Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization
Deepfake technology has rapidly advanced and poses significant threats to information integrity and trust in online multimedia. While significant progress has been made in detecting deepfakes, the simultaneous manipulation of audio and visual modalities, sometimes at small parts or in subtle ways, presents highly challenging detection scenarios. To address these challenges, we present DiMoDif, an audio-visual deepfake detection framework that leverages the inter-modality differences in machine perception of speech, based on the assumption that in real samples -- in contrast to deepfakes -- visual and audio signals coincide in terms of information. DiMoDif leverages features from deep networks that specialize in visual and audio speech recognition to spot frame-level cross-modal incongruities, and in that way to temporally localize the deepfake forgery. To this end, we devise a hierarchical cross-modal fusion network, integrating adaptive temporal alignment modules and a learned discrepancy mapping layer to explicitly model the subtle differences between visual and audio representations. Then, the detection model is optimized through a composite loss function accounting for frame-level detections and fake intervals localization. DiMoDif outperforms the state-of-the-art on the Deepfake Detection task by 30.5 AUC on the highly challenging AV-Deepfake1M, while it performs exceptionally on FakeAVCeleb and LAV-DF. On the Temporal Forgery Localization task, it outperforms the state-of-the-art by 47.88 AP@0.75 on AV-Deepfake1M, and performs on-par on LAV-DF. Code available at https://github.com/mever-team/dimodif.
Towards Generalizable Forgery Detection and Reasoning
Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we formulate detection and explanation as a unified Forgery Detection and Reasoning task (FDR-Task), leveraging Multi-Modal Large Language Models (MLLMs) to provide accurate detection through reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 120K images across 10 generative models, with 378K reasoning annotations on forgery attributes, enabling comprehensive evaluation of the FDR-Task. Furthermore, we propose FakeReasoning, a forgery detection and reasoning framework with three key components: 1) a dual-branch visual encoder that integrates CLIP and DINO to capture both high-level semantics and low-level artifacts; 2) a Forgery-Aware Feature Fusion Module that leverages DINO's attention maps and cross-attention mechanisms to guide MLLMs toward forgery-related clues; 3) a Classification Probability Mapper that couples language modeling and forgery detection, enhancing overall performance. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
ForgerySleuth: Empowering Multimodal Large Language Models for Image Manipulation Detection
Multimodal large language models have unlocked new possibilities for various multimodal tasks. However, their potential in image manipulation detection remains unexplored. When directly applied to the IMD task, M-LLMs often produce reasoning texts that suffer from hallucinations and overthinking. To address this, in this work, we propose ForgerySleuth, which leverages M-LLMs to perform comprehensive clue fusion and generate segmentation outputs indicating specific regions that are tampered with. Moreover, we construct the ForgeryAnalysis dataset through the Chain-of-Clues prompt, which includes analysis and reasoning text to upgrade the image manipulation detection task. A data engine is also introduced to build a larger-scale dataset for the pre-training phase. Our extensive experiments demonstrate the effectiveness of ForgeryAnalysis and show that ForgerySleuth significantly outperforms existing methods in generalization, robustness, and explainability.
M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection
The widespread dissemination of Deepfakes demands effective approaches that can detect perceptually convincing forged images. In this paper, we aim to capture the subtle manipulation artifacts at different scales using transformer models. In particular, we introduce a Multi-modal Multi-scale TRansformer (M2TR), which operates on patches of different sizes to detect local inconsistencies in images at different spatial levels. M2TR further learns to detect forgery artifacts in the frequency domain to complement RGB information through a carefully designed cross modality fusion block. In addition, to stimulate Deepfake detection research, we introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods. We conduct extensive experiments to verify the effectiveness of the proposed method, which outperforms state-of-the-art Deepfake detection methods by clear margins.
Identity-Aware Vision-Language Model for Explainable Face Forgery Detection
Recent advances in generative artificial intelligence have enabled the creation of highly realistic image forgeries, raising significant concerns about digital media authenticity. While existing detection methods demonstrate promising results on benchmark datasets, they face critical limitations in real-world applications. First, existing detectors typically fail to detect semantic inconsistencies with the person's identity, such as implausible behaviors or incompatible environmental contexts in given images. Second, these methods rely heavily on low-level visual cues, making them effective for known forgeries but less reliable against new or unseen manipulation techniques. To address these challenges, we present a novel personalized vision-language model (VLM) that integrates low-level visual artifact analysis and high-level semantic inconsistency detection. Unlike previous VLM-based methods, our approach avoids resource-intensive supervised fine-tuning that often struggles to preserve distinct identity characteristics. Instead, we employ a lightweight method that dynamically encodes identity-specific information into specialized identifier tokens. This design enables the model to learn distinct identity characteristics while maintaining robust generalization capabilities. We further enhance detection capabilities through a lightweight detection adapter that extracts fine-grained information from shallow features of the vision encoder, preserving critical low-level evidence. Comprehensive experiments demonstrate that our approach achieves 94.25% accuracy and 94.08% F1 score, outperforming both traditional forgery detectors and general VLMs while requiring only 10 extra tokens.
Rethinking Vision-Language Model in Face Forensics: Multi-Modal Interpretable Forged Face Detector
Deepfake detection is a long-established research topic vital for mitigating the spread of malicious misinformation. Unlike prior methods that provide either binary classification results or textual explanations separately, we introduce a novel method capable of generating both simultaneously. Our method harnesses the multi-modal learning capability of the pre-trained CLIP and the unprecedented interpretability of large language models (LLMs) to enhance both the generalization and explainability of deepfake detection. Specifically, we introduce a multi-modal face forgery detector (M2F2-Det) that employs tailored face forgery prompt learning, incorporating the pre-trained CLIP to improve generalization to unseen forgeries. Also, M2F2-Det incorporates an LLM to provide detailed textual explanations of its detection decisions, enhancing interpretability by bridging the gap between natural language and subtle cues of facial forgeries. Empirically, we evaluate M2F2-Det on both detection and explanation generation tasks, where it achieves state-of-the-art performance, demonstrating its effectiveness in identifying and explaining diverse forgeries.
Can GPT tell us why these images are synthesized? Empowering Multimodal Large Language Models for Forensics
The rapid development of generative AI facilitates content creation and makes image manipulation easier and more difficult to detect. While multimodal Large Language Models (LLMs) have encoded rich world knowledge, they are not inherently tailored for combating AI-generated Content (AIGC) and struggle to comprehend local forgery details. In this work, we investigate the application of multimodal LLMs in forgery detection. We propose a framework capable of evaluating image authenticity, localizing tampered regions, providing evidence, and tracing generation methods based on semantic tampering clues. Our method demonstrates that the potential of LLMs in forgery analysis can be effectively unlocked through meticulous prompt engineering and the application of few-shot learning techniques. We conduct qualitative and quantitative experiments and show that GPT4V can achieve an accuracy of 92.1% in Autosplice and 86.3% in LaMa, which is competitive with state-of-the-art AIGC detection methods. We further discuss the limitations of multimodal LLMs in such tasks and propose potential improvements.
Fooling Contrastive Language-Image Pre-trained Models with CLIPMasterPrints
Models leveraging both visual and textual data such as Contrastive Language-Image Pre-training (CLIP), are the backbone of many recent advances in artificial intelligence. In this work, we show that despite their versatility, such models are vulnerable to what we refer to as fooling master images. Fooling master images are capable of maximizing the confidence score of a CLIP model for a significant number of widely varying prompts, while being either unrecognizable or unrelated to the attacked prompts for humans. The existence of such images is problematic as it could be used by bad actors to maliciously interfere with CLIP-trained image retrieval models in production with comparably small effort as a single image can attack many different prompts. We demonstrate how fooling master images for CLIP (CLIPMasterPrints) can be mined using stochastic gradient descent, projected gradient descent, or blackbox optimization. Contrary to many common adversarial attacks, the blackbox optimization approach allows us to mine CLIPMasterPrints even when the weights of the model are not accessible. We investigate the properties of the mined images, and find that images trained on a small number of image captions generalize to a much larger number of semantically related captions. We evaluate possible mitigation strategies, where we increase the robustness of the model and introduce an approach to automatically detect CLIPMasterPrints to sanitize the input of vulnerable models. Finally, we find that vulnerability to CLIPMasterPrints is related to a modality gap in contrastive pre-trained multi-modal networks. Code available at https://github.com/matfrei/CLIPMasterPrints.
Detecting and Grounding Multi-Modal Media Manipulation
Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various deepfake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM^4). DGM^4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content (i.e., image bounding boxes and text tokens), which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM^4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning, and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. Finally, we build an extensive benchmark and set up rigorous evaluation metrics for this new research problem. Comprehensive experiments demonstrate the superiority of our model; several valuable observations are also revealed to facilitate future research in multi-modal media manipulation.
The Tug-of-War Between Deepfake Generation and Detection
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio that offers exciting possibilities but also serious risks. Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse in spreading misinformation and creating fraudulent content. This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures against potential abuses. We provide a comprehensive overview of current deepfake generation techniques, including face swapping, reenactment, and audio-driven animation, which leverage cutting-edge technologies like GANs and diffusion models to produce highly realistic fake videos. Additionally, we analyze various detection approaches designed to differentiate authentic from altered videos, from detecting visual artifacts to deploying advanced algorithms that pinpoint inconsistencies across video and audio signals. The effectiveness of these detection methods heavily relies on the diversity and quality of datasets used for training and evaluation. We discuss the evolution of deepfake datasets, highlighting the importance of robust, diverse, and frequently updated collections to enhance the detection accuracy and generalizability. As deepfakes become increasingly indistinguishable from authentic content, developing advanced detection techniques that can keep pace with generation technologies is crucial. We advocate for a proactive approach in the "tug-of-war" between deepfake creators and detectors, emphasizing the need for continuous research collaboration, standardization of evaluation metrics, and the creation of comprehensive benchmarks.
FaceForensics++: Learning to Detect Manipulated Facial Images
The rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans. To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection. In particular, the benchmark is based on DeepFakes, Face2Face, FaceSwap and NeuralTextures as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domainspecific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.
DADM: Dual Alignment of Domain and Modality for Face Anti-spoofing
With the availability of diverse sensor modalities (i.e., RGB, Depth, Infrared) and the success of multi-modal learning, multi-modal face anti-spoofing (FAS) has emerged as a prominent research focus. The intuition behind it is that leveraging multiple modalities can uncover more intrinsic spoofing traces. However, this approach presents more risk of misalignment. We identify two main types of misalignment: (1) Intra-domain modality misalignment, where the importance of each modality varies across different attacks. For instance, certain modalities (e.g., Depth) may be non-defensive against specific attacks (e.g., 3D mask), indicating that each modality has unique strengths and weaknesses in countering particular attacks. Consequently, simple fusion strategies may fall short. (2) Inter-domain modality misalignment, where the introduction of additional modalities exacerbates domain shifts, potentially overshadowing the benefits of complementary fusion. To tackle (1), we propose a alignment module between modalities based on mutual information, which adaptively enhances favorable modalities while suppressing unfavorable ones. To address (2), we employ a dual alignment optimization method that aligns both sub-domain hyperplanes and modality angle margins, thereby mitigating domain gaps. Our method, dubbed Dual Alignment of Domain and Modality (DADM), achieves state-of-the-art performance in extensive experiments across four challenging protocols demonstrating its robustness in multi-modal domain generalization scenarios. The codes will be released soon.
Local Relation Learning for Face Forgery Detection
With the rapid development of facial manipulation techniques, face forgery detection has received considerable attention in digital media forensics due to security concerns. Most existing methods formulate face forgery detection as a classification problem and utilize binary labels or manipulated region masks as supervision. However, without considering the correlation between local regions, these global supervisions are insufficient to learn a generalized feature and prone to overfitting. To address this issue, we propose a novel perspective of face forgery detection via local relation learning. Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which measures the similarity between features of local regions and forms a robust and generalized similarity pattern. Moreover, we propose an RGB-Frequency Attention Module (RFAM) to fuse information in both RGB and frequency domains for more comprehensive local feature representation, which further improves the reliability of the similarity pattern. Extensive experiments show that the proposed method consistently outperforms the state-of-the-arts on widely-used benchmarks. Furthermore, detailed visualization shows the robustness and interpretability of our method.
Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.
ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization
Multimodal Large Language Models (MLLMs), such as GPT4o, have shown strong capabilities in visual reasoning and explanation generation. However, despite these strengths, they face significant challenges in the increasingly critical task of Image Forgery Detection and Localization (IFDL). Moreover, existing IFDL methods are typically limited to the learning of low-level semantic-agnostic clues and merely provide a single outcome judgment. To tackle these issues, we propose ForgeryGPT, a novel framework that advances the IFDL task by capturing high-order forensics knowledge correlations of forged images from diverse linguistic feature spaces, while enabling explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture. Specifically, ForgeryGPT enhances traditional LLMs by integrating the Mask-Aware Forgery Extractor, which enables the excavating of precise forgery mask information from input images and facilitating pixel-level understanding of tampering artifacts. The Mask-Aware Forgery Extractor consists of a Forgery Localization Expert (FL-Expert) and a Mask Encoder, where the FL-Expert is augmented with an Object-agnostic Forgery Prompt and a Vocabulary-enhanced Vision Encoder, allowing for effectively capturing of multi-scale fine-grained forgery details. To enhance its performance, we implement a three-stage training strategy, supported by our designed Mask-Text Alignment and IFDL Task-Specific Instruction Tuning datasets, which align vision-language modalities and improve forgery detection and instruction-following capabilities. Extensive experiments demonstrate the effectiveness of the proposed method.
Cross-Modal Attribute Insertions for Assessing the Robustness of Vision-and-Language Learning
The robustness of multimodal deep learning models to realistic changes in the input text is critical for their applicability to important tasks such as text-to-image retrieval and cross-modal entailment. To measure robustness, several existing approaches edit the text data, but do so without leveraging the cross-modal information present in multimodal data. Information from the visual modality, such as color, size, and shape, provide additional attributes that users can include in their inputs. Thus, we propose cross-modal attribute insertions as a realistic perturbation strategy for vision-and-language data that inserts visual attributes of the objects in the image into the corresponding text (e.g., "girl on a chair" to "little girl on a wooden chair"). Our proposed approach for cross-modal attribute insertions is modular, controllable, and task-agnostic. We find that augmenting input text using cross-modal insertions causes state-of-the-art approaches for text-to-image retrieval and cross-modal entailment to perform poorly, resulting in relative drops of 15% in MRR and 20% in F_1 score, respectively. Crowd-sourced annotations demonstrate that cross-modal insertions lead to higher quality augmentations for multimodal data than augmentations using text-only data, and are equivalent in quality to original examples. We release the code to encourage robustness evaluations of deep vision-and-language models: https://github.com/claws-lab/multimodal-robustness-xmai.
Locate and Verify: A Two-Stream Network for Improved Deepfake Detection
Deepfake has taken the world by storm, triggering a trust crisis. Current deepfake detection methods are typically inadequate in generalizability, with a tendency to overfit to image contents such as the background, which are frequently occurring but relatively unimportant in the training dataset. Furthermore, current methods heavily rely on a few dominant forgery regions and may ignore other equally important regions, leading to inadequate uncovering of forgery cues. In this paper, we strive to address these shortcomings from three aspects: (1) We propose an innovative two-stream network that effectively enlarges the potential regions from which the model extracts forgery evidence. (2) We devise three functional modules to handle the multi-stream and multi-scale features in a collaborative learning scheme. (3) Confronted with the challenge of obtaining forgery annotations, we propose a Semi-supervised Patch Similarity Learning strategy to estimate patch-level forged location annotations. Empirically, our method demonstrates significantly improved robustness and generalizability, outperforming previous methods on six benchmarks, and improving the frame-level AUC on Deepfake Detection Challenge preview dataset from 0.797 to 0.835 and video-level AUC on CelebDF_v1 dataset from 0.811 to 0.847. Our implementation is available at https://github.com/sccsok/Locate-and-Verify.
SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper under https://huggingface.co/datasets/BLISS-e-V/SCAM, along with the code for evaluations at https://github.com/Bliss-e-V/SCAM.
On Learning Multi-Modal Forgery Representation for Diffusion Generated Video Detection
Large numbers of synthesized videos from diffusion models pose threats to information security and authenticity, leading to an increasing demand for generated content detection. However, existing video-level detection algorithms primarily focus on detecting facial forgeries and often fail to identify diffusion-generated content with a diverse range of semantics. To advance the field of video forensics, we propose an innovative algorithm named Multi-Modal Detection(MM-Det) for detecting diffusion-generated videos. MM-Det utilizes the profound perceptual and comprehensive abilities of Large Multi-modal Models (LMMs) by generating a Multi-Modal Forgery Representation (MMFR) from LMM's multi-modal space, enhancing its ability to detect unseen forgery content. Besides, MM-Det leverages an In-and-Across Frame Attention (IAFA) mechanism for feature augmentation in the spatio-temporal domain. A dynamic fusion strategy helps refine forgery representations for the fusion. Moreover, we construct a comprehensive diffusion video dataset, called Diffusion Video Forensics (DVF), across a wide range of forgery videos. MM-Det achieves state-of-the-art performance in DVF, demonstrating the effectiveness of our algorithm. Both source code and DVF are available at https://github.com/SparkleXFantasy/MM-Det.
ED^4: Explicit Data-level Debiasing for Deepfake Detection
Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED^4, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED^4 is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce BR-Gen, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose NFA-ViT, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, i.e., potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
As Good As A Coin Toss: Human detection of AI-generated images, videos, audio, and audiovisual stimuli
As synthetic media becomes progressively more realistic and barriers to using it continue to lower, the technology has been increasingly utilized for malicious purposes, from financial fraud to nonconsensual pornography. Today, the principal defense against being misled by synthetic media relies on the ability of the human observer to visually and auditorily discern between real and fake. However, it remains unclear just how vulnerable people actually are to deceptive synthetic media in the course of their day to day lives. We conducted a perceptual study with 1276 participants to assess how accurate people were at distinguishing synthetic images, audio only, video only, and audiovisual stimuli from authentic. To reflect the circumstances under which people would likely encounter synthetic media in the wild, testing conditions and stimuli emulated a typical online platform, while all synthetic media used in the survey was sourced from publicly accessible generative AI technology. We find that overall, participants struggled to meaningfully discern between synthetic and authentic content. We also find that detection performance worsens when the stimuli contains synthetic content as compared to authentic content, images featuring human faces as compared to non face objects, a single modality as compared to multimodal stimuli, mixed authenticity as compared to being fully synthetic for audiovisual stimuli, and features foreign languages as compared to languages the observer is fluent in. Finally, we also find that prior knowledge of synthetic media does not meaningfully impact their detection performance. Collectively, these results indicate that people are highly susceptible to being tricked by synthetic media in their daily lives and that human perceptual detection capabilities can no longer be relied upon as an effective counterdefense.
FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models
The rapid development of generative AI is a double-edged sword, which not only facilitates content creation but also makes image manipulation easier and more difficult to detect. Although current image forgery detection and localization (IFDL) methods are generally effective, they tend to face two challenges: 1) black-box nature with unknown detection principle, 2) limited generalization across diverse tampering methods (e.g., Photoshop, DeepFake, AIGC-Editing). To address these issues, we propose the explainable IFDL task and design FakeShield, a multi-modal framework capable of evaluating image authenticity, generating tampered region masks, and providing a judgment basis based on pixel-level and image-level tampering clues. Additionally, we leverage GPT-4o to enhance existing IFDL datasets, creating the Multi-Modal Tamper Description dataSet (MMTD-Set) for training FakeShield's tampering analysis capabilities. Meanwhile, we incorporate a Domain Tag-guided Explainable Forgery Detection Module (DTE-FDM) and a Multi-modal Forgery Localization Module (MFLM) to address various types of tamper detection interpretation and achieve forgery localization guided by detailed textual descriptions. Extensive experiments demonstrate that FakeShield effectively detects and localizes various tampering techniques, offering an explainable and superior solution compared to previous IFDL methods.
TUNI: A Textual Unimodal Detector for Identity Inference in CLIP Models
The widespread usage of large-scale multimodal models like CLIP has heightened concerns about the leakage of PII. Existing methods for identity inference in CLIP models require querying the model with full PII, including textual descriptions of the person and corresponding images (e.g., the name and the face photo of the person). However, applying images may risk exposing personal information to target models, as the image might not have been previously encountered by the target model. Additionally, previous MIAs train shadow models to mimic the behaviors of the target model, which incurs high computational costs, especially for large CLIP models. To address these challenges, we propose a textual unimodal detector (TUNI) in CLIP models, a novel technique for identity inference that: 1) only utilizes text data to query the target model; and 2) eliminates the need for training shadow models. Extensive experiments of TUNI across various CLIP model architectures and datasets demonstrate its superior performance over baselines, albeit with only text data.
Toward Real Text Manipulation Detection: New Dataset and New Solution
With the surge in realistic text tampering, detecting fraudulent text in images has gained prominence for maintaining information security. However, the high costs associated with professional text manipulation and annotation limit the availability of real-world datasets, with most relying on synthetic tampering, which inadequately replicates real-world tampering attributes. To address this issue, we present the Real Text Manipulation (RTM) dataset, encompassing 14,250 text images, which include 5,986 manually and 5,258 automatically tampered images, created using a variety of techniques, alongside 3,006 unaltered text images for evaluating solution stability. Our evaluations indicate that existing methods falter in text forgery detection on the RTM dataset. We propose a robust baseline solution featuring a Consistency-aware Aggregation Hub and a Gated Cross Neighborhood-attention Fusion module for efficient multi-modal information fusion, supplemented by a Tampered-Authentic Contrastive Learning module during training, enriching feature representation distinction. This framework, extendable to other dual-stream architectures, demonstrated notable localization performance improvements of 7.33% and 6.38% on manual and overall manipulations, respectively. Our contributions aim to propel advancements in real-world text tampering detection. Code and dataset will be made available at https://github.com/DrLuo/RTM
Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method
In recent years, deep learning has greatly streamlined the process of generating realistic fake face images. Aware of the dangers, researchers have developed various tools to spot these counterfeits. Yet none asked the fundamental question: What digital manipulations make a real photographic face image fake, while others do not? In this paper, we put face forgery in a semantic context and define that computational methods that alter semantic face attributes to exceed human discrimination thresholds are sources of face forgery. Guided by our new definition, we construct a large face forgery image dataset, where each image is associated with a set of labels organized in a hierarchical graph. Our dataset enables two new testing protocols to probe the generalization of face forgery detectors. Moreover, we propose a semantics-oriented face forgery detection method that captures label relations and prioritizes the primary task (\ie, real or fake face detection). We show that the proposed dataset successfully exposes the weaknesses of current detectors as the test set and consistently improves their generalizability as the training set. Additionally, we demonstrate the superiority of our semantics-oriented method over traditional binary and multi-class classification-based detectors.
Unraveling Hidden Representations: A Multi-Modal Layer Analysis for Better Synthetic Content Forensics
Generative models achieve remarkable results in multiple data domains, including images and texts, among other examples. Unfortunately, malicious users exploit synthetic media for spreading misinformation and disseminating deepfakes. Consequently, the need for robust and stable fake detectors is pressing, especially when new generative models appear everyday. While the majority of existing work train classifiers that discriminate between real and fake information, such tools typically generalize only within the same family of generators and data modalities, yielding poor results on other generative classes and data domains. Towards a universal classifier, we propose the use of large pre-trained multi-modal models for the detection of generative content. Effectively, we show that the latent code of these models naturally captures information discriminating real from fake. Building on this observation, we demonstrate that linear classifiers trained on these features can achieve state-of-the-art results across various modalities, while remaining computationally efficient, fast to train, and effective even in few-shot settings. Our work primarily focuses on fake detection in audio and images, achieving performance that surpasses or matches that of strong baseline methods.
Combating Online Misinformation Videos: Characterization, Detection, and Future Directions
With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.
HintsOfTruth: A Multimodal Checkworthiness Detection Dataset with Real and Synthetic Claims
Misinformation can be countered with fact-checking, but the process is costly and slow. Identifying checkworthy claims is the first step, where automation can help scale fact-checkers' efforts. However, detection methods struggle with content that is 1) multimodal, 2) from diverse domains, and 3) synthetic. We introduce HintsOfTruth, a public dataset for multimodal checkworthiness detection with 27K real-world and synthetic image/claim pairs. The mix of real and synthetic data makes this dataset unique and ideal for benchmarking detection methods. We compare fine-tuned and prompted Large Language Models (LLMs). We find that well-configured lightweight text-based encoders perform comparably to multimodal models but the first only focus on identifying non-claim-like content. Multimodal LLMs can be more accurate but come at a significant computational cost, making them impractical for large-scale applications. When faced with synthetic data, multimodal models perform more robustly
ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis
The rapid progress of photorealistic synthesis techniques has reached at a critical point where the boundary between real and manipulated images starts to blur. Thus, benchmarking and advancing digital forgery analysis have become a pressing issue. However, existing face forgery datasets either have limited diversity or only support coarse-grained analysis. To counter this emerging threat, we construct the ForgeryNet dataset, an extremely large face forgery dataset with unified annotations in image- and video-level data across four tasks: 1) Image Forgery Classification, including two-way (real / fake), three-way (real / fake with identity-replaced forgery approaches / fake with identity-remained forgery approaches), and n-way (real and 15 respective forgery approaches) classification. 2) Spatial Forgery Localization, which segments the manipulated area of fake images compared to their corresponding source real images. 3) Video Forgery Classification, which re-defines the video-level forgery classification with manipulated frames in random positions. This task is important because attackers in real world are free to manipulate any target frame. and 4) Temporal Forgery Localization, to localize the temporal segments which are manipulated. ForgeryNet is by far the largest publicly available deep face forgery dataset in terms of data-scale (2.9 million images, 221,247 videos), manipulations (7 image-level approaches, 8 video-level approaches), perturbations (36 independent and more mixed perturbations) and annotations (6.3 million classification labels, 2.9 million manipulated area annotations and 221,247 temporal forgery segment labels). We perform extensive benchmarking and studies of existing face forensics methods and obtain several valuable observations.
Exploring Typographic Visual Prompts Injection Threats in Cross-Modality Generation Models
Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-vision, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), tasks have attracted significant attention. Large Vision Language Models (LVLMs) and I2I GMs are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to generate disruptive outputs semantically related to those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of VLP tasks when injected into images. In this paper, we comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs. To better observe performance modifications and characteristics of this threat, we also introduce the TVPI Dataset. Through extensive explorations, we deepen the understanding of the underlying causes of the TVPI threat in various GMs and offer valuable insights into its potential origins.
Logically at Factify 2: A Multi-Modal Fact Checking System Based on Evidence Retrieval techniques and Transformer Encoder Architecture
In this paper, we present the Logically submissions to De-Factify 2 challenge (DE-FACTIFY 2023) on the task 1 of Multi-Modal Fact Checking. We describes our submissions to this challenge including explored evidence retrieval and selection techniques, pre-trained cross-modal and unimodal models, and a cross-modal veracity model based on the well established Transformer Encoder (TE) architecture which is heavily relies on the concept of self-attention. Exploratory analysis is also conducted on this Factify 2 data set that uncovers the salient multi-modal patterns and hypothesis motivating the architecture proposed in this work. A series of preliminary experiments were done to investigate and benchmarking different pre-trained embedding models, evidence retrieval settings and thresholds. The final system, a standard two-stage evidence based veracity detection system, yields weighted avg. 0.79 on both val set and final blind test set on the task 1, which achieves 3rd place with a small margin to the top performing system on the leaderboard among 9 participants.
AvatarShield: Visual Reinforcement Learning for Human-Centric Video Forgery Detection
The rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, particularly in video generation, has led to unprecedented creative capabilities but also increased threats to information integrity, identity security, and public trust. Existing detection methods, while effective in general scenarios, lack robust solutions for human-centric videos, which pose greater risks due to their realism and potential for legal and ethical misuse. Moreover, current detection approaches often suffer from poor generalization, limited scalability, and reliance on labor-intensive supervised fine-tuning. To address these challenges, we propose AvatarShield, the first interpretable MLLM-based framework for detecting human-centric fake videos, enhanced via Group Relative Policy Optimization (GRPO). Through our carefully designed accuracy detection reward and temporal compensation reward, it effectively avoids the use of high-cost text annotation data, enabling precise temporal modeling and forgery detection. Meanwhile, we design a dual-encoder architecture, combining high-level semantic reasoning and low-level artifact amplification to guide MLLMs in effective forgery detection. We further collect FakeHumanVid, a large-scale human-centric video benchmark that includes synthesis methods guided by pose, audio, and text inputs, enabling rigorous evaluation of detection methods in real-world scenes. Extensive experiments show that AvatarShield significantly outperforms existing approaches in both in-domain and cross-domain detection, setting a new standard for human-centric video forensics.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues
Recently, fake news with text and images have achieved more effective diffusion than text-only fake news, raising a severe issue of multimodal fake news detection. Current studies on this issue have made significant contributions to developing multimodal models, but they are defective in modeling the multimodal content sufficiently. Most of them only preliminarily model the basic semantics of the images as a supplement to the text, which limits their performance on detection. In this paper, we find three valuable text-image correlations in multimodal fake news: entity inconsistency, mutual enhancement, and text complementation. To effectively capture these multimodal clues, we innovatively extract visual entities (such as celebrities and landmarks) to understand the news-related high-level semantics of images, and then model the multimodal entity inconsistency and mutual enhancement with the help of visual entities. Moreover, we extract the embedded text in images as the complementation of the original text. All things considered, we propose a novel entity-enhanced multimodal fusion framework, which simultaneously models three cross-modal correlations to detect diverse multimodal fake news. Extensive experiments demonstrate the superiority of our model compared to the state of the art.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
A Large-scale AI-generated Image Inpainting Benchmark
Recent advances in generative models enable highly realistic image manipulations, creating an urgent need for robust forgery detection methods. Current datasets for training and evaluating these methods are limited in scale and diversity. To address this, we propose a methodology for creating high-quality inpainting datasets and apply it to create DiQuID, comprising over 95,000 inpainted images generated from 78,000 original images sourced from MS-COCO, RAISE, and OpenImages. Our methodology consists of three components: (1) Semantically Aligned Object Replacement (SAOR) that identifies suitable objects through instance segmentation and generates contextually appropriate prompts, (2) Multiple Model Image Inpainting (MMII) that employs various state-of-the-art inpainting pipelines primarily based on diffusion models to create diverse manipulations, and (3) Uncertainty-Guided Deceptiveness Assessment (UGDA) that evaluates image realism through comparative analysis with originals. The resulting dataset surpasses existing ones in diversity, aesthetic quality, and technical quality. We provide comprehensive benchmarking results using state-of-the-art forgery detection methods, demonstrating the dataset's effectiveness in evaluating and improving detection algorithms. Through a human study with 42 participants on 1,000 images, we show that while humans struggle with images classified as deceiving by our methodology, models trained on our dataset maintain high performance on these challenging cases. Code and dataset are available at https://github.com/mever-team/DiQuID.
On the Role of Images for Analyzing Claims in Social Media
Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models
With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification with Cross-Modal Retrieval
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability, namely image classification using novel text labels. Existing works have attempted to enhance CLIP by fine-tuning on downstream tasks, but these have inadvertently led to performance degradation on unseen classes, thus harming zero-shot generalization. This paper aims to address this challenge by leveraging readily available image-text pairs from an external dataset for cross-modal guidance during inference. To this end, we propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble. Given a query image, we harness the power of CLIP's cross-modal representations to retrieve relevant textual information from an external image-text pair dataset. Then, we assign higher weights to the more reliable modality between the original query image and retrieved text, contributing to the final prediction. X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training, showcasing the effectiveness of utilizing cross-modal features to maximize CLIP's zero-shot ability.
TruFor: Leveraging all-round clues for trustworthy image forgery detection and localization
In this paper we present TruFor, a forensic framework that can be applied to a large variety of image manipulation methods, from classic cheapfakes to more recent manipulations based on deep learning. We rely on the extraction of both high-level and low-level traces through a transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive fingerprint. The latter learns to embed the artifacts related to the camera internal and external processing by training only on real data in a self-supervised manner. Forgeries are detected as deviations from the expected regular pattern that characterizes each pristine image. Looking for anomalies makes the approach able to robustly detect a variety of local manipulations, ensuring generalization. In addition to a pixel-level localization map and a whole-image integrity score, our approach outputs a reliability map that highlights areas where localization predictions may be error-prone. This is particularly important in forensic applications in order to reduce false alarms and allow for a large scale analysis. Extensive experiments on several datasets show that our method is able to reliably detect and localize both cheapfakes and deepfakes manipulations outperforming state-of-the-art works. Code is publicly available at https://grip-unina.github.io/TruFor/
VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces
Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we show that this is due to video coding, which introduces local variation into forensic traces. In response, we propose VideoFACT - a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to control for variation in forensic traces introduced by video coding, and a deep self-attention mechanism to estimate the quality and relative importance of local forensic embeddings. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, we show that our network can be fine-tuned to achieve even stronger performance on challenging AI-based manipulations.
Controllable Guide-Space for Generalizable Face Forgery Detection
Recent studies on face forgery detection have shown satisfactory performance for methods involved in training datasets, but are not ideal enough for unknown domains. This motivates many works to improve the generalization, but forgery-irrelevant information, such as image background and identity, still exists in different domain features and causes unexpected clustering, limiting the generalization. In this paper, we propose a controllable guide-space (GS) method to enhance the discrimination of different forgery domains, so as to increase the forgery relevance of features and thereby improve the generalization. The well-designed guide-space can simultaneously achieve both the proper separation of forgery domains and the large distance between real-forgery domains in an explicit and controllable manner. Moreover, for better discrimination, we use a decoupling module to weaken the interference of forgery-irrelevant correlations between domains. Furthermore, we make adjustments to the decision boundary manifold according to the clustering degree of the same domain features within the neighborhood. Extensive experiments in multiple in-domain and cross-domain settings confirm that our method can achieve state-of-the-art generalization.
GM-DF: Generalized Multi-Scenario Deepfake Detection
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets. We first find a rapid degradation of detection accuracy when models are directly trained on combined datasets due to the discrepancy across collection scenarios and generation methods. To address the above issue, a Generalized Multi-Scenario Deepfake Detection framework (GM-DF) is proposed to serve multiple real-world scenarios by a unified model. First, we propose a hybrid expert modeling approach for domain-specific real/forgery feature extraction. Besides, as for the commonality representation, we use CLIP to extract the common features for better aligning visual and textual features across domains. Meanwhile, we introduce a masked image reconstruction mechanism to force models to capture rich forged details. Finally, we supervise the models via a domain-aware meta-learning strategy to further enhance their generalization capacities. Specifically, we design a novel domain alignment loss to strongly align the distributions of the meta-test domains and meta-train domains. Thus, the updated models are able to represent both specific and common real/forgery features across multiple datasets. In consideration of the lack of study of multi-dataset training, we establish a new benchmark leveraging multi-source data to fairly evaluate the models' generalization capacity on unseen scenarios. Both qualitative and quantitative experiments on five datasets conducted on traditional protocols as well as the proposed benchmark demonstrate the effectiveness of our approach.
Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.
AEGIS: Authenticity Evaluation Benchmark for AI-Generated Video Sequences
Recent advances in AI-generated content have fueled the rise of highly realistic synthetic videos, posing severe risks to societal trust and digital integrity. Existing benchmarks for video authenticity detection typically suffer from limited realism, insufficient scale, and inadequate complexity, failing to effectively evaluate modern vision-language models against sophisticated forgeries. To address this critical gap, we introduce AEGIS, a novel large-scale benchmark explicitly targeting the detection of hyper-realistic and semantically nuanced AI-generated videos. AEGIS comprises over 10,000 rigorously curated real and synthetic videos generated by diverse, state-of-the-art generative models, including Stable Video Diffusion, CogVideoX-5B, KLing, and Sora, encompassing open-source and proprietary architectures. In particular, AEGIS features specially constructed challenging subsets enhanced with robustness evaluation. Furthermore, we provide multimodal annotations spanning Semantic-Authenticity Descriptions, Motion Features, and Low-level Visual Features, facilitating authenticity detection and supporting downstream tasks such as multimodal fusion and forgery localization. Extensive experiments using advanced vision-language models demonstrate limited detection capabilities on the most challenging subsets of AEGIS, highlighting the dataset's unique complexity and realism beyond the current generalization capabilities of existing models. In essence, AEGIS establishes an indispensable evaluation benchmark, fundamentally advancing research toward developing genuinely robust, reliable, broadly generalizable video authenticity detection methodologies capable of addressing real-world forgery threats. Our dataset is available on https://huggingface.co/datasets/Clarifiedfish/AEGIS.
Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization
Due to its high societal impact, deepfake detection is getting active attention in the computer vision community. Most deepfake detection methods rely on identity, facial attributes, and adversarial perturbation-based spatio-temporal modifications at the whole video or random locations while keeping the meaning of the content intact. However, a sophisticated deepfake may contain only a small segment of video/audio manipulation, through which the meaning of the content can be, for example, completely inverted from a sentiment perspective. We introduce a content-driven audio-visual deepfake dataset, termed Localized Audio Visual DeepFake (LAV-DF), explicitly designed for the task of learning temporal forgery localization. Specifically, the content-driven audio-visual manipulations are performed strategically to change the sentiment polarity of the whole video. Our baseline method for benchmarking the proposed dataset is a 3DCNN model, termed as Boundary Aware Temporal Forgery Detection (BA-TFD), which is guided via contrastive, boundary matching, and frame classification loss functions. Our extensive quantitative and qualitative analysis demonstrates the proposed method's strong performance for temporal forgery localization and deepfake detection tasks.
What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Noise-free Text-Image Corruption and Evaluation
Vision-Language Models (VLMs) have gained community-spanning prominence due to their ability to integrate visual and textual inputs to perform complex tasks. Despite their success, the internal decision-making processes of these models remain opaque, posing challenges in high-stakes applications. To address this, we introduce NOTICE, the first Noise-free Text-Image Corruption and Evaluation pipeline for mechanistic interpretability in VLMs. NOTICE incorporates a Semantic Minimal Pairs (SMP) framework for image corruption and Symmetric Token Replacement (STR) for text. This approach enables semantically meaningful causal mediation analysis for both modalities, providing a robust method for analyzing multimodal integration within models like BLIP. Our experiments on the SVO-Probes, MIT-States, and Facial Expression Recognition datasets reveal crucial insights into VLM decision-making, identifying the significant role of middle-layer cross-attention heads. Further, we uncover a set of ``universal cross-attention heads'' that consistently contribute across tasks and modalities, each performing distinct functions such as implicit image segmentation, object inhibition, and outlier inhibition. This work paves the way for more transparent and interpretable multimodal systems.
MINIMA: Modality Invariant Image Matching
Image matching for both cross-view and cross-modality plays a critical role in multimodal perception. In practice, the modality gap caused by different imaging systems/styles poses great challenges to the matching task. Existing works try to extract invariant features for specific modalities and train on limited datasets, showing poor generalization. In this paper, we present MINIMA, a unified image matching framework for multiple cross-modal cases. Without pursuing fancy modules, our MINIMA aims to enhance universal performance from the perspective of data scaling up. For such purpose, we propose a simple yet effective data engine that can freely produce a large dataset containing multiple modalities, rich scenarios, and accurate matching labels. Specifically, we scale up the modalities from cheap but rich RGB-only matching data, by means of generative models. Under this setting, the matching labels and rich diversity of the RGB dataset are well inherited by the generated multimodal data. Benefiting from this, we construct MD-syn, a new comprehensive dataset that fills the data gap for general multimodal image matching. With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability. Extensive experiments on in-domain and zero-shot matching tasks, including 19 cross-modal cases, demonstrate that our MINIMA can significantly outperform the baselines and even surpass modality-specific methods. The dataset and code are available at https://github.com/LSXI7/MINIMA .
Counterfactual Explanations for Face Forgery Detection via Adversarial Removal of Artifacts
Highly realistic AI generated face forgeries known as deepfakes have raised serious social concerns. Although DNN-based face forgery detection models have achieved good performance, they are vulnerable to latest generative methods that have less forgery traces and adversarial attacks. This limitation of generalization and robustness hinders the credibility of detection results and requires more explanations. In this work, we provide counterfactual explanations for face forgery detection from an artifact removal perspective. Specifically, we first invert the forgery images into the StyleGAN latent space, and then adversarially optimize their latent representations with the discrimination supervision from the target detection model. We verify the effectiveness of the proposed explanations from two aspects: (1) Counterfactual Trace Visualization: the enhanced forgery images are useful to reveal artifacts by visually contrasting the original images and two different visualization methods; (2) Transferable Adversarial Attacks: the adversarial forgery images generated by attacking the detection model are able to mislead other detection models, implying the removed artifacts are general. Extensive experiments demonstrate that our method achieves over 90% attack success rate and superior attack transferability. Compared with naive adversarial noise methods, our method adopts both generative and discriminative model priors, and optimize the latent representations in a synthesis-by-analysis way, which forces the search of counterfactual explanations on the natural face manifold. Thus, more general counterfactual traces can be found and better adversarial attack transferability can be achieved.
MMFusion: Combining Image Forensic Filters for Visual Manipulation Detection and Localization
Recent image manipulation localization and detection techniques typically leverage forensic artifacts and traces that are produced by a noise-sensitive filter, such as SRM or Bayar convolution. In this paper, we showcase that different filters commonly used in such approaches excel at unveiling different types of manipulations and provide complementary forensic traces. Thus, we explore ways of combining the outputs of such filters to leverage the complementary nature of the produced artifacts for performing image manipulation localization and detection (IMLD). We assess two distinct combination methods: one that produces independent features from each forensic filter and then fuses them (this is referred to as late fusion) and one that performs early mixing of different modal outputs and produces combined features (this is referred to as early fusion). We use the latter as a feature encoding mechanism, accompanied by a new decoding mechanism that encompasses feature re-weighting, for formulating the proposed MMFusion architecture. We demonstrate that MMFusion achieves competitive performance for both image manipulation localization and detection, outperforming state-of-the-art models across several image and video datasets. We also investigate further the contribution of each forensic filter within MMFusion for addressing different types of manipulations, building on recent AI explainability measures.
Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models
The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better {bf visual} dog classifier by {bf read}ing about dogs and {bf listen}ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP are inherently cross-modal, mapping different modalities to the same representation space. Specifically, we propose a simple cross-modal adaptation approach that learns from few-shot examples spanning different modalities. By repurposing class names as additional one-shot training samples, we achieve SOTA results with an embarrassingly simple linear classifier for vision-language adaptation. Furthermore, we show that our approach can benefit existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio
Recent advancements in large multimodal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multimodal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations and findings, we suggest potential research directions that could enhance the reliability of LMMs.
DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
We present our on-going effort of constructing a large-scale benchmark for face forgery detection. The first version of this benchmark, DeeperForensics-1.0, represents the largest face forgery detection dataset by far, with 60,000 videos constituted by a total of 17.6 million frames, 10 times larger than existing datasets of the same kind. Extensive real-world perturbations are applied to obtain a more challenging benchmark of larger scale and higher diversity. All source videos in DeeperForensics-1.0 are carefully collected, and fake videos are generated by a newly proposed end-to-end face swapping framework. The quality of generated videos outperforms those in existing datasets, validated by user studies. The benchmark features a hidden test set, which contains manipulated videos achieving high deceptive scores in human evaluations. We further contribute a comprehensive study that evaluates five representative detection baselines and make a thorough analysis of different settings.
Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance. In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection: during training, models tend to quickly overfit to specific fake patterns in the training set, while other information is not adequately captured, leading to poor generalization when faced with new fake methods. A key insight is to incorporate the rich semantic knowledge embedded within large-scale vision foundation models (VFMs) to expand the previous discriminative space (based on forgery patterns only), such that the discrimination is decided by both forgery and semantic cues, thereby reducing the overfitting to specific forgery patterns. A straightforward solution is to fully fine-tune VFMs, but it risks distorting the well-learned semantic knowledge, pushing the model back toward overfitting. To this end, we design a novel approach called Effort: Efficient orthogonal modeling for generalizable AIGI detection. Specifically, we employ Singular Value Decomposition (SVD) to construct the orthogonal semantic and forgery subspaces. By freezing the principal components and adapting the residual components (sim0.19M parameters), we preserve the original semantic subspace and use its orthogonal subspace for learning forgeries. Extensive experiments on AIGI detection benchmarks demonstrate the superior effectiveness of our approach.
Audio-Visual Deception Detection: DOLOS Dataset and Parameter-Efficient Crossmodal Learning
Deception detection in conversations is a challenging yet important task, having pivotal applications in many fields such as credibility assessment in business, multimedia anti-frauds, and custom security. Despite this, deception detection research is hindered by the lack of high-quality deception datasets, as well as the difficulties of learning multimodal features effectively. To address this issue, we introduce DOLOSThe name ``DOLOS" comes from Greek mythology., the largest gameshow deception detection dataset with rich deceptive conversations. DOLOS includes 1,675 video clips featuring 213 subjects, and it has been labeled with audio-visual feature annotations. We provide train-test, duration, and gender protocols to investigate the impact of different factors. We benchmark our dataset on previously proposed deception detection approaches. To further improve the performance by fine-tuning fewer parameters, we propose Parameter-Efficient Crossmodal Learning (PECL), where a Uniform Temporal Adapter (UT-Adapter) explores temporal attention in transformer-based architectures, and a crossmodal fusion module, Plug-in Audio-Visual Fusion (PAVF), combines crossmodal information from audio-visual features. Based on the rich fine-grained audio-visual annotations on DOLOS, we also exploit multi-task learning to enhance performance by concurrently predicting deception and audio-visual features. Experimental results demonstrate the desired quality of the DOLOS dataset and the effectiveness of the PECL. The DOLOS dataset and the source codes are available at https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning/tree/main.
MesoNet: a Compact Facial Video Forgery Detection Network
This paper presents a method to automatically and efficiently detect face tampering in videos, and particularly focuses on two recent techniques used to generate hyper-realistic forged videos: Deepfake and Face2Face. Traditional image forensics techniques are usually not well suited to videos due to the compression that strongly degrades the data. Thus, this paper follows a deep learning approach and presents two networks, both with a low number of layers to focus on the mesoscopic properties of images. We evaluate those fast networks on both an existing dataset and a dataset we have constituted from online videos. The tests demonstrate a very successful detection rate with more than 98% for Deepfake and 95% for Face2Face.
UCF: Uncovering Common Features for Generalizable Deepfake Detection
Deepfake detection remains a challenging task due to the difficulty of generalizing to new types of forgeries. This problem primarily stems from the overfitting of existing detection methods to forgery-irrelevant features and method-specific patterns. The latter is often ignored by previous works. This paper presents a novel approach to address the two types of overfitting issues by uncovering common forgery features. Specifically, we first propose a disentanglement framework that decomposes image information into three distinct components: forgery-irrelevant, method-specific forgery, and common forgery features. To ensure the decoupling of method-specific and common forgery features, a multi-task learning strategy is employed, including a multi-class classification that predicts the category of the forgery method and a binary classification that distinguishes the real from the fake. Additionally, a conditional decoder is designed to utilize forgery features as a condition along with forgery-irrelevant features to generate reconstructed images. Furthermore, a contrastive regularization technique is proposed to encourage the disentanglement of the common and specific forgery features. Ultimately, we only utilize the common forgery features for the purpose of generalizable deepfake detection. Extensive evaluations demonstrate that our framework can perform superior generalization than current state-of-the-art methods.
Interpretable and Reliable Detection of AI-Generated Images via Grounded Reasoning in MLLMs
The rapid advancement of image generation technologies intensifies the demand for interpretable and robust detection methods. Although existing approaches often attain high accuracy, they typically operate as black boxes without providing human-understandable justifications. Multi-modal Large Language Models (MLLMs), while not originally intended for forgery detection, exhibit strong analytical and reasoning capabilities. When properly fine-tuned, they can effectively identify AI-generated images and offer meaningful explanations. However, existing MLLMs still struggle with hallucination and often fail to align their visual interpretations with actual image content and human reasoning. To bridge this gap, we construct a dataset of AI-generated images annotated with bounding boxes and descriptive captions that highlight synthesis artifacts, establishing a foundation for human-aligned visual-textual grounded reasoning. We then finetune MLLMs through a multi-stage optimization strategy that progressively balances the objectives of accurate detection, visual localization, and coherent textual explanation. The resulting model achieves superior performance in both detecting AI-generated images and localizing visual flaws, significantly outperforming baseline methods.
Logically at Factify 2022: Multimodal Fact Verification
This paper describes our participant system for the multi-modal fact verification (Factify) challenge at AAAI 2022. Despite the recent advance in text based verification techniques and large pre-trained multimodal models cross vision and language, very limited work has been done in applying multimodal techniques to automate fact checking process, particularly considering the increasing prevalence of claims and fake news about images and videos on social media. In our work, the challenge is treated as multimodal entailment task and framed as multi-class classification. Two baseline approaches are proposed and explored including an ensemble model (combining two uni-modal models) and a multi-modal attention network (modeling the interaction between image and text pair from claim and evidence document). We conduct several experiments investigating and benchmarking different SoTA pre-trained transformers and vision models in this work. Our best model is ranked first in leaderboard which obtains a weighted average F-measure of 0.77 on both validation and test set. Exploratory analysis of dataset is also carried out on the Factify data set and uncovers salient patterns and issues (e.g., word overlapping, visual entailment correlation, source bias) that motivates our hypothesis. Finally, we highlight challenges of the task and multimodal dataset for future research.
Multimodal Fake News Detection via CLIP-Guided Learning
Multimodal fake news detection has attracted many research interests in social forensics. Many existing approaches introduce tailored attention mechanisms to guide the fusion of unimodal features. However, how the similarity of these features is calculated and how it will affect the decision-making process in FND are still open questions. Besides, the potential of pretrained multi-modal feature learning models in fake news detection has not been well exploited. This paper proposes a FND-CLIP framework, i.e., a multimodal Fake News Detection network based on Contrastive Language-Image Pretraining (CLIP). Given a targeted multimodal news, we extract the deep representations from the image and text using a ResNet-based encoder, a BERT-based encoder and two pair-wise CLIP encoders. The multimodal feature is a concatenation of the CLIP-generated features weighted by the standardized cross-modal similarity of the two modalities. The extracted features are further processed for redundancy reduction before feeding them into the final classifier. We introduce a modality-wise attention module to adaptively reweight and aggregate the features. We have conducted extensive experiments on typical fake news datasets. The results indicate that the proposed framework has a better capability in mining crucial features for fake news detection. The proposed FND-CLIP can achieve better performances than previous works, i.e., 0.7\%, 6.8\% and 1.3\% improvements in overall accuracy on Weibo, Politifact and Gossipcop, respectively. Besides, we justify that CLIP-based learning can allow better flexibility on multimodal feature selection.
Texture, Shape, Order, and Relation Matter: A New Transformer Design for Sequential DeepFake Detection
Sequential DeepFake detection is an emerging task that predicts the manipulation sequence in order. Existing methods typically formulate it as an image-to-sequence problem, employing conventional Transformer architectures. However, these methods lack dedicated design and consequently result in limited performance. As such, this paper describes a new Transformer design, called {TSOM}, by exploring three perspectives: Texture, Shape, and Order of Manipulations. Our method features four major improvements: 182 we describe a new texture-aware branch that effectively captures subtle manipulation traces with a Diversiform Pixel Difference Attention module. 183 Then we introduce a Multi-source Cross-attention module to seek deep correlations among spatial and sequential features, enabling effective modeling of complex manipulation traces. 184 To further enhance the cross-attention, we describe a Shape-guided Gaussian mapping strategy, providing initial priors of the manipulation shape. 185 Finally, observing that the subsequent manipulation in a sequence may influence traces left in the preceding one, we intriguingly invert the prediction order from forward to backward, leading to notable gains as expected. Building upon TSOM, we introduce an extended method, {TSOM++}, which additionally explores Relation of manipulations: 186 we propose a new sequential contrastive learning scheme to capture relationships between various manipulation types in sequence, further enhancing the detection of manipulation traces. We conduct extensive experiments in comparison with several state-of-the-art methods, demonstrating the superiority of our method. The code has been released at https://github.com/OUC-VAS/TSOM.
SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model
The rapid advancement of generative models in creating highly realistic images poses substantial risks for misinformation dissemination. For instance, a synthetic image, when shared on social media, can mislead extensive audiences and erode trust in digital content, resulting in severe repercussions. Despite some progress, academia has not yet created a large and diversified deepfake detection dataset for social media, nor has it devised an effective solution to address this issue. In this paper, we introduce the Social media Image Detection dataSet (SID-Set), which offers three key advantages: (1) extensive volume, featuring 300K AI-generated/tampered and authentic images with comprehensive annotations, (2) broad diversity, encompassing fully synthetic and tampered images across various classes, and (3) elevated realism, with images that are predominantly indistinguishable from genuine ones through mere visual inspection. Furthermore, leveraging the exceptional capabilities of large multimodal models, we propose a new image deepfake detection, localization, and explanation framework, named SIDA (Social media Image Detection, localization, and explanation Assistant). SIDA not only discerns the authenticity of images, but also delineates tampered regions through mask prediction and provides textual explanations of the model's judgment criteria. Compared with state-of-the-art deepfake detection models on SID-Set and other benchmarks, extensive experiments demonstrate that SIDA achieves superior performance among diversified settings. The code, model, and dataset will be released.
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
The free access to large-scale public databases, together with the fast progress of deep learning techniques, in particular Generative Adversarial Networks, have led to the generation of very realistic fake content with its corresponding implications towards society in this era of fake news. This survey provides a thorough review of techniques for manipulating face images including DeepFake methods, and methods to detect such manipulations. In particular, four types of facial manipulation are reviewed: i) entire face synthesis, ii) identity swap (DeepFakes), iii) attribute manipulation, and iv) expression swap. For each manipulation group, we provide details regarding manipulation techniques, existing public databases, and key benchmarks for technology evaluation of fake detection methods, including a summary of results from those evaluations. Among all the aspects discussed in the survey, we pay special attention to the latest generation of DeepFakes, highlighting its improvements and challenges for fake detection. In addition to the survey information, we also discuss open issues and future trends that should be considered to advance in the field.
LEGION: Learning to Ground and Explain for Synthetic Image Detection
The rapid advancements in generative technology have emerged as a double-edged sword. While offering powerful tools that enhance convenience, they also pose significant social concerns. As defenders, current synthetic image detection methods often lack artifact-level textual interpretability and are overly focused on image manipulation detection, and current datasets usually suffer from outdated generators and a lack of fine-grained annotations. In this paper, we introduce SynthScars, a high-quality and diverse dataset consisting of 12,236 fully synthetic images with human-expert annotations. It features 4 distinct image content types, 3 categories of artifacts, and fine-grained annotations covering pixel-level segmentation, detailed textual explanations, and artifact category labels. Furthermore, we propose LEGION (LEarning to Ground and explain for Synthetic Image detectiON), a multimodal large language model (MLLM)-based image forgery analysis framework that integrates artifact detection, segmentation, and explanation. Building upon this capability, we further explore LEGION as a controller, integrating it into image refinement pipelines to guide the generation of higher-quality and more realistic images. Extensive experiments show that LEGION outperforms existing methods across multiple benchmarks, particularly surpassing the second-best traditional expert on SynthScars by 3.31% in mIoU and 7.75% in F1 score. Moreover, the refined images generated under its guidance exhibit stronger alignment with human preferences. The code, model, and dataset will be released.
WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training
Multi-modal pre-training models have been intensively explored to bridge vision and language in recent years. However, most of them explicitly model the cross-modal interaction between image-text pairs, by assuming that there exists strong semantic correlation between the text and image modalities. Since this strong assumption is often invalid in real-world scenarios, we choose to implicitly model the cross-modal correlation for large-scale multi-modal pre-training, which is the focus of the Chinese project `WenLan' led by our team. Specifically, with the weak correlation assumption over image-text pairs, we propose a two-tower pre-training model called BriVL within the cross-modal contrastive learning framework. Unlike OpenAI CLIP that adopts a simple contrastive learning method, we devise a more advanced algorithm by adapting the latest method MoCo into the cross-modal scenario. By building a large queue-based dictionary, our BriVL can incorporate more negative samples in limited GPU resources. We further construct a large Chinese multi-source image-text dataset called RUC-CAS-WenLan for pre-training our BriVL model. Extensive experiments demonstrate that the pre-trained BriVL model outperforms both UNITER and OpenAI CLIP on various downstream tasks.
Can ChatGPT Detect DeepFakes? A Study of Using Multimodal Large Language Models for Media Forensics
DeepFakes, which refer to AI-generated media content, have become an increasing concern due to their use as a means for disinformation. Detecting DeepFakes is currently solved with programmed machine learning algorithms. In this work, we investigate the capabilities of multimodal large language models (LLMs) in DeepFake detection. We conducted qualitative and quantitative experiments to demonstrate multimodal LLMs and show that they can expose AI-generated images through careful experimental design and prompt engineering. This is interesting, considering that LLMs are not inherently tailored for media forensic tasks, and the process does not require programming. We discuss the limitations of multimodal LLMs for these tasks and suggest possible improvements.
Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection
Deepfake detection faces a critical generalization hurdle, with performance deteriorating when there is a mismatch between the distributions of training and testing data. A broadly received explanation is the tendency of these detectors to be overfitted to forgery-specific artifacts, rather than learning features that are widely applicable across various forgeries. To address this issue, we propose a simple yet effective detector called LSDA (Latent Space Data Augmentation), which is based on a heuristic idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary, thereby mitigating the overfitting of method-specific features (see Fig.~fig:toy). Following this idea, we propose to enlarge the forgery space by constructing and simulating variations within and across forgery features in the latent space. This approach encompasses the acquisition of enriched, domain-specific features and the facilitation of smoother transitions between different forgery types, effectively bridging domain gaps. Our approach culminates in refining a binary classifier that leverages the distilled knowledge from the enhanced features, striving for a generalizable deepfake detector. Comprehensive experiments show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image
This study investigates how fake news uses a thumbnail for a news article with a focus on whether a news article's thumbnail represents the news content correctly. A news article shared with an irrelevant thumbnail can mislead readers into having a wrong impression of the issue, especially in social media environments where users are less likely to click the link and consume the entire content. We propose to capture the degree of semantic incongruity in the multimodal relation by using the pretrained CLIP representation. From a source-level analysis, we found that fake news employs a more incongruous image to the main content than general news. Going further, we attempted to detect news articles with image-text incongruity. Evaluation experiments suggest that CLIP-based methods can successfully detect news articles in which the thumbnail is semantically irrelevant to news text. This study contributes to the research by providing a novel view on tackling online fake news and misinformation. Code and datasets are available at https://github.com/ssu-humane/fake-news-thumbnail.
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.
Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation
Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.
What if...?: Counterfactual Inception to Mitigate Hallucination Effects in Large Multimodal Models
This paper presents a way of enhancing the reliability of Large Multimodal Models (LMMs) in addressing hallucination effects, where models generate incorrect or unrelated responses. Without additional instruction tuning paradigm, we introduce Counterfactual Inception, a novel method that implants counterfactual thoughts into LMMs using carefully chosen, misaligned counterfactual keywords. This method is grounded in the concept of counterfactual thinking, a cognitive process where humans consider alternative realities and outcomes. By applying this human-like reasoning mechanism to LMMs, we aim to reduce hallucination effects and improve the models' trustworthiness. We also propose Dual-modality Verification Process (DVP), a rigorous framework for selecting optimal counterfactual keywords to trigger counterfactual thinking into LMMs, concurrently considering visual and linguistic context. Our extensive experiments across various LMMs, including both open-source and proprietary models, corroborate that our method significantly mitigates hallucination phenomena across different datasets.
Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, i.e., achieving aligned feature isolation. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
Learnable PINs: Cross-Modal Embeddings for Person Identity
We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.
InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
End-to-end human animation with rich multi-modal conditions, e.g., text, image and audio has achieved remarkable advancements in recent years. However, most existing methods could only animate a single subject and inject conditions in a global manner, ignoring scenarios that multiple concepts could appears in the same video with rich human-human interactions and human-object interactions. Such global assumption prevents precise and per-identity control of multiple concepts including humans and objects, therefore hinders applications. In this work, we discard the single-entity assumption and introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity's spatiotemporal footprint. Given reference images of multiple concepts, our method could automatically infer layout information by leveraging a mask predictor to match appearance cues between the denoised video and each reference appearance. Furthermore, we inject local audio condition into its corresponding region to ensure layout-aligned modality matching in a iterative manner. This design enables the high-quality generation of controllable multi-concept human-centric videos. Empirical results and ablation studies validate the effectiveness of our explicit layout control for multi-modal conditions compared to implicit counterparts and other existing methods.
TruthLens:A Training-Free Paradigm for DeepFake Detection
The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
CrossCheckGPT: Universal Hallucination Ranking for Multimodal Foundation Models
Multimodal foundation models are prone to hallucination, generating outputs that either contradict the input or are not grounded by factual information. Given the diversity in architectures, training data and instruction tuning techniques, there can be large variations in systems' susceptibility to hallucinations. To assess system hallucination robustness, hallucination ranking approaches have been developed for specific tasks such as image captioning, question answering, summarization, or biography generation. However, these approaches typically compare model outputs to gold-standard references or labels, limiting hallucination benchmarking for new domains. This work proposes "CrossCheckGPT", a reference-free universal hallucination ranking for multimodal foundation models. The core idea of CrossCheckGPT is that the same hallucinated content is unlikely to be generated by different independent systems, hence cross-system consistency can provide meaningful and accurate hallucination assessment scores. CrossCheckGPT can be applied to any model or task, provided that the information consistency between outputs can be measured through an appropriate distance metric. Focusing on multimodal large language models that generate text, we explore two information consistency measures: CrossCheck-explicit and CrossCheck-implicit. We showcase the applicability of our method for hallucination ranking across various modalities, namely the text, image, and audio-visual domains. Further, we propose the first audio-visual hallucination benchmark, "AVHalluBench", and illustrate the effectiveness of CrossCheckGPT, achieving correlations of 98% and 89% with human judgements on MHaluBench and AVHalluBench, respectively.
Discovering Clues of Spoofed LM Watermarks
LLM watermarks stand out as a promising way to attribute ownership of LLM-generated text. One threat to watermark credibility comes from spoofing attacks, where an unauthorized third party forges the watermark, enabling it to falsely attribute arbitrary texts to a particular LLM. While recent works have demonstrated that state-of-the-art schemes are in fact vulnerable to spoofing, they lack deeper qualitative analysis of the texts produced by spoofing methods. In this work, we for the first time reveal that there are observable differences between genuine and spoofed watermark texts. Namely, we show that regardless of their underlying approach, all current spoofing methods consistently leave observable artifacts in spoofed texts, indicative of watermark forgery. We build upon these findings to propose rigorous statistical tests that reliably reveal the presence of such artifacts, effectively discovering that a watermark was spoofed. Our experimental evaluation shows high test power across all current spoofing methods, providing insights into their fundamental limitations, and suggesting a way to mitigate this threat.
Social perception of faces in a vision-language model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
Can LLMs Deceive CLIP? Benchmarking Adversarial Compositionality of Pre-trained Multimodal Representation via Text Updates
While pre-trained multimodal representations (e.g., CLIP) have shown impressive capabilities, they exhibit significant compositional vulnerabilities leading to counterintuitive judgments. We introduce Multimodal Adversarial Compositionality (MAC), a benchmark that leverages large language models (LLMs) to generate deceptive text samples to exploit these vulnerabilities across different modalities and evaluates them through both sample-wise attack success rate and group-wise entropy-based diversity. To improve zero-shot methods, we propose a self-training approach that leverages rejection-sampling fine-tuning with diversity-promoting filtering, which enhances both attack success rate and sample diversity. Using smaller language models like Llama-3.1-8B, our approach demonstrates superior performance in revealing compositional vulnerabilities across various multimodal representations, including images, videos, and audios.
Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content Dilutions
As multimodal learning finds applications in a wide variety of high-stakes societal tasks, investigating their robustness becomes important. Existing work has focused on understanding the robustness of vision-and-language models to imperceptible variations on benchmark tasks. In this work, we investigate the robustness of multimodal classifiers to cross-modal dilutions - a plausible variation. We develop a model that, given a multimodal (image + text) input, generates additional dilution text that (a) maintains relevance and topical coherence with the image and existing text, and (b) when added to the original text, leads to misclassification of the multimodal input. Via experiments on Crisis Humanitarianism and Sentiment Detection tasks, we find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model. Metric-based comparisons with several baselines and human evaluations indicate that our dilutions show higher relevance and topical coherence, while simultaneously being more effective at demonstrating the brittleness of the multimodal classifiers. Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations, especially in human-facing societal applications. The code and other resources are available at https://claws-lab.github.io/multimodal-robustness/.
Adversarial Video Promotion Against Text-to-Video Retrieval
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over 30/10/4% for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning
Spurious correlations that degrade model generalization or lead the model to be right for the wrong reasons are one of the main robustness concerns for real-world deployments. However, mitigating these correlations during pre-training for large-scale models can be costly and impractical, particularly for those without access to high-performance computing resources. This paper proposes a novel approach to address spurious correlations during fine-tuning for a given domain of interest. With a focus on multi-modal models (e.g., CLIP), the proposed method leverages different modalities in these models to detect and explicitly set apart spurious attributes from the affected class, achieved through a multi-modal contrastive loss function that expresses spurious relationships through language. Our experimental results and in-depth visualizations on CLIP show that such an intervention can effectively i) improve the model's accuracy when spurious attributes are not present, and ii) directs the model's activation maps towards the actual class rather than the spurious attribute when present. In particular, on the Waterbirds dataset, our algorithm achieved a worst-group accuracy 23% higher than ERM on CLIP with a ResNet-50 backbone, and 32% higher on CLIP with a ViT backbone, while maintaining the same average accuracy as ERM.
CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning
Multimodal contrastive pretraining has been used to train multimodal representation models, such as CLIP, on large amounts of paired image-text data. However, previous studies have revealed that such models are vulnerable to backdoor attacks. Specifically, when trained on backdoored examples, CLIP learns spurious correlations between the embedded backdoor trigger and the target label, aligning their representations in the joint embedding space. Injecting even a small number of poisoned examples, such as 75 examples in 3 million pretraining data, can significantly manipulate the model's behavior, making it difficult to detect or unlearn such correlations. To address this issue, we propose CleanCLIP, a finetuning framework that weakens the learned spurious associations introduced by backdoor attacks by independently re-aligning the representations for individual modalities. We demonstrate that unsupervised finetuning using a combination of multimodal contrastive and unimodal self-supervised objectives for individual modalities can significantly reduce the impact of the backdoor attack. Additionally, we show that supervised finetuning on task-specific labeled image data removes the backdoor trigger from the CLIP vision encoder. We show empirically that CleanCLIP maintains model performance on benign examples while erasing a range of backdoor attacks on multimodal contrastive learning. The code and checkpoints are available at https://github.com/nishadsinghi/CleanCLIP.
CLIP Behaves like a Bag-of-Words Model Cross-modally but not Uni-modally
CLIP (Contrastive Language-Image Pretraining) has become a popular choice for various downstream tasks. However, recent studies have questioned its ability to represent compositional concepts effectively. These works suggest that CLIP often acts like a bag-of-words (BoW) model, interpreting images and text as sets of individual concepts without grasping the structural relationships. In particular, CLIP struggles to correctly bind attributes to their corresponding objects when multiple objects are present in an image or text. In this work, we investigate why CLIP exhibits this BoW-like behavior. We find that the correct attribute-object binding information is already present in individual text and image modalities. Instead, the issue lies in the cross-modal alignment, which relies on cosine similarity. To address this, we propose Linear Attribute Binding CLIP or LABCLIP. It applies a linear transformation to text embeddings before computing cosine similarity. This approach significantly improves CLIP's ability to bind attributes to correct objects, thereby enhancing its compositional understanding.
G^2V^2former: Graph Guided Video Vision Transformer for Face Anti-Spoofing
In videos containing spoofed faces, we may uncover the spoofing evidence based on either photometric or dynamic abnormality, even a combination of both. Prevailing face anti-spoofing (FAS) approaches generally concentrate on the single-frame scenario, however, purely photometric-driven methods overlook the dynamic spoofing clues that may be exposed over time. This may lead FAS systems to conclude incorrect judgments, especially in cases where it is easily distinguishable in terms of dynamics but challenging to discern in terms of photometrics. To this end, we propose the Graph Guided Video Vision Transformer (G^2V^2former), which combines faces with facial landmarks for photometric and dynamic feature fusion. We factorize the attention into space and time, and fuse them via a spatiotemporal block. Specifically, we design a novel temporal attention called Kronecker temporal attention, which has a wider receptive field, and is beneficial for capturing dynamic information. Moreover, we leverage the low-semantic motion of facial landmarks to guide the high-semantic change of facial expressions based on the motivation that regions containing landmarks may reveal more dynamic clues. Extensive experiments on nine benchmark datasets demonstrate that our method achieves superior performance under various scenarios. The codes will be released soon.
Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient amounts of manipulated training data. In this paper, we propose a learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs. The algorithm uses the automatically recorded photo EXIF metadata as supervisory signal for training a model to determine whether an image is self-consistent -- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-consistency model to the task of detecting and localizing image splices. The proposed method obtains state-of-the-art performance on several image forensics benchmarks, despite never seeing any manipulated images at training. That said, it is merely a step in the long quest for a truly general purpose visual forensics tool.
Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study
Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.
Towards a Robust Framework for Multimodal Hate Detection: A Study on Video vs. Image-based Content
Social media platforms enable the propagation of hateful content across different modalities such as textual, auditory, and visual, necessitating effective detection methods. While recent approaches have shown promise in handling individual modalities, their effectiveness across different modality combinations remains unexplored. This paper presents a systematic analysis of fusion-based approaches for multimodal hate detection, focusing on their performance across video and image-based content. Our comprehensive evaluation reveals significant modality-specific limitations: while simple embedding fusion achieves state-of-the-art performance on video content (HateMM dataset) with a 9.9% points F1-score improvement, it struggles with complex image-text relationships in memes (Hateful Memes dataset). Through detailed ablation studies and error analysis, we demonstrate how current fusion approaches fail to capture nuanced cross-modal interactions, particularly in cases involving benign confounders. Our findings provide crucial insights for developing more robust hate detection systems and highlight the need for modality-specific architectural considerations. The code is available at https://github.com/gak97/Video-vs-Meme-Hate.
Towards Explainable Fake Image Detection with Multi-Modal Large Language Models
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
Towards Deconfounded Image-Text Matching with Causal Inference
Prior image-text matching methods have shown remarkable performance on many benchmark datasets, but most of them overlook the bias in the dataset, which exists in intra-modal and inter-modal, and tend to learn the spurious correlations that extremely degrade the generalization ability of the model. Furthermore, these methods often incorporate biased external knowledge from large-scale datasets as prior knowledge into image-text matching model, which is inevitable to force model further learn biased associations. To address above limitations, this paper firstly utilizes Structural Causal Models (SCMs) to illustrate how intra- and inter-modal confounders damage the image-text matching. Then, we employ backdoor adjustment to propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task. DCIN (1) decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features, effectively eliminating the spurious correlations during image-text matching, and (2) uses causal inference to mitigate biases of external knowledge. Consequently, the model can learn causality instead of spurious correlations caused by dataset bias. Extensive experiments on two well-known benchmark datasets, i.e., Flickr30K and MSCOCO, demonstrate the superiority of our proposed method.
Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection
Recent studies in deepfake detection have yielded promising results when the training and testing face forgeries are from the same dataset. However, the problem remains challenging when one tries to generalize the detector to forgeries created by unseen methods in the training dataset. This work addresses the generalizable deepfake detection from a simple principle: a generalizable representation should be sensitive to diverse types of forgeries. Following this principle, we propose to enrich the "diversity" of forgeries by synthesizing augmented forgeries with a pool of forgery configurations and strengthen the "sensitivity" to the forgeries by enforcing the model to predict the forgery configurations. To effectively explore the large forgery augmentation space, we further propose to use the adversarial training strategy to dynamically synthesize the most challenging forgeries to the current model. Through extensive experiments, we show that the proposed strategies are surprisingly effective (see Figure 1), and they could achieve superior performance than the current state-of-the-art methods. Code is available at https://github.com/liangchen527/SLADD.
Multi-Modality Guidance Network For Missing Modality Inference
Multimodal models have gained significant success in recent years. Standard multimodal approaches often assume unchanged modalities from training stage to inference stage. In practice, however, many scenarios fail to satisfy such assumptions with missing modalities during inference, leading to limitations on where multimodal models can be applied. While existing methods mitigate the problem through reconstructing the missing modalities, it increases unnecessary computational cost, which could be just as critical, especially for large, deployed systems. To solve the problem from both sides, we propose a novel guidance network that promotes knowledge sharing during training, taking advantage of the multimodal representations to train better single-modality models for inference. Real-life experiment in violence detection shows that our proposed framework trains single-modality models that significantly outperform its traditionally trained counterparts while maintaining the same inference cost.
Dynamic texture analysis for detecting fake faces in video sequences
The creation of manipulated multimedia content involving human characters has reached in the last years unprecedented realism, calling for automated techniques to expose synthetically generated faces in images and videos. This work explores the analysis of spatio-temporal texture dynamics of the video signal, with the goal of characterizing and distinguishing real and fake sequences. We propose to build a binary decision on the joint analysis of multiple temporal segments and, in contrast to previous approaches, to exploit the textural dynamics of both the spatial and temporal dimensions. This is achieved through the use of Local Derivative Patterns on Three Orthogonal Planes (LDP-TOP), a compact feature representation known to be an important asset for the detection of face spoofing attacks. Experimental analyses on state-of-the-art datasets of manipulated videos show the discriminative power of such descriptors in separating real and fake sequences, and also identifying the creation method used. Linear Support Vector Machines (SVMs) are used which, despite the lower complexity, yield comparable performance to previously proposed deep models for fake content detection.
CustomContrast: A Multilevel Contrastive Perspective For Subject-Driven Text-to-Image Customization
Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.
Modality Unifying Network for Visible-Infrared Person Re-Identification
Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.
TIJO: Trigger Inversion with Joint Optimization for Defending Multimodal Backdoored Models
We present a Multimodal Backdoor Defense technique TIJO (Trigger Inversion using Joint Optimization). Recent work arXiv:2112.07668 has demonstrated successful backdoor attacks on multimodal models for the Visual Question Answering task. Their dual-key backdoor trigger is split across two modalities (image and text), such that the backdoor is activated if and only if the trigger is present in both modalities. We propose TIJO that defends against dual-key attacks through a joint optimization that reverse-engineers the trigger in both the image and text modalities. This joint optimization is challenging in multimodal models due to the disconnected nature of the visual pipeline which consists of an offline feature extractor, whose output is then fused with the text using a fusion module. The key insight enabling the joint optimization in TIJO is that the trigger inversion needs to be carried out in the object detection box feature space as opposed to the pixel space. We demonstrate the effectiveness of our method on the TrojVQA benchmark, where TIJO improves upon the state-of-the-art unimodal methods from an AUC of 0.6 to 0.92 on multimodal dual-key backdoors. Furthermore, our method also improves upon the unimodal baselines on unimodal backdoors. We present ablation studies and qualitative results to provide insights into our algorithm such as the critical importance of overlaying the inverted feature triggers on all visual features during trigger inversion. The prototype implementation of TIJO is available at https://github.com/SRI-CSL/TIJO.
De-Diffusion Makes Text a Strong Cross-Modal Interface
We demonstrate text as a strong cross-modal interface. Rather than relying on deep embeddings to connect image and language as the interface representation, our approach represents an image as text, from which we enjoy the interpretability and flexibility inherent to natural language. We employ an autoencoder that uses a pre-trained text-to-image diffusion model for decoding. The encoder is trained to transform an input image into text, which is then fed into the fixed text-to-image diffusion decoder to reconstruct the original input -- a process we term De-Diffusion. Experiments validate both the precision and comprehensiveness of De-Diffusion text representing images, such that it can be readily ingested by off-the-shelf text-to-image tools and LLMs for diverse multi-modal tasks. For example, a single De-Diffusion model can generalize to provide transferable prompts for different text-to-image tools, and also achieves a new state of the art on open-ended vision-language tasks by simply prompting large language models with few-shot examples.
Face X-ray for More General Face Forgery Detection
In this paper we propose a novel image representation called face X-ray for detecting forgery in face images. The face X-ray of an input face image is a greyscale image that reveals whether the input image can be decomposed into the blending of two images from different sources. It does so by showing the blending boundary for a forged image and the absence of blending for a real image. We observe that most existing face manipulation methods share a common step: blending the altered face into an existing background image. For this reason, face X-ray provides an effective way for detecting forgery generated by most existing face manipulation algorithms. Face X-ray is general in the sense that it only assumes the existence of a blending step and does not rely on any knowledge of the artifacts associated with a specific face manipulation technique. Indeed, the algorithm for computing face X-ray can be trained without fake images generated by any of the state-of-the-art face manipulation methods. Extensive experiments show that face X-ray remains effective when applied to forgery generated by unseen face manipulation techniques, while most existing face forgery detection or deepfake detection algorithms experience a significant performance drop.
Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models
Phishing attacks pose a significant threat to Internet users, with cybercriminals elaborately replicating the visual appearance of legitimate websites to deceive victims. Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored. In this paper, we comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites. Our analyses of the effectiveness reveal that while certain visual similarity-based models achieve high accuracy on curated datasets in the experimental settings, they exhibit notably low performance on real-world datasets, highlighting the importance of real-world evaluation. Furthermore, we find that the attackers evade the detectors mainly in three ways: (1) directly attacking the model pipelines, (2) mimicking benign logos, and (3) employing relatively simple strategies such as eliminating logos from screenshots. To statistically assess the resilience and robustness of existing models against adversarial attacks, we categorize the strategies attackers employ into visible and perturbation-based manipulations and apply them to website logos. We then evaluate the models' robustness using these adversarial samples. Our findings reveal potential vulnerabilities in several models, emphasizing the need for more robust visual similarity techniques capable of withstanding sophisticated evasion attempts. We provide actionable insights for enhancing the security of phishing defense systems, encouraging proactive actions.
SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection
Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.
Exploring the Collaborative Advantage of Low-level Information on Generalizable AI-Generated Image Detection
Existing state-of-the-art AI-Generated image detection methods mostly consider extracting low-level information from RGB images to help improve the generalization of AI-Generated image detection, such as noise patterns. However, these methods often consider only a single type of low-level information, which may lead to suboptimal generalization. Through empirical analysis, we have discovered a key insight: different low-level information often exhibits generalization capabilities for different types of forgeries. Furthermore, we found that simple fusion strategies are insufficient to leverage the detection advantages of each low-level and high-level information for various forgery types. Therefore, we propose the Adaptive Low-level Experts Injection (ALEI) framework. Our approach introduces Lora Experts, enabling the backbone network, which is trained with high-level semantic RGB images, to accept and learn knowledge from different low-level information. We utilize a cross-attention method to adaptively fuse these features at intermediate layers. To prevent the backbone network from losing the modeling capabilities of different low-level features during the later stages of modeling, we developed a Low-level Information Adapter that interacts with the features extracted by the backbone network. Finally, we propose Dynamic Feature Selection, which dynamically selects the most suitable features for detecting the current image to maximize generalization detection capability. Extensive experiments demonstrate that our method, finetuned on only four categories of mainstream ProGAN data, performs excellently and achieves state-of-the-art results on multiple datasets containing unseen GAN and Diffusion methods.
BusterX++: Towards Unified Cross-Modal AI-Generated Content Detection and Explanation with MLLM
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce BusterX++, a novel framework designed specifically for cross-modal detection and explanation of synthetic media. Our approach incorporates an advanced reinforcement learning (RL) post-training strategy that eliminates cold-start. Through Multi-stage Training, Thinking Reward, and Hybrid Reasoning, BusterX++ achieves stable and substantial performance improvements. To enable comprehensive evaluation, we also present GenBuster++, a cross-modal benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts using a novel filtering methodology to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
Probabilistic Embeddings for Cross-Modal Retrieval
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particularly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection
Recently, the proliferation of highly realistic synthetic images, facilitated through a variety of GANs and Diffusions, has significantly heightened the susceptibility to misuse. While the primary focus of deepfake detection has traditionally centered on the design of detection algorithms, an investigative inquiry into the generator architectures has remained conspicuously absent in recent years. This paper contributes to this lacuna by rethinking the architectures of CNN-based generators, thereby establishing a generalized representation of synthetic artifacts. Our findings illuminate that the up-sampling operator can, beyond frequency-based artifacts, produce generalized forgery artifacts. In particular, the local interdependence among image pixels caused by upsampling operators is significantly demonstrated in synthetic images generated by GAN or diffusion. Building upon this observation, we introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations. A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by 28 distinct generative models. This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable 11.6\% improvement over existing methods. The code is available at https://github.com/chuangchuangtan/NPR-DeepfakeDetection.
Representative Forgery Mining for Fake Face Detection
Although vanilla Convolutional Neural Network (CNN) based detectors can achieve satisfactory performance on fake face detection, we observe that the detectors tend to seek forgeries on a limited region of face, which reveals that the detectors is short of understanding of forgery. Therefore, we propose an attention-based data augmentation framework to guide detector refine and enlarge its attention. Specifically, our method tracks and occludes the Top-N sensitive facial regions, encouraging the detector to mine deeper into the regions ignored before for more representative forgery. Especially, our method is simple-to-use and can be easily integrated with various CNN models. Extensive experiments show that the detector trained with our method is capable to separately point out the representative forgery of fake faces generated by different manipulation techniques, and our method enables a vanilla CNN-based detector to achieve state-of-the-art performance without structure modification.
Flowing from Words to Pixels: A Framework for Cross-Modality Evolution
Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.
VE-KWS: Visual Modality Enhanced End-to-End Keyword Spotting
The performance of the keyword spotting (KWS) system based on audio modality, commonly measured in false alarms and false rejects, degrades significantly under the far field and noisy conditions. Therefore, audio-visual keyword spotting, which leverages complementary relationships over multiple modalities, has recently gained much attention. However, current studies mainly focus on combining the exclusively learned representations of different modalities, instead of exploring the modal relationships during each respective modeling. In this paper, we propose a novel visual modality enhanced end-to-end KWS framework (VE-KWS), which fuses audio and visual modalities from two aspects. The first one is utilizing the speaker location information obtained from the lip region in videos to assist the training of multi-channel audio beamformer. By involving the beamformer as an audio enhancement module, the acoustic distortions, caused by the far field or noisy environments, could be significantly suppressed. The other one is conducting cross-attention between different modalities to capture the inter-modal relationships and help the representation learning of each modality. Experiments on the MSIP challenge corpus show that our proposed model achieves 2.79% false rejection rate and 2.95% false alarm rate on the Eval set, resulting in a new SOTA performance compared with the top-ranking systems in the ICASSP2022 MISP challenge.
RESTORE: Towards Feature Shift for Vision-Language Prompt Learning
Prompt learning is effective for fine-tuning foundation models to improve their generalization across a variety of downstream tasks. However, the prompts that are independently optimized along a single modality path, may sacrifice the vision-language alignment of pre-trained models in return for improved performance on specific tasks and classes, leading to poorer generalization. In this paper, we first demonstrate that prompt tuning along only one single branch of CLIP (e.g., language or vision) is the reason why the misalignment occurs. Without proper regularization across the learnable parameters in different modalities, prompt learning violates the original pre-training constraints inherent in the two-tower architecture. To address such misalignment, we first propose feature shift, which is defined as the variation of embeddings after introducing the learned prompts, to serve as an explanatory tool. We dive into its relation with generalizability and thereafter propose RESTORE, a multi-modal prompt learning method that exerts explicit constraints on cross-modal consistency. To be more specific, to prevent feature misalignment, a feature shift consistency is introduced to synchronize inter-modal feature shifts by measuring and regularizing the magnitude of discrepancy during prompt tuning. In addition, we propose a "surgery" block to avoid short-cut hacking, where cross-modal misalignment can still be severe if the feature shift of each modality varies drastically at the same rate. It is implemented as feed-forward adapters upon both modalities to alleviate the misalignment problem. Extensive experiments on 15 datasets demonstrate that our method outperforms the state-of-the-art prompt tuning methods without compromising feature alignment.
Adversarial Robustness for Unified Multi-Modal Encoders via Efficient Calibration
Recent unified multi-modal encoders align a wide range of modalities into a shared representation space, enabling diverse cross-modal tasks. Despite their impressive capabilities, the robustness of these models under adversarial perturbations remains underexplored, which is a critical concern for safety-sensitive applications. In this work, we present the first comprehensive study of adversarial vulnerability in unified multi-modal encoders. We find that even mild adversarial perturbations lead to substantial performance drops across all modalities. Non-visual inputs, such as audio and point clouds, are especially fragile, while visual inputs like images and videos also degrade significantly. To address this, we propose an efficient adversarial calibration framework that improves robustness across modalities without modifying pretrained encoders or semantic centers, ensuring compatibility with existing foundation models. Our method introduces modality-specific projection heads trained solely on adversarial examples, while keeping the backbone and embeddings frozen. We explore three training objectives: fixed-center cross-entropy, clean-to-adversarial L2 alignment, and clean-adversarial InfoNCE, and we introduce a regularization strategy to ensure modality-consistent alignment under attack. Experiments on six modalities and three Bind-style models show that our method improves adversarial robustness by up to 47.3 percent at epsilon = 4/255, while preserving or even improving clean zero-shot and retrieval performance with less than 1 percent trainable parameters.
FakeParts: a New Family of AI-Generated DeepFakes
We introduce FakeParts, a new class of deepfakes characterized by subtle, localized manipulations to specific spatial regions or temporal segments of otherwise authentic videos. Unlike fully synthetic content, these partial manipulations, ranging from altered facial expressions to object substitutions and background modifications, blend seamlessly with real elements, making them particularly deceptive and difficult to detect. To address the critical gap in detection capabilities, we present FakePartsBench, the first large-scale benchmark dataset specifically designed to capture the full spectrum of partial deepfakes. Comprising over 25K videos with pixel-level and frame-level manipulation annotations, our dataset enables comprehensive evaluation of detection methods. Our user studies demonstrate that FakeParts reduces human detection accuracy by over 30% compared to traditional deepfakes, with similar performance degradation observed in state-of-the-art detection models. This work identifies an urgent vulnerability in current deepfake detection approaches and provides the necessary resources to develop more robust methods for partial video manipulations.
MODA: MOdular Duplex Attention for Multimodal Perception, Cognition, and Emotion Understanding
Multimodal large language models (MLLMs) recently showed strong capacity in integrating data among multiple modalities, empowered by a generalizable attention architecture. Advanced methods predominantly focus on language-centric tuning while less exploring multimodal tokens mixed through attention, posing challenges in high-level tasks that require fine-grained cognition and emotion understanding. In this work, we identify the attention deficit disorder problem in multimodal learning, caused by inconsistent cross-modal attention and layer-by-layer decayed attention activation. To address this, we propose a novel attention mechanism, termed MOdular Duplex Attention (MODA), simultaneously conducting the inner-modal refinement and inter-modal interaction. MODA employs a correct-after-align strategy to effectively decouple modality alignment from cross-layer token mixing. In the alignment phase, tokens are mapped to duplex modality spaces based on the basis vectors, enabling the interaction between visual and language modality. Further, the correctness of attention scores is ensured through adaptive masked attention, which enhances the model's flexibility by allowing customizable masking patterns for different modalities. Extensive experiments on 21 benchmark datasets verify the effectiveness of MODA in perception, cognition, and emotion tasks. Source code and demo are available in https://zzcheng.top/MODA.
Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
Token Sequence Compression for Efficient Multimodal Computing
The exponential growth of Large Multimodal Models (LMMs) has driven advancements in cross-modal reasoning but at significant computational costs. In this work, we focus on visual language models. We highlight the redundancy and inefficiency in current vision encoders, and seek to construct an adaptive compression method for multimodal data. In this work, we characterize a panoply of visual token selection and merging approaches through both benchmarking and qualitative analysis. In particular, we demonstrate that simple cluster-level token aggregation outperforms prior state-of-the-art works in token selection and merging, including merging at the vision encoder level and attention-based approaches. We underline the redundancy in current vision encoders, and shed light on several puzzling trends regarding principles of visual token selection through cross-modal attention visualizations. This work is a first effort towards more effective encoding and processing of high-dimensional data, and paves the way for more scalable and sustainable multimodal systems.
TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
Evading Forensic Classifiers with Attribute-Conditioned Adversarial Faces
The ability of generative models to produce highly realistic synthetic face images has raised security and ethical concerns. As a first line of defense against such fake faces, deep learning based forensic classifiers have been developed. While these forensic models can detect whether a face image is synthetic or real with high accuracy, they are also vulnerable to adversarial attacks. Although such attacks can be highly successful in evading detection by forensic classifiers, they introduce visible noise patterns that are detectable through careful human scrutiny. Additionally, these attacks assume access to the target model(s) which may not always be true. Attempts have been made to directly perturb the latent space of GANs to produce adversarial fake faces that can circumvent forensic classifiers. In this work, we go one step further and show that it is possible to successfully generate adversarial fake faces with a specified set of attributes (e.g., hair color, eye size, race, gender, etc.). To achieve this goal, we leverage the state-of-the-art generative model StyleGAN with disentangled representations, which enables a range of modifications without leaving the manifold of natural images. We propose a framework to search for adversarial latent codes within the feature space of StyleGAN, where the search can be guided either by a text prompt or a reference image. We also propose a meta-learning based optimization strategy to achieve transferable performance on unknown target models. Extensive experiments demonstrate that the proposed approach can produce semantically manipulated adversarial fake faces, which are true to the specified attribute set and can successfully fool forensic face classifiers, while remaining undetectable by humans. Code: https://github.com/koushiksrivats/face_attribute_attack.
Self-Supervised Video Forensics by Audio-Visual Anomaly Detection
Manipulated videos often contain subtle inconsistencies between their visual and audio signals. We propose a video forensics method, based on anomaly detection, that can identify these inconsistencies, and that can be trained solely using real, unlabeled data. We train an autoregressive model to generate sequences of audio-visual features, using feature sets that capture the temporal synchronization between video frames and sound. At test time, we then flag videos that the model assigns low probability. Despite being trained entirely on real videos, our model obtains strong performance on the task of detecting manipulated speech videos. Project site: https://cfeng16.github.io/audio-visual-forensics
Jailbreak in pieces: Compositional Adversarial Attacks on Multi-Modal Language Models
We introduce new jailbreak attacks on vision language models (VLMs), which use aligned LLMs and are resilient to text-only jailbreak attacks. Specifically, we develop cross-modality attacks on alignment where we pair adversarial images going through the vision encoder with textual prompts to break the alignment of the language model. Our attacks employ a novel compositional strategy that combines an image, adversarially targeted towards toxic embeddings, with generic prompts to accomplish the jailbreak. Thus, the LLM draws the context to answer the generic prompt from the adversarial image. The generation of benign-appearing adversarial images leverages a novel embedding-space-based methodology, operating with no access to the LLM model. Instead, the attacks require access only to the vision encoder and utilize one of our four embedding space targeting strategies. By not requiring access to the LLM, the attacks lower the entry barrier for attackers, particularly when vision encoders such as CLIP are embedded in closed-source LLMs. The attacks achieve a high success rate across different VLMs, highlighting the risk of cross-modality alignment vulnerabilities, and the need for new alignment approaches for multi-modal models.
Leveraging Open-Vocabulary Diffusion to Camouflaged Instance Segmentation
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions. This indicates that there exists a strong correlation between the visual and textual domains. In addition, text-image discriminative models such as CLIP excel in image labelling from text prompts, thanks to the rich and diverse information available from open concepts. In this paper, we leverage these technical advances to solve a challenging problem in computer vision: camouflaged instance segmentation. Specifically, we propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations. Such cross-domain representations are desirable in segmenting camouflaged objects where visual cues are subtle to distinguish the objects from the background, especially in segmenting novel objects which are not seen in training. We also develop technically supportive components to effectively fuse cross-domain features and engage relevant features towards respective foreground objects. We validate our method and compare it with existing ones on several benchmark datasets of camouflaged instance segmentation and generic open-vocabulary instance segmentation. Experimental results confirm the advances of our method over existing ones. We will publish our code and pre-trained models to support future research.
Unraveling Cross-Modality Knowledge Conflict in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs. However, these models are prone to parametric knowledge conflicts, which arise from inconsistencies of represented knowledge between their vision and language components. In this paper, we formally define the problem of cross-modality parametric knowledge conflict and present a systematic approach to detect, interpret, and mitigate them. We introduce a pipeline that identifies conflicts between visual and textual answers, showing a persistently high conflict rate across modalities in recent LVLMs regardless of the model size. We further investigate how these conflicts interfere with the inference process and propose a contrastive metric to discern the conflicting samples from the others. Building on these insights, we develop a novel dynamic contrastive decoding method that removes undesirable logits inferred from the less confident modality components based on answer confidence. For models that do not provide logits, we also introduce two prompt-based strategies to mitigate the conflicts. Our methods achieve promising improvements in accuracy on both the ViQuAE and InfoSeek datasets. Specifically, using LLaVA-34B, our proposed dynamic contrastive decoding improves an average accuracy of 2.24%.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
EXIF as Language: Learning Cross-Modal Associations Between Images and Camera Metadata
We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions "zero shot" by clustering the visual embeddings for all of the patches within an image.
Evaluating the Robustness of Text-to-image Diffusion Models against Real-world Attacks
Text-to-image (T2I) diffusion models (DMs) have shown promise in generating high-quality images from textual descriptions. The real-world applications of these models require particular attention to their safety and fidelity, but this has not been sufficiently explored. One fundamental question is whether existing T2I DMs are robust against variations over input texts. To answer it, this work provides the first robustness evaluation of T2I DMs against real-world attacks. Unlike prior studies that focus on malicious attacks involving apocryphal alterations to the input texts, we consider an attack space spanned by realistic errors (e.g., typo, glyph, phonetic) that humans can make, to ensure semantic consistency. Given the inherent randomness of the generation process, we develop novel distribution-based attack objectives to mislead T2I DMs. We perform attacks in a black-box manner without any knowledge of the model. Extensive experiments demonstrate the effectiveness of our method for attacking popular T2I DMs and simultaneously reveal their non-trivial robustness issues. Moreover, we provide an in-depth analysis of our method to show that it is not designed to attack the text encoder in T2I DMs solely.
Unveiling Typographic Deceptions: Insights of the Typographic Vulnerability in Large Vision-Language Model
Large Vision-Language Models (LVLMs) rely on vision encoders and Large Language Models (LLMs) to exhibit remarkable capabilities on various multi-modal tasks in the joint space of vision and language. However, the Typographic Attack, which disrupts vision-language models (VLMs) such as Contrastive Language-Image Pretraining (CLIP), has also been expected to be a security threat to LVLMs. Firstly, we verify typographic attacks on current well-known commercial and open-source LVLMs and uncover the widespread existence of this threat. Secondly, to better assess this vulnerability, we propose the most comprehensive and largest-scale Typographic Dataset to date. The Typographic Dataset not only considers the evaluation of typographic attacks under various multi-modal tasks but also evaluates the effects of typographic attacks, influenced by texts generated with diverse factors. Based on the evaluation results, we investigate the causes why typographic attacks may impact VLMs and LVLMs, leading to three highly insightful discoveries. By the examination of our discoveries and experimental validation in the Typographic Dataset, we reduce the performance degradation from 42.07% to 13.90% when LVLMs confront typographic attacks.
Data Poisoning Attacks Against Multimodal Encoders
Recently, the newly emerged multimodal models, which leverage both visual and linguistic modalities to train powerful encoders, have gained increasing attention. However, learning from a large-scale unlabeled dataset also exposes the model to the risk of potential poisoning attacks, whereby the adversary aims to perturb the model's training data to trigger malicious behaviors in it. In contrast to previous work, only poisoning visual modality, in this work, we take the first step to studying poisoning attacks against multimodal models in both visual and linguistic modalities. Specially, we focus on answering two questions: (1) Is the linguistic modality also vulnerable to poisoning attacks? and (2) Which modality is most vulnerable? To answer the two questions, we propose three types of poisoning attacks against multimodal models. Extensive evaluations on different datasets and model architectures show that all three attacks can achieve significant attack performance while maintaining model utility in both visual and linguistic modalities. Furthermore, we observe that the poisoning effect differs between different modalities. To mitigate the attacks, we propose both pre-training and post-training defenses. We empirically show that both defenses can significantly reduce the attack performance while preserving the model's utility.
PC^2: Pseudo-Classification Based Pseudo-Captioning for Noisy Correspondence Learning in Cross-Modal Retrieval
In the realm of cross-modal retrieval, seamlessly integrating diverse modalities within multimedia remains a formidable challenge, especially given the complexities introduced by noisy correspondence learning (NCL). Such noise often stems from mismatched data pairs, which is a significant obstacle distinct from traditional noisy labels. This paper introduces Pseudo-Classification based Pseudo-Captioning (PC^2) framework to address this challenge. PC^2 offers a threefold strategy: firstly, it establishes an auxiliary "pseudo-classification" task that interprets captions as categorical labels, steering the model to learn image-text semantic similarity through a non-contrastive mechanism. Secondly, unlike prevailing margin-based techniques, capitalizing on PC^2's pseudo-classification capability, we generate pseudo-captions to provide more informative and tangible supervision for each mismatched pair. Thirdly, the oscillation of pseudo-classification is borrowed to assistant the correction of correspondence. In addition to technical contributions, we develop a realistic NCL dataset called Noise of Web (NoW), which could be a new powerful NCL benchmark where noise exists naturally. Empirical evaluations of PC^2 showcase marked improvements over existing state-of-the-art robust cross-modal retrieval techniques on both simulated and realistic datasets with various NCL settings. The contributed dataset and source code are released at https://github.com/alipay/PC2-NoiseofWeb.
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
(Ab)using Images and Sounds for Indirect Instruction Injection in Multi-Modal LLMs
We demonstrate how images and sounds can be used for indirect prompt and instruction injection in multi-modal LLMs. An attacker generates an adversarial perturbation corresponding to the prompt and blends it into an image or audio recording. When the user asks the (unmodified, benign) model about the perturbed image or audio, the perturbation steers the model to output the attacker-chosen text and/or make the subsequent dialog follow the attacker's instruction. We illustrate this attack with several proof-of-concept examples targeting LLaVa and PandaGPT.
Quantifying and Enhancing Multi-modal Robustness with Modality Preference
Multi-modal models have shown a promising capability to effectively integrate information from various sources, yet meanwhile, they are found vulnerable to pervasive perturbations, such as uni-modal attacks and missing conditions. To counter these perturbations, robust multi-modal representations are highly expected, which are positioned well away from the discriminative multi-modal decision boundary. In this paper, different from conventional empirical studies, we focus on a commonly used joint multi-modal framework and theoretically discover that larger uni-modal representation margins and more reliable integration for modalities are essential components for achieving higher robustness. This discovery can further explain the limitation of multi-modal robustness and the phenomenon that multi-modal models are often vulnerable to attacks on the specific modality. Moreover, our analysis reveals how the widespread issue, that the model has different preferences for modalities, limits the multi-modal robustness by influencing the essential components and could lead to attacks on the specific modality highly effective. Inspired by our theoretical finding, we introduce a training procedure called Certifiable Robust Multi-modal Training (CRMT), which can alleviate this influence from modality preference and explicitly regulate essential components to significantly improve robustness in a certifiable manner. Our method demonstrates substantial improvements in performance and robustness compared with existing methods. Furthermore, our training procedure can be easily extended to enhance other robust training strategies, highlighting its credibility and flexibility.
Words or Vision: Do Vision-Language Models Have Blind Faith in Text?
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.