. NPAS and SSNs provide a complete framework for addressing generalized parameter sharing, and can also be combined with prior work for additional performance gains. We demonstrate the effectiveness of our approach using nine network architectures across four diverse tasks, including ImageNet classification and transformers.
Scattered or Connected? An Optimized Parameter-efficient Tuning Approach for Information Retrieval
Pre-training and fine-tuning have achieved significant advances in the information retrieval (IR). A typical approach is to fine-tune all the parameters of large-scale pre-trained models (PTMs) on downstream tasks. As the model size and the number of tasks increase greatly, such approach becomes less feasible and prohibitively expensive. Recently, a variety of parameter-efficient tuning methods have been proposed in natural language processing (NLP) that only fine-tune a small number of parameters while still attaining strong performance. Yet there has been little effort to explore parameter-efficient tuning for IR. In this work, we first conduct a comprehensive study of existing parameter-efficient tuning methods at both the retrieval and re-ranking stages. Unlike the promising results in NLP, we find that these methods cannot achieve comparable performance to full fine-tuning at both stages when updating less than 1\% of the original model parameters. More importantly, we find that the existing methods are just parameter-efficient, but not learning-efficient as they suffer from unstable training and slow convergence. To analyze the underlying reason, we conduct a theoretical analysis and show that the separation of the inserted trainable modules makes the optimization difficult. To alleviate this issue, we propose to inject additional modules alongside the PTM to make the original scattered modules connected. In this way, all the trainable modules can form a pathway to smooth the loss surface and thus help stabilize the training process. Experiments at both retrieval and re-ranking stages show that our method outperforms existing parameter-efficient methods significantly, and achieves comparable or even better performance over full fine-tuning.
Bayesian Optimization Meets Self-Distillation
Bayesian optimization (BO) has contributed greatly to improving model performance by suggesting promising hyperparameter configurations iteratively based on observations from multiple training trials. However, only partial knowledge (i.e., the measured performances of trained models and their hyperparameter configurations) from previous trials is transferred. On the other hand, Self-Distillation (SD) only transfers partial knowledge learned by the task model itself. To fully leverage the various knowledge gained from all training trials, we propose the BOSS framework, which combines BO and SD. BOSS suggests promising hyperparameter configurations through BO and carefully selects pre-trained models from previous trials for SD, which are otherwise abandoned in the conventional BO process. BOSS achieves significantly better performance than both BO and SD in a wide range of tasks including general image classification, learning with noisy labels, semi-supervised learning, and medical image analysis tasks.
A Three-regime Model of Network Pruning
Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.
Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training
Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate {\eta} and weight decay {\lambda}. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, B/({\eta}{\lambda}D), should remain constant across training settings, and we verify the implication that optimal {\lambda} scales linearly with B, for a fixed N,D. However, as N,D scale, we show the optimal timescale obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict {\lambda}opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast with prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives.
Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient beta playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter beta' in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce Stochastic Parameter Decomposition (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
Measuring the Intrinsic Dimension of Objective Landscapes
Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times.
Hyperparameter Optimization for Multi-Objective Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful approach for tackling complex problems. The recent introduction of multi-objective reinforcement learning (MORL) has further expanded the scope of RL by enabling agents to make trade-offs among multiple objectives. This advancement not only has broadened the range of problems that can be tackled but also created numerous opportunities for exploration and advancement. Yet, the effectiveness of RL agents heavily relies on appropriately setting their hyperparameters. In practice, this task often proves to be challenging, leading to unsuccessful deployments of these techniques in various instances. Hence, prior research has explored hyperparameter optimization in RL to address this concern. This paper presents an initial investigation into the challenge of hyperparameter optimization specifically for MORL. We formalize the problem, highlight its distinctive challenges, and propose a systematic methodology to address it. The proposed methodology is applied to a well-known environment using a state-of-the-art MORL algorithm, and preliminary results are reported. Our findings indicate that the proposed methodology can effectively provide hyperparameter configurations that significantly enhance the performance of MORL agents. Furthermore, this study identifies various future research opportunities to further advance the field of hyperparameter optimization for MORL.
Optimizing Distributed Training on Frontier for Large Language Models
Large language models (LLMs) have demonstrated remarkable success as foundational models, benefiting various downstream applications through fine-tuning. Recent studies on loss scaling have demonstrated the superior performance of larger LLMs compared to their smaller counterparts. Nevertheless, training LLMs with billions of parameters poses significant challenges and requires considerable computational resources. For example, training a one trillion parameter GPT-style model on 20 trillion tokens requires a staggering 120 million exaflops of computation. This research explores efficient distributed training strategies to extract this computation from Frontier, the world's first exascale supercomputer dedicated to open science. We enable and investigate various model and data parallel training techniques, such as tensor parallelism, pipeline parallelism, and sharded data parallelism, to facilitate training a trillion-parameter model on Frontier. We empirically assess these techniques and their associated parameters to determine their impact on memory footprint, communication latency, and GPU's computational efficiency. We analyze the complex interplay among these techniques and find a strategy to combine them to achieve high throughput through hyperparameter tuning. We have identified efficient strategies for training large LLMs of varying sizes through empirical analysis and hyperparameter tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters, we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%, respectively. For the training of the 175 Billion parameter model and the 1 Trillion parameter model, we achieved 100% weak scaling efficiency on 1024 and 3072 MI250X GPUs, respectively. We also achieved strong scaling efficiencies of 89% and 87% for these two models.
Visualizing Large-scale and High-dimensional Data
We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e.g., millions of data points and hundreds of dimensions). We propose the LargeVis, a technique that first constructs an accurately approximated K-nearest neighbor graph from the data and then layouts the graph in the low-dimensional space. Comparing to t-SNE, LargeVis significantly reduces the computational cost of the graph construction step and employs a principled probabilistic model for the visualization step, the objective of which can be effectively optimized through asynchronous stochastic gradient descent with a linear time complexity. The whole procedure thus easily scales to millions of high-dimensional data points. Experimental results on real-world data sets demonstrate that the LargeVis outperforms the state-of-the-art methods in both efficiency and effectiveness. The hyper-parameters of LargeVis are also much more stable over different data sets.
Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference
Large Language Models (LLMs) have sparked significant interest in their generative capabilities, leading to the development of various commercial applications. The high cost of using the models drives application builders to maximize the value of generation under a limited inference budget. This paper presents a study of optimizing inference hyperparameters such as the number of responses, temperature and max tokens, which significantly affects the utility/cost of text generation. We design a framework named EcoOptiGen which leverages economical hyperparameter optimization and cost-based pruning. Experiments with the GPT-3.5/GPT-4 models on a variety of tasks verify its effectiveness. EcoOptiGen is implemented in the `autogen' package of the FLAML library: https://aka.ms/autogen.
Approximate Nearest Neighbor Search with Window Filters
We define and investigate the problem of c-approximate window search: approximate nearest neighbor search where each point in the dataset has a numeric label, and the goal is to find nearest neighbors to queries within arbitrary label ranges. Many semantic search problems, such as image and document search with timestamp filters, or product search with cost filters, are natural examples of this problem. We propose and theoretically analyze a modular tree-based framework for transforming an index that solves the traditional c-approximate nearest neighbor problem into a data structure that solves window search. On standard nearest neighbor benchmark datasets equipped with random label values, adversarially constructed embeddings, and image search embeddings with real timestamps, we obtain up to a 75times speedup over existing solutions at the same level of recall.
Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency
Large language models achieve high task performance yet often hallucinate or rely on outdated knowledge. Retrieval-augmented generation (RAG) addresses these gaps by coupling generation with external search. We analyse how hyperparameters influence speed and quality in RAG systems, covering Chroma and Faiss vector stores, chunking policies, cross-encoder re-ranking, and temperature, and we evaluate six metrics: faithfulness, answer correctness, answer relevancy, context precision, context recall, and answer similarity. Chroma processes queries 13% faster, whereas Faiss yields higher retrieval precision, revealing a clear speed-accuracy trade-off. Naive fixed-length chunking with small windows and minimal overlap outperforms semantic segmentation while remaining the quickest option. Re-ranking provides modest gains in retrieval quality yet increases runtime by roughly a factor of 5, so its usefulness depends on latency constraints. These results help practitioners balance computational cost and accuracy when tuning RAG systems for transparent, up-to-date responses. Finally, we re-evaluate the top configurations with a corrective RAG workflow and show that their advantages persist when the model can iteratively request additional evidence. We obtain a near-perfect context precision (99%), which demonstrates that RAG systems can achieve extremely high retrieval accuracy with the right combination of hyperparameters, with significant implications for applications where retrieval quality directly impacts downstream task performance, such as clinical decision support in healthcare.
Using Large Language Models for Hyperparameter Optimization
This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.
Dynamic backup workers for parallel machine learning
The most popular framework for distributed training of machine learning models is the (synchronous) parameter server (PS). This paradigm consists of n workers, which iteratively compute updates of the model parameters, and a stateful PS, which waits and aggregates all updates to generate a new estimate of model parameters and sends it back to the workers for a new iteration. Transient computation slowdowns or transmission delays can intolerably lengthen the time of each iteration. An efficient way to mitigate this problem is to let the PS wait only for the fastest n-b updates, before generating the new parameters. The slowest b workers are called backup workers. The optimal number b of backup workers depends on the cluster configuration and workload, but also (as we show in this paper) on the hyper-parameters of the learning algorithm and the current stage of the training. We propose DBW, an algorithm that dynamically decides the number of backup workers during the training process to maximize the convergence speed at each iteration. Our experiments show that DBW 1) removes the necessity to tune b by preliminary time-consuming experiments, and 2) makes the training up to a factor 3 faster than the optimal static configuration.
Multi-Objective Population Based Training
Population Based Training (PBT) is an efficient hyperparameter optimization algorithm. PBT is a single-objective algorithm, but many real-world hyperparameter optimization problems involve two or more conflicting objectives. In this work, we therefore introduce a multi-objective version of PBT, MO-PBT. Our experiments on diverse multi-objective hyperparameter optimization problems (Precision/Recall, Accuracy/Fairness, Accuracy/Adversarial Robustness) show that MO-PBT outperforms random search, single-objective PBT, and the state-of-the-art multi-objective hyperparameter optimization algorithm MO-ASHA.
Time Matters: Scaling Laws for Any Budget
A primary cost driver for training large models is wall-clock training time. We show that popular time estimates based on FLOPs are poor estimates, and construct a more accurate proxy based on memory copies. We show that with some simple accounting, we can estimate the training speed of a transformer model from its hyperparameters. Combined with a scaling law curve like Chinchilla, this lets us estimate the final loss of the model. We fit our estimate to real data with a linear regression, and apply the result to rewrite Chinchilla in terms of a model's estimated training time as opposed to the amount of training data. This gives an expression for the loss in terms of the model's hyperparameters alone. We show that this expression is accurate across a wide range of model hyperparameter values, enabling us to analytically make architectural decisions and train models more efficiently.
COMET: Learning Cardinality Constrained Mixture of Experts with Trees and Local Search
The sparse Mixture-of-Experts (Sparse-MoE) framework efficiently scales up model capacity in various domains, such as natural language processing and vision. Sparse-MoEs select a subset of the "experts" (thus, only a portion of the overall network) for each input sample using a sparse, trainable gate. Existing sparse gates are prone to convergence and performance issues when training with first-order optimization methods. In this paper, we introduce two improvements to current MoE approaches. First, we propose a new sparse gate: COMET, which relies on a novel tree-based mechanism. COMET is differentiable, can exploit sparsity to speed up computation, and outperforms state-of-the-art gates. Second, due to the challenging combinatorial nature of sparse expert selection, first-order methods are typically prone to low-quality solutions. To deal with this challenge, we propose a novel, permutation-based local search method that can complement first-order methods in training any sparse gate, e.g., Hash routing, Top-k, DSelect-k, and COMET. We show that local search can help networks escape bad initializations or solutions. We performed large-scale experiments on various domains, including recommender systems, vision, and natural language processing. On standard vision and recommender systems benchmarks, COMET+ (COMET with local search) achieves up to 13% improvement in ROC AUC over popular gates, e.g., Hash routing and Top-k, and up to 9% over prior differentiable gates e.g., DSelect-k. When Top-k and Hash gates are combined with local search, we see up to 100times reduction in the budget needed for hyperparameter tuning. Moreover, for language modeling, our approach improves over the state-of-the-art MoEBERT model for distilling BERT on 5/7 GLUE benchmarks as well as SQuAD dataset.
Occam's Razor for Self Supervised Learning: What is Sufficient to Learn Good Representations?
Deep Learning is often depicted as a trio of data-architecture-loss. Yet, recent Self Supervised Learning (SSL) solutions have introduced numerous additional design choices, e.g., a projector network, positive views, or teacher-student networks. These additions pose two challenges. First, they limit the impact of theoretical studies that often fail to incorporate all those intertwined designs. Second, they slow-down the deployment of SSL methods to new domains as numerous hyper-parameters need to be carefully tuned. In this study, we bring forward the surprising observation that--at least for pretraining datasets of up to a few hundred thousands samples--the additional designs introduced by SSL do not contribute to the quality of the learned representations. That finding not only provides legitimacy to existing theoretical studies, but also simplifies the practitioner's path to SSL deployment in numerous small and medium scale settings. Our finding answers a long-lasting question: the often-experienced sensitivity to training settings and hyper-parameters encountered in SSL come from their design, rather than the absence of supervised guidance.
Practical tradeoffs between memory, compute, and performance in learned optimizers
Optimization plays a costly and crucial role in developing machine learning systems. In learned optimizers, the few hyperparameters of commonly used hand-designed optimizers, e.g. Adam or SGD, are replaced with flexible parametric functions. The parameters of these functions are then optimized so that the resulting learned optimizer minimizes a target loss on a chosen class of models. Learned optimizers can both reduce the number of required training steps and improve the final test loss. However, they can be expensive to train, and once trained can be expensive to use due to computational and memory overhead for the optimizer itself. In this work, we identify and quantify the design features governing the memory, compute, and performance trade-offs for many learned and hand-designed optimizers. We further leverage our analysis to construct a learned optimizer that is both faster and more memory efficient than previous work. Our model and training code are open source.
A Survey on Hypergraph Neural Networks: An In-Depth and Step-By-Step Guide
Higher-order interactions (HOIs) are ubiquitous in real-world complex systems and applications. Investigation of deep learning for HOIs, thus, has become a valuable agenda for the data mining and machine learning communities. As networks of HOIs are expressed mathematically as hypergraphs, hypergraph neural networks (HNNs) have emerged as a powerful tool for representation learning on hypergraphs. Given the emerging trend, we present the first survey dedicated to HNNs, with an in-depth and step-by-step guide. Broadly, the present survey overviews HNN architectures, training strategies, and applications. First, we break existing HNNs down into four design components: (i) input features, (ii) input structures, (iii) message-passing schemes, and (iv) training strategies. Second, we examine how HNNs address and learn HOIs with each of their components. Third, we overview the recent applications of HNNs in recommendation, bioinformatics and medical science, time series analysis, and computer vision. Lastly, we conclude with a discussion on limitations and future directions.
Trace is the New AutoDiff -- Unlocking Efficient Optimization of Computational Workflows
We study a class of optimization problems motivated by automating the design and update of AI systems like coding assistants, robots, and copilots. We propose an end-to-end optimization framework, Trace, which treats the computational workflow of an AI system as a graph akin to neural networks, based on a generalization of back-propagation. Optimization of computational workflows often involves rich feedback (e.g. console output or user's responses), heterogeneous parameters (e.g. prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a score). Moreover, its computation graph can change dynamically with the inputs and parameters. We frame a new mathematical setup of iterative optimization, Optimization with Trace Oracle (OPTO), to capture and abstract these properties so as to design optimizers that work across many domains. In OPTO, an optimizer receives an execution trace along with feedback on the computed output and updates parameters iteratively. Trace is the tool to implement OPTO in practice. Trace has a Python interface that efficiently converts a computational workflow into an OPTO instance using a PyTorch-like interface. Using Trace, we develop a general-purpose LLM-based optimizer called OptoPrime that can effectively solve OPTO problems. In empirical studies, we find that OptoPrime is capable of first-order numerical optimization, prompt optimization, hyper-parameter tuning, robot controller design, code debugging, etc., and is often competitive with specialized optimizers for each domain. We believe that Trace, OptoPrime and the OPTO framework will enable the next generation of interactive agents that automatically adapt using various kinds of feedback. Website: https://microsoft.github.io/Trace
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution, superior to all its single-task trained counterparts. Since there is often not a unique solution optimal for all tasks, practitioners have to balance tradeoffs between tasks' performance, and resort to optimality in the Pareto sense. Most MTL methodologies either completely neglect this aspect, and instead of aiming at learning a Pareto Front, produce one solution predefined by their optimization schemes, or produce diverse but discrete solutions. Recent approaches parameterize the Pareto Front via neural networks, leading to complex mappings from tradeoff to objective space. In this paper, we conjecture that the Pareto Front admits a linear parameterization in parameter space, which leads us to propose Pareto Manifold Learning, an ensembling method in weight space. Our approach produces a continuous Pareto Front in a single training run, that allows to modulate the performance on each task during inference. Experiments on multi-task learning benchmarks, ranging from image classification to tabular datasets and scene understanding, show that Pareto Manifold Learning outperforms state-of-the-art single-point algorithms, while learning a better Pareto parameterization than multi-point baselines.
A Large-Scale Exploration of μ-Transfer
Large artificial neural networks have become a mainstay of language, vision, and audio processing and synthesis, yet their initializations and learning rates are often set in an unsophisticated fashion, due to the high cost of hyperparameter sweeps at scale. The mu-Parameterization (muP) offers a potential solution to this challenge, yielding scaling rules for model initialization and learning rates while reportedly enabling zero-shot hyperparameter transfer from small to large models. Despite its evident promise, the muP method is not yet widely adopted, perhaps due to higher implementation complexity, many variations, or complex theoretical background. This work investigates muP empirically, focusing on the ubiquitous transformer architecture, and aims to answer a simple question: does mu-Transfer yield optimal learning rates in practice? Studying models of up to 10B parameters and training budgets of up to 190B tokens, we find mu-Transfer works as intended for the majority of important cases, yet also identify a few cases where it may not.
Learning-Rate-Free Learning by D-Adaptation
D-Adaptation is an approach to automatically setting the learning rate which asymptotically achieves the optimal rate of convergence for minimizing convex Lipschitz functions, with no back-tracking or line searches, and no additional function value or gradient evaluations per step. Our approach is the first hyper-parameter free method for this class without additional multiplicative log factors in the convergence rate. We present extensive experiments for SGD and Adam variants of our method, where the method automatically matches hand-tuned learning rates across more than a dozen diverse machine learning problems, including large-scale vision and language problems. An open-source implementation is available.
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
HINT: Hypernetwork Instruction Tuning for Efficient Zero-Shot Generalisation
Recent NLP models have the great ability to generalise `zero-shot' to new tasks using only an instruction as guidance. However, these approaches usually repeat their instructions with every input, requiring costly reprocessing of lengthy instructions for every inference example. To alleviate this, we introduce Hypernetworks for INstruction Tuning (HINT), which convert task instructions and examples using a pretrained text encoder into parameter-efficient modules inserted into an underlying model, eliminating the need to include instructions in the model input. Compared to prior approaches that concatenate instructions with every input instance, we find that HINT models are significantly more compute-efficient and consistently outperform these approaches for a given inference budget.
Learning Activation Functions for Sparse Neural Networks
Sparse Neural Networks (SNNs) can potentially demonstrate similar performance to their dense counterparts while saving significant energy and memory at inference. However, the accuracy drop incurred by SNNs, especially at high pruning ratios, can be an issue in critical deployment conditions. While recent works mitigate this issue through sophisticated pruning techniques, we shift our focus to an overlooked factor: hyperparameters and activation functions. Our analyses have shown that the accuracy drop can additionally be attributed to (i) Using ReLU as the default choice for activation functions unanimously, and (ii) Fine-tuning SNNs with the same hyperparameters as dense counterparts. Thus, we focus on learning a novel way to tune activation functions for sparse networks and combining these with a separate hyperparameter optimization (HPO) regime for sparse networks. By conducting experiments on popular DNN models (LeNet-5, VGG-16, ResNet-18, and EfficientNet-B0) trained on MNIST, CIFAR-10, and ImageNet-16 datasets, we show that the novel combination of these two approaches, dubbed Sparse Activation Function Search, short: SAFS, results in up to 15.53%, 8.88%, and 6.33% absolute improvement in the accuracy for LeNet-5, VGG-16, and ResNet-18 over the default training protocols, especially at high pruning ratios. Our code can be found at https://github.com/automl/SAFS
Active Testing: Sample-Efficient Model Evaluation
We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications, where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. As actively selecting labels introduces a bias; we further show how to remove this bias while reducing the variance of the estimator at the same time. Active testing is easy to implement and can be applied to any supervised machine learning method. We demonstrate its effectiveness on models including WideResNets and Gaussian processes on datasets including Fashion-MNIST and CIFAR-100.
Transformers as Support Vector Machines
Since its inception in "Attention Is All You Need", transformer architecture has led to revolutionary advancements in NLP. The attention layer within the transformer admits a sequence of input tokens X and makes them interact through pairwise similarities computed as softmax(XQK^top X^top), where (K,Q) are the trainable key-query parameters. In this work, we establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that separates optimal input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. This formalism allows us to characterize the implicit bias of 1-layer transformers optimized with gradient descent: (1) Optimizing the attention layer with vanishing regularization, parameterized by (K,Q), converges in direction to an SVM solution minimizing the nuclear norm of the combined parameter W=KQ^top. Instead, directly parameterizing by W minimizes a Frobenius norm objective. We characterize this convergence, highlighting that it can occur toward locally-optimal directions rather than global ones. (2) Complementing this, we prove the local/global directional convergence of gradient descent under suitable geometric conditions. Importantly, we show that over-parameterization catalyzes global convergence by ensuring the feasibility of the SVM problem and by guaranteeing a benign optimization landscape devoid of stationary points. (3) While our theory applies primarily to linear prediction heads, we propose a more general SVM equivalence that predicts the implicit bias with nonlinear heads. Our findings are applicable to arbitrary datasets and their validity is verified via experiments. We also introduce several open problems and research directions. We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
Direct Parameterization of Lipschitz-Bounded Deep Networks
This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed ell^2 Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from mathbb R^N onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.
Is One Epoch All You Need For Multi-Fidelity Hyperparameter Optimization?
Hyperparameter optimization (HPO) is crucial for fine-tuning machine learning models but can be computationally expensive. To reduce costs, Multi-fidelity HPO (MF-HPO) leverages intermediate accuracy levels in the learning process and discards low-performing models early on. We compared various representative MF-HPO methods against a simple baseline on classical benchmark data. The baseline involved discarding all models except the Top-K after training for only one epoch, followed by further training to select the best model. Surprisingly, this baseline achieved similar results to its counterparts, while requiring an order of magnitude less computation. Upon analyzing the learning curves of the benchmark data, we observed a few dominant learning curves, which explained the success of our baseline. This suggests that researchers should (1) always use the suggested baseline in benchmarks and (2) broaden the diversity of MF-HPO benchmarks to include more complex cases.
Deep Biaffine Attention for Neural Dependency Parsing
This paper builds off recent work from Kiperwasser & Goldberg (2016) using neural attention in a simple graph-based dependency parser. We use a larger but more thoroughly regularized parser than other recent BiLSTM-based approaches, with biaffine classifiers to predict arcs and labels. Our parser gets state of the art or near state of the art performance on standard treebanks for six different languages, achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset. This makes it the highest-performing graph-based parser on this benchmark---outperforming Kiperwasser Goldberg (2016) by 1.8% and 2.2%---and comparable to the highest performing transition-based parser (Kuncoro et al., 2016), which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter choices had a significant effect on parsing accuracy, allowing us to achieve large gains over other graph-based approaches.
From Graphs to Hypergraphs: Hypergraph Projection and its Remediation
We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.
ReaLHF: Optimized RLHF Training for Large Language Models through Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) stands as a pivotal technique in empowering large language model (LLM) applications. Since RLHF involves diverse computational workloads and intricate dependencies among multiple LLMs, directly adopting parallelization techniques from supervised training can result in sub-optimal performance. To overcome this limitation, we propose a novel approach named parameter ReaLlocation, which dynamically redistributes LLM parameters in the cluster and adapts parallelization strategies during training. Building upon this idea, we introduce ReaLHF, a pioneering system capable of automatically discovering and running efficient execution plans for RLHF training given the desired algorithmic and hardware configurations. ReaLHF formulates the execution plan for RLHF as an augmented dataflow graph. Based on this formulation, ReaLHF employs a tailored search algorithm with a lightweight cost estimator to discover an efficient execution plan. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaLHF on the LLaMA-2 models with up to 4times70 billion parameters and 128 GPUs. The experiment results showcase ReaLHF's substantial speedups of 2.0-10.6times compared to baselines. Furthermore, the execution plans generated by ReaLHF exhibit an average of 26% performance improvement over heuristic approaches based on Megatron-LM. The source code of ReaLHF is publicly available at https://github.com/openpsi-project/ReaLHF .
No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval
Recent work has shown that small distilled language models are strong competitors to models that are orders of magnitude larger and slower in a wide range of information retrieval tasks. This has made distilled and dense models, due to latency constraints, the go-to choice for deployment in real-world retrieval applications. In this work, we question this practice by showing that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that rerankers largely outperform dense ones of similar size in several tasks. Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points. Finally, we confirm that in-domain effectiveness is not a good indicator of zero-shot effectiveness. Code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
Scaling Optimal LR Across Token Horizons
State-of-the-art LLMs are powered by scaling -- scaling model size, dataset size and cluster size. It is economically infeasible to extensively tune hyperparameter for the largest runs. Instead, approximately optimal hyperparameters must be inferred or transferred from smaller experiments. Hyperparameter transfer across model sizes has been studied in Yang et al. However, hyperparameter transfer across dataset size -- or token horizon -- has not been studied yet. To remedy this we conduct a large scale empirical study on how optimal learning rate (LR) depends on token horizon in LLM training. We first demonstrate that the optimal LR changes significantly with token horizon -- longer training necessitates smaller LR. Secondly we demonstrate the the optimal LR follows a scaling law, and that the optimal LR for longer horizons can be accurately estimated from shorter horizons via such scaling laws. We also provide a rule-of-thumb for transferring LR across token horizons with zero overhead over current practices. Lastly we provide evidence that LLama-1 used too high LR, and estimate the performance hit from this. We thus argue that hyperparameter transfer across data size is an important and overlooked component of LLM training.
RandAugment: Practical automated data augmentation with a reduced search space
Recent work has shown that data augmentation has the potential to significantly improve the generalization of deep learning models. Recently, automated augmentation strategies have led to state-of-the-art results in image classification and object detection. While these strategies were optimized for improving validation accuracy, they also led to state-of-the-art results in semi-supervised learning and improved robustness to common corruptions of images. An obstacle to a large-scale adoption of these methods is a separate search phase which increases the training complexity and may substantially increase the computational cost. Additionally, due to the separate search phase, these approaches are unable to adjust the regularization strength based on model or dataset size. Automated augmentation policies are often found by training small models on small datasets and subsequently applied to train larger models. In this work, we remove both of these obstacles. RandAugment has a significantly reduced search space which allows it to be trained on the target task with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes. RandAugment can be used uniformly across different tasks and datasets and works out of the box, matching or surpassing all previous automated augmentation approaches on CIFAR-10/100, SVHN, and ImageNet. On the ImageNet dataset we achieve 85.0% accuracy, a 0.6% increase over the previous state-of-the-art and 1.0% increase over baseline augmentation. On object detection, RandAugment leads to 1.0-1.3% improvement over baseline augmentation, and is within 0.3% mAP of AutoAugment on COCO. Finally, due to its interpretable hyperparameter, RandAugment may be used to investigate the role of data augmentation with varying model and dataset size. Code is available online.
Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning
Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
Adaptive Regret for Bandits Made Possible: Two Queries Suffice
Fast changing states or volatile environments pose a significant challenge to online optimization, which needs to perform rapid adaptation under limited observation. In this paper, we give query and regret optimal bandit algorithms under the strict notion of strongly adaptive regret, which measures the maximum regret over any contiguous interval I. Due to its worst-case nature, there is an almost-linear Omega(|I|^{1-epsilon}) regret lower bound, when only one query per round is allowed [Daniely el al, ICML 2015]. Surprisingly, with just two queries per round, we give Strongly Adaptive Bandit Learner (StABL) that achieves O(n|I|) adaptive regret for multi-armed bandits with n arms. The bound is tight and cannot be improved in general. Our algorithm leverages a multiplicative update scheme of varying stepsizes and a carefully chosen observation distribution to control the variance. Furthermore, we extend our results and provide optimal algorithms in the bandit convex optimization setting. Finally, we empirically demonstrate the superior performance of our algorithms under volatile environments and for downstream tasks, such as algorithm selection for hyperparameter optimization.
Auto-Meta: Automated Gradient Based Meta Learner Search
Fully automating machine learning pipelines is one of the key challenges of current artificial intelligence research, since practical machine learning often requires costly and time-consuming human-powered processes such as model design, algorithm development, and hyperparameter tuning. In this paper, we verify that automated architecture search synergizes with the effect of gradient-based meta learning. We adopt the progressive neural architecture search liu:pnas_google:DBLP:journals/corr/abs-1712-00559 to find optimal architectures for meta-learners. The gradient based meta-learner whose architecture was automatically found achieved state-of-the-art results on the 5-shot 5-way Mini-ImageNet classification problem with 74.65% accuracy, which is 11.54% improvement over the result obtained by the first gradient-based meta-learner called MAML finn:maml:DBLP:conf/icml/FinnAL17. To our best knowledge, this work is the first successful neural architecture search implementation in the context of meta learning.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
C-SEO Bench: Does Conversational SEO Work?
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not understand whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are largely ineffective, contrary to reported results in the literature. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
LoGAH: Predicting 774-Million-Parameter Transformers using Graph HyperNetworks with 1/100 Parameters
A good initialization of deep learning models is essential since it can help them converge better and faster. However, pretraining large models is unaffordable for many researchers, which makes a desired prediction for initial parameters more necessary nowadays. Graph HyperNetworks (GHNs), one approach to predicting model parameters, have recently shown strong performance in initializing large vision models. Unfortunately, predicting parameters of very wide networks relies on copying small chunks of parameters multiple times and requires an extremely large number of parameters to support full prediction, which greatly hinders its adoption in practice. To address this limitation, we propose LoGAH (Low-rank GrAph Hypernetworks), a GHN with a low-rank parameter decoder that expands to significantly wider networks without requiring as excessive increase of parameters as in previous attempts. LoGAH allows us to predict the parameters of 774-million large neural networks in a memory-efficient manner. We show that vision and language models (i.e., ViT and GPT-2) initialized with LoGAH achieve better performance than those initialized randomly or using existing hypernetworks. Furthermore, we show promising transfer learning results w.r.t. training LoGAH on small datasets and using the predicted parameters to initialize for larger tasks. We provide the codes in https://github.com/Blackzxy/LoGAH .
Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erdos, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.
RePO: ReLU-based Preference Optimization
Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter beta, subsequent methods like SimPO reintroduce complexity through dual parameters (beta, gamma). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates beta via two advances: (1) retaining SimPO's reference-free margins but removing beta through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case (beta to infty), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
Approximate Inference for Fully Bayesian Gaussian Process Regression
Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called Type II maximum likelihood or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call Fully Bayesian Gaussian Process Regression (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
HFT: Half Fine-Tuning for Large Language Models
Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.
Neural reparameterization improves structural optimization
Structural optimization is a popular method for designing objects such as bridge trusses, airplane wings, and optical devices. Unfortunately, the quality of solutions depends heavily on how the problem is parameterized. In this paper, we propose using the implicit bias over functions induced by neural networks to improve the parameterization of structural optimization. Rather than directly optimizing densities on a grid, we instead optimize the parameters of a neural network which outputs those densities. This reparameterization leads to different and often better solutions. On a selection of 116 structural optimization tasks, our approach produces the best design 50% more often than the best baseline method.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
Best-First Beam Search
Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search since the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search -- a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of Best-First Beam Search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.
Parameterized covering in semi-ladder-free hypergraphs
In this article, we study the parameterized complexity of the Set Cover problem restricted to semi-ladder-free hypergraphs, a class defined by Fabianski et al. [Proceedings of STACS 2019]. We observe that two algorithms introduced by Langerman and Morin [Discrete & Computational Geometry 2005] in the context of geometric covering problems can be adapted to this setting, yielding simple FPT and kernelization algorithms for Set Cover in semi-ladder-free hypergraphs. We complement our algorithmic results with a compression lower bound for the problem, which proves the tightness of our kernelization under standard complexity-theoretic assumptions.
High-Throughput Vector Similarity Search in Knowledge Graphs
There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query corresponds to predicates over relational attributes associated with the underlying data vectors. For example, given past KG queries for a song entity, we want to construct new queries for new song entities whose vector representations are close to the vector representation of the entity in the past KG query. But entities in a KG also have non-vector attributes such as a song associated with an artist, a genre, and a release date. Therefore, suggested entities must also satisfy query predicates over non-vector attributes beyond a vector-based similarity predicate. While these tasks are central to KGs, our contributions are generally applicable to hybrid queries. In contrast to prior works that optimize online queries, we focus on enabling efficient batch processing of past hybrid query workloads. We present our system, HQI, for high-throughput batch processing of hybrid queries. We introduce a workload-aware vector data partitioning scheme to tailor the vector index layout to the given workload and describe a multi-query optimization technique to reduce the overhead of vector similarity computations. We evaluate our methods on industrial workloads and demonstrate that HQI yields a 31x improvement in throughput for finding related KG queries compared to existing hybrid query processing approaches.
Optimal Bounds for Open Addressing Without Reordering
In this paper, we revisit one of the simplest problems in data structures: the task of inserting elements into an open-addressed hash table so that elements can later be retrieved with as few probes as possible. We show that, even without reordering elements over time, it is possible to construct a hash table that achieves far better expected search complexities (both amortized and worst-case) than were previously thought possible. Along the way, we disprove the central conjecture left by Yao in his seminal paper ``Uniform Hashing is Optimal''. All of our results come with matching lower bounds.
μLO: Compute-Efficient Meta-Generalization of Learned Optimizers
Learned optimizers (LOs) can significantly reduce the wall-clock training time of neural networks, substantially reducing training costs. However, they often suffer from poor meta-generalization, especially when training networks larger than those seen during meta-training. To address this, we use the recently proposed Maximal Update Parametrization (muP), which allows zero-shot generalization of optimizer hyperparameters from smaller to larger models. We extend muP theory to learned optimizers, treating the meta-training problem as finding the learned optimizer under muP. Our evaluation shows that LOs meta-trained with muP substantially improve meta-generalization as compared to LOs trained under standard parametrization (SP). Notably, when applied to large-width models, our best muLO, trained for 103 GPU-hours, matches or exceeds the performance of VeLO, the largest publicly available learned optimizer, meta-trained with 4000 TPU-months of compute. Moreover, muLOs demonstrate better generalization than their SP counterparts to deeper networks and to much longer training horizons (25 times longer) than those seen during meta-training.
Levin Tree Search with Context Models
Levin Tree Search (LTS) is a search algorithm that makes use of a policy (a probability distribution over actions) and comes with a theoretical guarantee on the number of expansions before reaching a goal node, depending on the quality of the policy. This guarantee can be used as a loss function, which we call the LTS loss, to optimize neural networks representing the policy (LTS+NN). In this work we show that the neural network can be substituted with parameterized context models originating from the online compression literature (LTS+CM). We show that the LTS loss is convex under this new model, which allows for using standard convex optimization tools, and obtain convergence guarantees to the optimal parameters in an online setting for a given set of solution trajectories -- guarantees that cannot be provided for neural networks. The new LTS+CM algorithm compares favorably against LTS+NN on several benchmarks: Sokoban (Boxoban), The Witness, and the 24-Sliding Tile puzzle (STP). The difference is particularly large on STP, where LTS+NN fails to solve most of the test instances while LTS+CM solves each test instance in a fraction of a second. Furthermore, we show that LTS+CM is able to learn a policy that solves the Rubik's cube in only a few hundred expansions, which considerably improves upon previous machine learning techniques.
FedHyper: A Universal and Robust Learning Rate Scheduler for Federated Learning with Hypergradient Descent
The theoretical landscape of federated learning (FL) undergoes rapid evolution, but its practical application encounters a series of intricate challenges, and hyperparameter optimization is one of these critical challenges. Amongst the diverse adjustments in hyperparameters, the adaptation of the learning rate emerges as a crucial component, holding the promise of significantly enhancing the efficacy of FL systems. In response to this critical need, this paper presents FedHyper, a novel hypergradient-based learning rate adaptation algorithm specifically designed for FL. FedHyper serves as a universal learning rate scheduler that can adapt both global and local rates as the training progresses. In addition, FedHyper not only showcases unparalleled robustness to a spectrum of initial learning rate configurations but also significantly alleviates the necessity for laborious empirical learning rate adjustments. We provide a comprehensive theoretical analysis of FedHyper's convergence rate and conduct extensive experiments on vision and language benchmark datasets. The results demonstrate that FEDHYPER consistently converges 1.1-3x faster than FedAvg and the competing baselines while achieving superior final accuracy. Moreover, FedHyper catalyzes a remarkable surge in accuracy, augmenting it by up to 15% compared to FedAvg under suboptimal initial learning rate settings.
Accelerated Gradient Methods for Sparse Statistical Learning with Nonconvex Penalties
Nesterov's accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov's AG method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.
Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful
Conventional wisdom dictates that small batch sizes make language model pretraining and fine-tuning unstable, motivating gradient accumulation, which trades off the number of optimizer steps for a proportional increase in batch size. While it is common to decrease the learning rate for smaller batch sizes, other hyperparameters are often held fixed. In this work, we revisit small batch sizes all the way down to batch size one, and we propose a rule for scaling Adam hyperparameters to small batch sizes. We find that small batch sizes (1) train stably, (2) are consistently more robust to hyperparameter choices, (3) achieve equal or better per-FLOP performance than larger batch sizes, and (4) notably enable stable language model training with vanilla SGD, even without momentum, despite storing no optimizer state. Building on these results, we provide practical recommendations for selecting a batch size and setting optimizer hyperparameters. We further recommend against gradient accumulation unless training on multiple devices with multiple model replicas, bottlenecked by inter-device bandwidth.