new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 1

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0\% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3\% top1 accuracy in image resolution 384times384 on ImageNet. (Code: https://github.com/yitu-opensource/T2T-ViT)

Perturbation Analysis of Neural Collapse

Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.

A theory of representation learning gives a deep generalisation of kernel methods

The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.

Monotone deep Boltzmann machines

Deep Boltzmann machines (DBMs), one of the first ``deep'' learning methods ever studied, are multi-layered probabilistic models governed by a pairwise energy function that describes the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained, i.e., via the restricted Boltzmann machine (RBM) architecture (which does not permit intra-layer connections), in order to allow for more efficient inference. In this work, we revisit the generic DBM approach, and ask the question: are there other possible restrictions to their design that would enable efficient (approximate) inference? In particular, we develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer, but restricts the weights in a manner that guarantees the existence and global uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-proposed monotone Deep Equilibrium model and show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution. While this approach is still largely conceptual, it is the first architecture that allows for efficient approximate inference in fully-general weight structures for DBMs. We apply this approach to simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks such as the joint completion and classification of images, within a single deep probabilistic setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.

Empirical Analysis of the Hessian of Over-Parametrized Neural Networks

We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.

Wide and Deep Neural Networks Achieve Optimality for Classification

While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.

What Can Be Learnt With Wide Convolutional Neural Networks?

Understanding how convolutional neural networks (CNNs) can efficiently learn high-dimensional functions remains a fundamental challenge. A popular belief is that these models harness the local and hierarchical structure of natural data such as images. Yet, we lack a quantitative understanding of how such structure affects performance, e.g., the rate of decay of the generalisation error with the number of training samples. In this paper, we study infinitely-wide deep CNNs in the kernel regime. First, we show that the spectrum of the corresponding kernel inherits the hierarchical structure of the network, and we characterise its asymptotics. Then, we use this result together with generalisation bounds to prove that deep CNNs adapt to the spatial scale of the target function. In particular, we find that if the target function depends on low-dimensional subsets of adjacent input variables, then the decay of the error is controlled by the effective dimensionality of these subsets. Conversely, if the target function depends on the full set of input variables, then the error decay is controlled by the input dimension. We conclude by computing the generalisation error of a deep CNN trained on the output of another deep CNN with randomly-initialised parameters. Interestingly, we find that, despite their hierarchical structure, the functions generated by infinitely-wide deep CNNs are too rich to be efficiently learnable in high dimension.

Information-Theoretic Generalization Bounds for Deep Neural Networks

Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications. This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds. We first derive two hierarchical bounds on the generalization error in terms of the Kullback-Leibler (KL) divergence or the 1-Wasserstein distance between the train and test distributions of the network internal representations. The KL divergence bound shrinks as the layer index increases, while the Wasserstein bound implies the existence of a layer that serves as a generalization funnel, which attains a minimal 1-Wasserstein distance. Analytic expressions for both bounds are derived under the setting of binary Gaussian classification with linear DNNs. To quantify the contraction of the relevant information measures when moving deeper into the network, we analyze the strong data processing inequality (SDPI) coefficient between consecutive layers of three regularized DNN models: Dropout, DropConnect, and Gaussian noise injection. This enables refining our generalization bounds to capture the contraction as a function of the network architecture parameters. Specializing our results to DNNs with a finite parameter space and the Gibbs algorithm reveals that deeper yet narrower network architectures generalize better in those examples, although how broadly this statement applies remains a question.

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

DeepArchitect: Automatically Designing and Training Deep Architectures

In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.

Feature Learning in Infinite-Width Neural Networks

As its width tends to infinity, a deep neural network's behavior under gradient descent can become simplified and predictable (e.g. given by the Neural Tangent Kernel (NTK)), if it is parametrized appropriately (e.g. the NTK parametrization). However, we show that the standard and NTK parametrizations of a neural network do not admit infinite-width limits that can learn features, which is crucial for pretraining and transfer learning such as with BERT. We propose simple modifications to the standard parametrization to allow for feature learning in the limit. Using the *Tensor Programs* technique, we derive explicit formulas for such limits. On Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks that rely crucially on feature learning, we compute these limits exactly. We find that they outperform both NTK baselines and finite-width networks, with the latter approaching the infinite-width feature learning performance as width increases. More generally, we classify a natural space of neural network parametrizations that generalizes standard, NTK, and Mean Field parametrizations. We show 1) any parametrization in this space either admits feature learning or has an infinite-width training dynamics given by kernel gradient descent, but not both; 2) any such infinite-width limit can be computed using the Tensor Programs technique. Code for our experiments can be found at github.com/edwardjhu/TP4.

Hyperspherical embedding for novel class classification

Deep learning models have become increasingly useful in many different industries. On the domain of image classification, convolutional neural networks proved the ability to learn robust features for the closed set problem, as shown in many different datasets, such as MNIST FASHIONMNIST, CIFAR10, CIFAR100, and IMAGENET. These approaches use deep neural networks with dense layers with softmax activation functions in order to learn features that can separate classes in a latent space. However, this traditional approach is not useful for identifying classes unseen on the training set, known as the open set problem. A similar problem occurs in scenarios involving learning on small data. To tackle both problems, few-shot learning has been proposed. In particular, metric learning learns features that obey constraints of a metric distance in the latent space in order to perform classification. However, while this approach proves to be useful for the open set problem, current implementation requires pair-wise training, where both positive and negative examples of similar images are presented during the training phase, which limits the applicability of these approaches in large data or large class scenarios given the combinatorial nature of the possible inputs.In this paper, we present a constraint-based approach applied to the representations in the latent space under the normalized softmax loss, proposed by[18]. We experimentally validate the proposed approach for the classification of unseen classes on different datasets using both metric learning and the normalized softmax loss, on disjoint and joint scenarios. Our results show that not only our proposed strategy can be efficiently trained on larger set of classes, as it does not require pairwise learning, but also present better classification results than the metric learning strategies surpassing its accuracy by a significant margin.

Do Language Models Use Their Depth Efficiently?

Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1 and Qwen 3 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.

Volumetric medical image segmentation through dual self-distillation in U-shaped networks

U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework in U-shaped networks for volumetric medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers. Additionally, DSD also distills knowledge from the deepest decoder and encoder layer to the shallower decoder and encoder layers respectively of a single U-shaped network. DSD is a general training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on several state-of-the-art U-shaped backbones, and extensive experiments on various public 3D medical image segmentation datasets (cardiac substructure, brain tumor and Hippocampus) demonstrated significant improvement over the same backbones without DSD. On average, after attaching DSD to the U-shaped backbones, we observed an increase of 2.82\%, 4.53\% and 1.3\% in Dice similarity score, a decrease of 7.15 mm, 6.48 mm and 0.76 mm in the Hausdorff distance, for cardiac substructure, brain tumor and Hippocampus segmentation, respectively. These improvements were achieved with negligible increase in the number of trainable parameters and training time. Our proposed DSD framework also led to significant qualitative improvements for cardiac substructure, brain tumor and Hippocampus segmentation over the U-shaped backbones. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.

Linguistic Collapse: Neural Collapse in (Large) Language Models

Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions

Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.

Sparsing Law: Towards Large Language Models with Greater Activation Sparsity

Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-p% sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., 1-sparsity ratio) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.

Masked Completion via Structured Diffusion with White-Box Transformers

Modern learning frameworks often train deep neural networks with massive amounts of unlabeled data to learn representations by solving simple pretext tasks, then use the representations as foundations for downstream tasks. These networks are empirically designed; as such, they are usually not interpretable, their representations are not structured, and their designs are potentially redundant. White-box deep networks, in which each layer explicitly identifies and transforms structures in the data, present a promising alternative. However, existing white-box architectures have only been shown to work at scale in supervised settings with labeled data, such as classification. In this work, we provide the first instantiation of the white-box design paradigm that can be applied to large-scale unsupervised representation learning. We do this by exploiting a fundamental connection between diffusion, compression, and (masked) completion, deriving a deep transformer-like masked autoencoder architecture, called CRATE-MAE, in which the role of each layer is mathematically fully interpretable: they transform the data distribution to and from a structured representation. Extensive empirical evaluations confirm our analytical insights. CRATE-MAE demonstrates highly promising performance on large-scale imagery datasets while using only ~30% of the parameters compared to the standard masked autoencoder with the same model configuration. The representations learned by CRATE-MAE have explicit structure and also contain semantic meaning. Code is available at https://github.com/Ma-Lab-Berkeley/CRATE .

Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers

State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. We consider three structured linear parameterizations of the FFN using efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from a training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We demonstrate that these structures can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called self-guided training, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Interestingly, the scaling performance of structured matrices is explored, revealing steeper curves in scaling training FLOPs, along with a favorable scaling trend in the overtraining regime. Specifically, we show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off. Our code is available at https://github.com/CLAIRE-Labo/StructuredFFN/tree/main.

The Curse of Depth in Large Language Models

In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models(LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling, which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Our experimental results, spanning model sizes from 130M to 1B, demonstrate that LayerNorm Scaling significantly enhances LLM pre-training performance compared to Pre-LN. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training.

Progressive Gradient Flow for Robust N:M Sparsity Training in Transformers

N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions (sim50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions (>80\%). In this work, we study the effectiveness of existing sparse training recipes at high-sparsity regions and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2% and 5% in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2%. The source code is available at https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.

A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations

Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.

Go Wider Instead of Deeper

More transformer blocks with residual connections have recently achieved impressive results on various tasks. To achieve better performance with fewer trainable parameters, recent methods are proposed to go shallower by parameter sharing or model compressing along with the depth. However, weak modeling capacity limits their performance. Contrastively, going wider by inducing more trainable matrixes and parameters would produce a huge model requiring advanced parallelism to train and inference. In this paper, we propose a parameter-efficient framework, going wider instead of deeper. Specially, following existing works, we adapt parameter sharing to compress along depth. But, such deployment would limit the performance. To maximize modeling capacity, we scale along model width by replacing feed-forward network (FFN) with mixture-of-experts (MoE). Across transformer blocks, instead of sharing normalization layers, we propose to use individual layernorms to transform various semantic representations in a more parameter-efficient way. To evaluate our plug-and-run framework, we design WideNet and conduct comprehensive experiments on popular computer vision and natural language processing benchmarks. On ImageNet-1K, our best model outperforms Vision Transformer (ViT) by 1.5% with 0.72 times trainable parameters. Using 0.46 times and 0.13 times parameters, our WideNet can still surpass ViT and ViT-MoE by 0.8% and 2.1%, respectively. On four natural language processing datasets, WideNet outperforms ALBERT by 1.8% on average and surpass BERT using factorized embedding parameterization by 0.8% with fewer parameters.

Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks

Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.

Skip a Layer or Loop it? Test-Time Depth Adaptation of Pretrained LLMs

Can a pretrained neural network adapt its architecture to different inputs without any finetuning? Do we need all layers for simple tasks, and are they adequate for challenging tasks? We found that the layers of a pretrained large language model (LLM) can be manipulated as separate modules to build a better and even shallower model customized for each test sample. In particular, each layer from the pretrained model can be skipped/pruned or repeated multiple times as recurrent neural networks (RNN), and stacked with others in arbitrary orders, yielding a chain-of-layers (CoLa) per sample. This compositional space greatly expands the scope of existing works on looped/recurrent pretrained modules, layer pruning, or early-exit networks. We develop a Monte Carlo Tree Search (MCTS) protocol to explore and identify the optimal CoLa for each sample from math and commonsense reasoning benchmarks. Compared to a static model of a fixed depth, CoLa allows shortcut paths (fast thinking), recurrence of the same layer(s) (slow thinking), and combining both, offering more flexible, dynamic architectures for different inputs. We conduct an extensive analysis of the MCTS-optimized CoLa, which leads to two key findings: (1) For >75% of samples with correct predictions by the original LLM, we can find shorter CoLa, suggesting a large space for improving inference efficiency; (2) For >60% of samples with originally incorrect predictions, we can identify CoLa achieving correct predictions, suggesting a large space of performance enhancement. Our results highlight the shortcomings of using a fixed architecture of pre-trained LLMs for inference on different samples and pave the way to unlock the generalization power of test-time depth adaptation.

Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning

A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs

Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization

We identify a new phenomenon in neural network optimization which arises from the interaction of depth and a particular heavy-tailed structure in natural data. Our result offers intuitive explanations for several previously reported observations about network training dynamics. In particular, it implies a conceptually new cause for progressive sharpening and the edge of stability; we also highlight connections to other concepts in optimization and generalization including grokking, simplicity bias, and Sharpness-Aware Minimization. Experimentally, we demonstrate the significant influence of paired groups of outliers in the training data with strong opposing signals: consistent, large magnitude features which dominate the network output throughout training and provide gradients which point in opposite directions. Due to these outliers, early optimization enters a narrow valley which carefully balances the opposing groups; subsequent sharpening causes their loss to rise rapidly, oscillating between high on one group and then the other, until the overall loss spikes. We describe how to identify these groups, explore what sets them apart, and carefully study their effect on the network's optimization and behavior. We complement these experiments with a mechanistic explanation on a toy example of opposing signals and a theoretical analysis of a two-layer linear network on a simple model. Our finding enables new qualitative predictions of training behavior which we confirm experimentally. It also provides a new lens through which to study and improve modern training practices for stochastic optimization, which we highlight via a case study of Adam versus SGD.

Opening the Black Box of Deep Neural Networks via Information

Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the Information Plane; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.

Evaluating Deep Graph Neural Networks

Graph Neural Networks (GNNs) have already been widely applied in various graph mining tasks. However, they suffer from the shallow architecture issue, which is the key impediment that hinders the model performance improvement. Although several relevant approaches have been proposed, none of the existing studies provides an in-depth understanding of the root causes of performance degradation in deep GNNs. In this paper, we conduct the first systematic experimental evaluation to present the fundamental limitations of shallow architectures. Based on the experimental results, we answer the following two essential questions: (1) what actually leads to the compromised performance of deep GNNs; (2) when we need and how to build deep GNNs. The answers to the above questions provide empirical insights and guidelines for researchers to design deep and well-performed GNNs. To show the effectiveness of our proposed guidelines, we present Deep Graph Multi-Layer Perceptron (DGMLP), a powerful approach (a paradigm in its own right) that helps guide deep GNN designs. Experimental results demonstrate three advantages of DGMLP: 1) high accuracy -- it achieves state-of-the-art node classification performance on various datasets; 2) high flexibility -- it can flexibly choose different propagation and transformation depths according to graph size and sparsity; 3) high scalability and efficiency -- it supports fast training on large-scale graphs. Our code is available in https://github.com/zwt233/DGMLP.

How connectivity structure shapes rich and lazy learning in neural circuits

In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.

Using Degeneracy in the Loss Landscape for Mechanistic Interpretability

Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations. An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network. These degenerate parameters may obfuscate internal structure. Singular learning theory teaches us that neural network parameterizations are biased towards being more degenerate, and parameterizations with more degeneracy are likely to generalize further. We identify 3 ways that network parameters can be degenerate: linear dependence between activations in a layer; linear dependence between gradients passed back to a layer; ReLUs which fire on the same subset of datapoints. We also present a heuristic argument that modular networks are likely to be more degenerate, and we develop a metric for identifying modules in a network that is based on this argument. We propose that if we can represent a neural network in a way that is invariant to reparameterizations that exploit the degeneracies, then this representation is likely to be more interpretable, and we provide some evidence that such a representation is likely to have sparser interactions. We introduce the Interaction Basis, a tractable technique to obtain a representation that is invariant to degeneracies from linear dependence of activations or Jacobians.

Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding

As lung cancer evolves, the presence of enlarged and potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy. Following the clinical guidelines, estimation of short-axis diameter and mediastinum station are paramount for correct diagnosis. A method for accurate and automatic segmentation is hence decisive for quantitatively describing lymph nodes. In this study, the use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated. Furthermore, the potential impact from simple ensemble strategies is considered. As lymph nodes have similar attenuation values to nearby anatomical structures, we suggest using the knowledge of other organs as prior information to guide the segmentation task. To assess the segmentation and instance detection performances, a 5-fold cross-validation strategy was followed over a dataset of 120 contrast-enhanced CT volumes. For the 1178 lymph nodes with a short-axis diameter geq10 mm, our best performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5, and a segmentation overlap of 80.5%. The method performs similarly well across all stations. Fusing a slab-wise and a full volume approach within an ensemble scheme generated the best performances. The anatomical priors guiding strategy is promising, yet a larger set than four organs appears needed to generate an optimal benefit. A larger dataset is also mandatory, given the wide range of expressions a lymph node can exhibit (i.e., shape, location, and attenuation), and contrast uptake variations.

Relative representations enable zero-shot latent space communication

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets

To obtain excellent deep neural architectures, a series of techniques are carefully designed in EfficientNets. The giant formula for simultaneously enlarging the resolution, depth and width provides us a Rubik's cube for neural networks. So that we can find networks with high efficiency and excellent performance by twisting the three dimensions. This paper aims to explore the twisting rules for obtaining deep neural networks with minimum model sizes and computational costs. Different from the network enlarging, we observe that resolution and depth are more important than width for tiny networks. Therefore, the original method, i.e., the compound scaling in EfficientNet is no longer suitable. To this end, we summarize a tiny formula for downsizing neural architectures through a series of smaller models derived from the EfficientNet-B0 with the FLOPs constraint. Experimental results on the ImageNet benchmark illustrate that our TinyNet performs much better than the smaller version of EfficientNets using the inversed giant formula. For instance, our TinyNet-E achieves a 59.9% Top-1 accuracy with only 24M FLOPs, which is about 1.9% higher than that of the previous best MobileNetV3 with similar computational cost. Code will be available at https://github.com/huawei-noah/ghostnet/tree/master/tinynet_pytorch, and https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/tinynet.

Transformer as Linear Expansion of Learngene

We propose expanding the shared Transformer module to produce and initialize Transformers of varying depths, enabling adaptation to diverse resource constraints. Drawing an analogy to genetic expansibility, we term such module as learngene. To identify the expansion mechanism, we delve into the relationship between the layer's position and its corresponding weight value, and find that linear function appropriately approximates this relationship. Building on this insight, we present Transformer as Linear Expansion of learnGene (TLEG), a novel approach for flexibly producing and initializing Transformers of diverse depths. Specifically, to learn learngene, we firstly construct an auxiliary Transformer linearly expanded from learngene, after which we train it through employing soft distillation. Subsequently, we can produce and initialize Transformers of varying depths via linearly expanding the well-trained learngene, thereby supporting diverse downstream scenarios. Extensive experiments on ImageNet-1K demonstrate that TLEG achieves comparable or better performance in contrast to many individual models trained from scratch, while reducing around 2x training cost. When transferring to several downstream classification datasets, TLEG surpasses existing initialization methods by a large margin (e.g., +6.87% on iNat 2019 and +7.66% on CIFAR-100). Under the situation where we need to produce models of varying depths adapting for different resource constraints, TLEG achieves comparable results while reducing around 19x parameters stored to initialize these models and around 5x pre-training costs, in contrast to the pre-training and fine-tuning approach. When transferring a fixed set of parameters to initialize different models, TLEG presents better flexibility and competitive performance while reducing around 2.9x parameters stored to initialize, compared to the pre-training approach.

Understanding Certified Training with Interval Bound Propagation

As robustness verification methods are becoming more precise, training certifiably robust neural networks is becoming ever more relevant. To this end, certified training methods compute and then optimize an upper bound on the worst-case loss over a robustness specification. Curiously, training methods based on the imprecise interval bound propagation (IBP) consistently outperform those leveraging more precise bounding methods. Still, we lack an understanding of the mechanisms making IBP so successful. In this work, we thoroughly investigate these mechanisms by leveraging a novel metric measuring the tightness of IBP bounds. We first show theoretically that, for deep linear models, tightness decreases with width and depth at initialization, but improves with IBP training, given sufficient network width. We, then, derive sufficient and necessary conditions on weight matrices for IBP bounds to become exact and demonstrate that these impose strong regularization, explaining the empirically observed trade-off between robustness and accuracy in certified training. Our extensive experimental evaluation validates our theoretical predictions for ReLU networks, including that wider networks improve performance, yielding state-of-the-art results. Interestingly, we observe that while all IBP-based training methods lead to high tightness, this is neither sufficient nor necessary to achieve high certifiable robustness. This hints at the existence of new training methods that do not induce the strong regularization required for tight IBP bounds, leading to improved robustness and standard accuracy.

Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior

Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet.

Explaining Neural Scaling Laws

The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origins of and relationships between scaling exponents.

Pruning-aware Sparse Regularization for Network Pruning

Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks (CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning, many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-training-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network's capacity, which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask, rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the pruning mask, such as running the global sparse regularization. MaskSparsity achieves 63.03%-FLOPs reduction on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code is released at https://github.com/CASIA-IVA-Lab/MaskSparsity. Moreover, we have integrated the code of MaskSparity into a PyTorch pruning toolkit, EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.

Hyperbolic Category Discovery

Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.

Pushing Boundaries: Mixup's Influence on Neural Collapse

Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.

The Monge Gap: A Regularizer to Learn All Transport Maps

Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in P(Rd) into another must be the gradient of a convex function. To exploit that result, [Makkuva+ 2020, Korotin+2020] consider maps T=nabla f_theta, where f_theta is an input convex neural network (ICNN), as defined by Amos+2017, and fit theta with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on theta; the need to approximate the conjugate of f_theta; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost c and a reference measure rho, we introduce a regularizer, the Monge gap M^c_{rho}(T) of a map T. That gap quantifies how far a map T deviates from the ideal properties we expect from a c-OT map. In practice, we drop all architecture requirements for T and simply minimize a distance (e.g., the Sinkhorn divergence) between Tsharpmu and nu, regularized by M^c_rho(T). We study M^c_{rho}, and show how our simple pipeline outperforms significantly other baselines in practice.

Sinkhorn Distance Minimization for Knowledge Distillation

Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions. Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.

Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild

Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches. Codes are available at https://github.com/GitGyun/chameleon.

Differentiable Sensor Layouts for End-to-End Learning of Task-Specific Camera Parameters

The success of deep learning is frequently described as the ability to train all parameters of a network on a specific application in an end-to-end fashion. Yet, several design choices on the camera level, including the pixel layout of the sensor, are considered as pre-defined and fixed, and high resolution, regular pixel layouts are considered to be the most generic ones in computer vision and graphics, treating all regions of an image as equally important. While several works have considered non-uniform, \eg, hexagonal or foveated, pixel layouts in hardware and image processing, the layout has not been integrated into the end-to-end learning paradigm so far. In this work, we present the first truly end-to-end trained imaging pipeline that optimizes the size and distribution of pixels on the imaging sensor jointly with the parameters of a given neural network on a specific task. We derive an analytic, differentiable approach for the sensor layout parameterization that allows for task-specific, local varying pixel resolutions. We present two pixel layout parameterization functions: rectangular and curvilinear grid shapes that retain a regular topology. We provide a drop-in module that approximates sensor simulation given existing high-resolution images to directly connect our method with existing deep learning models. We show that network predictions benefit from learnable pixel layouts for two different downstream tasks, classification and semantic segmentation.

Adding Gradient Noise Improves Learning for Very Deep Networks

Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures.

Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization

Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning.

How Powerful are Shallow Neural Networks with Bandlimited Random Weights?

We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.

Combating Mode Collapse in GANs via Manifold Entropy Estimation

Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e., Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well-formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. By improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method, which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score). The code is available at https://github.com/HaozheLiu-ST/MEE

Efficient Architecture Search by Network Transformation

Techniques for automatically designing deep neural network architectures such as reinforcement learning based approaches have recently shown promising results. However, their success is based on vast computational resources (e.g. hundreds of GPUs), making them difficult to be widely used. A noticeable limitation is that they still design and train each network from scratch during the exploration of the architecture space, which is highly inefficient. In this paper, we propose a new framework toward efficient architecture search by exploring the architecture space based on the current network and reusing its weights. We employ a reinforcement learning agent as the meta-controller, whose action is to grow the network depth or layer width with function-preserving transformations. As such, the previously validated networks can be reused for further exploration, thus saves a large amount of computational cost. We apply our method to explore the architecture space of the plain convolutional neural networks (no skip-connections, branching etc.) on image benchmark datasets (CIFAR-10, SVHN) with restricted computational resources (5 GPUs). Our method can design highly competitive networks that outperform existing networks using the same design scheme. On CIFAR-10, our model without skip-connections achieves 4.23\% test error rate, exceeding a vast majority of modern architectures and approaching DenseNet. Furthermore, by applying our method to explore the DenseNet architecture space, we are able to achieve more accurate networks with fewer parameters.

SortedNet, a Place for Every Network and Every Network in its Place: Towards a Generalized Solution for Training Many-in-One Neural Networks

As the size of deep learning models continues to grow, finding optimal models under memory and computation constraints becomes increasingly more important. Although usually the architecture and constituent building blocks of neural networks allow them to be used in a modular way, their training process is not aware of this modularity. Consequently, conventional neural network training lacks the flexibility to adapt the computational load of the model during inference. This paper proposes SortedNet, a generalized and scalable solution to harness the inherent modularity of deep neural networks across various dimensions for efficient dynamic inference. Our training considers a nested architecture for the sub-models with shared parameters and trains them together with the main model in a sorted and probabilistic manner. This sorted training of sub-networks enables us to scale the number of sub-networks to hundreds using a single round of training. We utilize a novel updating scheme during training that combines random sampling of sub-networks with gradient accumulation to improve training efficiency. Furthermore, the sorted nature of our training leads to a search-free sub-network selection at inference time; and the nested architecture of the resulting sub-networks leads to minimal storage requirement and efficient switching between sub-networks at inference. Our general dynamic training approach is demonstrated across various architectures and tasks, including large language models and pre-trained vision models. Experimental results show the efficacy of the proposed approach in achieving efficient sub-networks while outperforming state-of-the-art dynamic training approaches. Our findings demonstrate the feasibility of training up to 160 different sub-models simultaneously, showcasing the extensive scalability of our proposed method while maintaining 96% of the model performance.

DS6, Deformation-aware Semi-supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data

Blood vessels of the brain provide the human brain with the required nutrients and oxygen. As a vulnerable part of the cerebral blood supply, pathology of small vessels can cause serious problems such as Cerebral Small Vessel Diseases (CSVD). It has also been shown that CSVD is related to neurodegeneration, such as Alzheimer's disease. With the advancement of 7 Tesla MRI systems, higher spatial image resolution can be achieved, enabling the depiction of very small vessels in the brain. Non-Deep Learning-based approaches for vessel segmentation, e.g., Frangi's vessel enhancement with subsequent thresholding, are capable of segmenting medium to large vessels but often fail to segment small vessels. The sensitivity of these methods to small vessels can be increased by extensive parameter tuning or by manual corrections, albeit making them time-consuming, laborious, and not feasible for larger datasets. This paper proposes a deep learning architecture to automatically segment small vessels in 7 Tesla 3D Time-of-Flight (ToF) Magnetic Resonance Angiography (MRA) data. The algorithm was trained and evaluated on a small imperfect semi-automatically segmented dataset of only 11 subjects; using six for training, two for validation, and three for testing. The deep learning model based on U-Net Multi-Scale Supervision was trained using the training subset and was made equivariant to elastic deformations in a self-supervised manner using deformation-aware learning to improve the generalisation performance. The proposed technique was evaluated quantitatively and qualitatively against the test set and achieved a Dice score of 80.44 pm 0.83. Furthermore, the result of the proposed method was compared against a selected manually segmented region (62.07 resultant Dice) and has shown a considerable improvement (18.98\%) with deformation-aware learning.

SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss

Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of 80.245 pm 0.129. Also, the method with single-axis MIP loss produces segmentations with a median Dice of 79.749 pm 0.109. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.

The Principles of Deep Learning Theory

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers

Deep learning has recently seen rapid development and received significant attention due to its state-of-the-art performance on previously-thought hard problems. However, because of the internal complexity and nonlinear structure of deep neural networks, the underlying decision making processes for why these models are achieving such performance are challenging and sometimes mystifying to interpret. As deep learning spreads across domains, it is of paramount importance that we equip users of deep learning with tools for understanding when a model works correctly, when it fails, and ultimately how to improve its performance. Standardized toolkits for building neural networks have helped democratize deep learning; visual analytics systems have now been developed to support model explanation, interpretation, debugging, and improvement. We present a survey of the role of visual analytics in deep learning research, which highlights its short yet impactful history and thoroughly summarizes the state-of-the-art using a human-centered interrogative framework, focusing on the Five W's and How (Why, Who, What, How, When, and Where). We conclude by highlighting research directions and open research problems. This survey helps researchers and practitioners in both visual analytics and deep learning to quickly learn key aspects of this young and rapidly growing body of research, whose impact spans a diverse range of domains.

Exploring Geometry of Blind Spots in Vision Models

Despite the remarkable success of deep neural networks in a myriad of settings, several works have demonstrated their overwhelming sensitivity to near-imperceptible perturbations, known as adversarial attacks. On the other hand, prior works have also observed that deep networks can be under-sensitive, wherein large-magnitude perturbations in input space do not induce appreciable changes to network activations. In this work, we study in detail the phenomenon of under-sensitivity in vision models such as CNNs and Transformers, and present techniques to study the geometry and extent of "equi-confidence" level sets of such networks. We propose a Level Set Traversal algorithm that iteratively explores regions of high confidence with respect to the input space using orthogonal components of the local gradients. Given a source image, we use this algorithm to identify inputs that lie in the same equi-confidence level set as the source image despite being perceptually similar to arbitrary images from other classes. We further observe that the source image is linearly connected by a high-confidence path to these inputs, uncovering a star-like structure for level sets of deep networks. Furthermore, we attempt to identify and estimate the extent of these connected higher-dimensional regions over which the model maintains a high degree of confidence. The code for this project is publicly available at https://github.com/SriramB-98/blindspots-neurips-sub

DeepMesh: Differentiable Iso-Surface Extraction

Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field. In this work, we remove this limitation and introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields. Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples with respect to the underlying deep implicit field. We exploit this to define DeepMesh - an end-to-end differentiable mesh representation that can vary its topology. We validate our theoretical insight through several applications: Single view 3D Reconstruction via Differentiable Rendering, Physically-Driven Shape Optimization, Full Scene 3D Reconstruction from Scans and End-to-End Training. In all cases our end-to-end differentiable parameterization gives us an edge over state-of-the-art algorithms.

Landscaping Linear Mode Connectivity

The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.

Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning

Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped close to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.

OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion

Surface wave dispersion curve inversion plays a critical role in both shallow resource exploration and deep geological studies, yet it remains hindered by sensitivity to initial models and low computational efficiency. Recently, data-driven deep learning methods, inspired by advances in computer vision, have shown promising potential to address these challenges. However, the lack of large-scale, diverse benchmark datasets remains a major obstacle to their development and evaluation. To bridge this gap, we present OpenSWI, a comprehensive benchmark dataset generated through the Surface Wave Inversion Dataset Preparation (SWIDP) pipeline. OpenSWI includes two synthetic datasets tailored to different research scales and scenarios, OpenSWI-shallow and OpenSWI-deep, and an AI-ready real-world dataset for generalization evaluation, OpenSWI-real. OpenSWI-shallow, derived from the 2-D OpenFWI geological model dataset, contains over 22 million 1-D velocity profiles paired with fundamental-mode phase and group velocity dispersion curves, spanning a wide range of shallow geological structures (e.g., flat layers, faults, folds, realistic stratigraphy). OpenSWI-deep, built from 14 global and regional 3-D geological models, comprises 1.26 million high-fidelity 1-D velocity-dispersion pairs for deep-Earth studies. OpenSWI-real, compiled from open-source projects, contains two sets of observed dispersion curves with corresponding reference models, serving as a benchmark for evaluating model generalization. To demonstrate utility, we trained models on OpenSWI-shallow and -deep and evaluated them on OpenSWI-real, demonstrating strong agreement between predictions and references, which confirms the diversity and representativeness of the dataset. To advance intelligent surface wave inversion, we release the SWIDP toolbox, OpenSWI datasets, and trained models for the research community.

Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN

Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.

Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering

Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.

Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation

In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.

Understanding Visual Feature Reliance through the Lens of Complexity

Recent studies suggest that deep learning models inductive bias towards favoring simpler features may be one of the sources of shortcut learning. Yet, there has been limited focus on understanding the complexity of the myriad features that models learn. In this work, we introduce a new metric for quantifying feature complexity, based on V-information and capturing whether a feature requires complex computational transformations to be extracted. Using this V-information metric, we analyze the complexities of 10,000 features, represented as directions in the penultimate layer, that were extracted from a standard ImageNet-trained vision model. Our study addresses four key questions: First, we ask what features look like as a function of complexity and find a spectrum of simple to complex features present within the model. Second, we ask when features are learned during training. We find that simpler features dominate early in training, and more complex features emerge gradually. Third, we investigate where within the network simple and complex features flow, and find that simpler features tend to bypass the visual hierarchy via residual connections. Fourth, we explore the connection between features complexity and their importance in driving the networks decision. We find that complex features tend to be less important. Surprisingly, important features become accessible at earlier layers during training, like a sedimentation process, allowing the model to build upon these foundational elements.

More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory

In our era of enormous neural networks, empirical progress has been driven by the philosophy that more is better. Recent deep learning practice has found repeatedly that larger model size, more data, and more computation (resulting in lower training loss) improves performance. In this paper, we give theoretical backing to these empirical observations by showing that these three properties hold in random feature (RF) regression, a class of models equivalent to shallow networks with only the last layer trained. Concretely, we first show that the test risk of RF regression decreases monotonically with both the number of features and the number of samples, provided the ridge penalty is tuned optimally. In particular, this implies that infinite width RF architectures are preferable to those of any finite width. We then proceed to demonstrate that, for a large class of tasks characterized by powerlaw eigenstructure, training to near-zero training loss is obligatory: near-optimal performance can only be achieved when the training error is much smaller than the test error. Grounding our theory in real-world data, we find empirically that standard computer vision tasks with convolutional neural tangent kernels clearly fall into this class. Taken together, our results tell a simple, testable story of the benefits of overparameterization, overfitting, and more data in random feature models.

Cauchy-Schwarz Divergence Information Bottleneck for Regression

The information bottleneck (IB) approach is popular to improve the generalization, robustness and explainability of deep neural networks. Essentially, it aims to find a minimum sufficient representation t by striking a trade-off between a compression term I(x;t) and a prediction term I(y;t), where I(cdot;cdot) refers to the mutual information (MI). MI is for the IB for the most part expressed in terms of the Kullback-Leibler (KL) divergence, which in the regression case corresponds to prediction based on mean squared error (MSE) loss with Gaussian assumption and compression approximated by variational inference. In this paper, we study the IB principle for the regression problem and develop a new way to parameterize the IB with deep neural networks by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence. By doing so, we move away from MSE-based regression and ease estimation by avoiding variational approximations or distributional assumptions. We investigate the improved generalization ability of our proposed CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate its superior performance on six real-world regression tasks over other popular deep IB approaches. We additionally observe that the solutions discovered by CS-IB always achieve the best trade-off between prediction accuracy and compression ratio in the information plane. The code is available at https://github.com/SJYuCNEL/Cauchy-Schwarz-Information-Bottleneck.

Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.