new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

One Surrogate to Fool Them All: Universal, Transferable, and Targeted Adversarial Attacks with CLIP

Deep Neural Networks (DNNs) have achieved widespread success yet remain prone to adversarial attacks. Typically, such attacks either involve frequent queries to the target model or rely on surrogate models closely mirroring the target model -- often trained with subsets of the target model's training data -- to achieve high attack success rates through transferability. However, in realistic scenarios where training data is inaccessible and excessive queries can raise alarms, crafting adversarial examples becomes more challenging. In this paper, we present UnivIntruder, a novel attack framework that relies solely on a single, publicly available CLIP model and publicly available datasets. By using textual concepts, UnivIntruder generates universal, transferable, and targeted adversarial perturbations that mislead DNNs into misclassifying inputs into adversary-specified classes defined by textual concepts. Our extensive experiments show that our approach achieves an Attack Success Rate (ASR) of up to 85% on ImageNet and over 99% on CIFAR-10, significantly outperforming existing transfer-based methods. Additionally, we reveal real-world vulnerabilities, showing that even without querying target models, UnivIntruder compromises image search engines like Google and Baidu with ASR rates up to 84%, and vision language models like GPT-4 and Claude-3.5 with ASR rates up to 80%. These findings underscore the practicality of our attack in scenarios where traditional avenues are blocked, highlighting the need to reevaluate security paradigms in AI applications.

The Edinburgh International Accents of English Corpus: Towards the Democratization of English ASR

English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English as spoken today around the globe. We present the first release of The Edinburgh International Accents of English Corpus (EdAcc). This dataset attempts to better represent the wide diversity of English, encompassing almost 40 hours of dyadic video call conversations between friends. Unlike other datasets, EdAcc includes a wide range of first and second-language varieties of English and a linguistic background profile of each speaker. Results on latest public, and commercial models show that EdAcc highlights shortcomings of current English ASR models. The best performing model, trained on 680 thousand hours of transcribed data, obtains an average of 19.7% word error rate (WER) -- in contrast to the 2.7% WER obtained when evaluated on US English clean read speech. Across all models, we observe a drop in performance on Indian, Jamaican, and Nigerian English speakers. Recordings, linguistic backgrounds, data statement, and evaluation scripts are released on our website (https://groups.inf.ed.ac.uk/edacc/) under CC-BY-SA license.

Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers

The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (PSA), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack

BERSting at the Screams: A Benchmark for Distanced, Emotional and Shouted Speech Recognition

Some speech recognition tasks, such as automatic speech recognition (ASR), are approaching or have reached human performance in many reported metrics. Yet, they continue to struggle in complex, real-world, situations, such as with distanced speech. Previous challenges have released datasets to address the issue of distanced ASR, however, the focus remains primarily on distance, specifically relying on multi-microphone array systems. Here we present the B(asic) E(motion) R(andom phrase) S(hou)t(s) (BERSt) dataset. The dataset contains almost 4 hours of English speech from 98 actors with varying regional and non-native accents. The data was collected on smartphones in the actors homes and therefore includes at least 98 different acoustic environments. The data also includes 7 different emotion prompts and both shouted and spoken utterances. The smartphones were places in 19 different positions, including obstructions and being in a different room than the actor. This data is publicly available for use and can be used to evaluate a variety of speech recognition tasks, including: ASR, shout detection, and speech emotion recognition (SER). We provide initial benchmarks for ASR and SER tasks, and find that ASR degrades both with an increase in distance and shout level and shows varied performance depending on the intended emotion. Our results show that the BERSt dataset is challenging for both ASR and SER tasks and continued work is needed to improve the robustness of such systems for more accurate real-world use.

SwitchLingua: The First Large-Scale Multilingual and Multi-Ethnic Code-Switching Dataset

Code-switching (CS) is the alternating use of two or more languages within a conversation or utterance, often influenced by social context and speaker identity. This linguistic phenomenon poses challenges for Automatic Speech Recognition (ASR) systems, which are typically designed for a single language and struggle to handle multilingual inputs. The growing global demand for multilingual applications, including Code-Switching ASR (CSASR), Text-to-Speech (CSTTS), and Cross-Lingual Information Retrieval (CLIR), highlights the inadequacy of existing monolingual datasets. Although some code-switching datasets exist, most are limited to bilingual mixing within homogeneous ethnic groups, leaving a critical need for a large-scale, diverse benchmark akin to ImageNet in computer vision. To bridge this gap, we introduce LinguaMaster, a multi-agent collaboration framework specifically designed for efficient and scalable multilingual data synthesis. Leveraging this framework, we curate SwitchLingua, the first large-scale multilingual and multi-ethnic code-switching dataset, including: (1) 420K CS textual samples across 12 languages, and (2) over 80 hours of audio recordings from 174 speakers representing 18 countries/regions and 63 racial/ethnic backgrounds, based on the textual data. This dataset captures rich linguistic and cultural diversity, offering a foundational resource for advancing multilingual and multicultural research. Furthermore, to address the issue that existing ASR evaluation metrics lack sensitivity to code-switching scenarios, we propose the Semantic-Aware Error Rate (SAER), a novel evaluation metric that incorporates semantic information, providing a more accurate and context-aware assessment of system performance.

No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data

Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech

Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as "presentation attacks." These vulnerabilities are generally unacceptable and call for spoofing countermeasures or "presentation attack detection" systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona-fide utterances even by human subjects.

GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement

The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.

Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models

Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.

Making Acoustic Side-Channel Attacks on Noisy Keyboards Viable with LLM-Assisted Spectrograms' "Typo" Correction

The large integration of microphones into devices increases the opportunities for Acoustic Side-Channel Attacks (ASCAs), as these can be used to capture keystrokes' audio signals that might reveal sensitive information. However, the current State-Of-The-Art (SOTA) models for ASCAs, including Convolutional Neural Networks (CNNs) and hybrid models, such as CoAtNet, still exhibit limited robustness under realistic noisy conditions. Solving this problem requires either: (i) an increased model's capacity to infer contextual information from longer sequences, allowing the model to learn that an initially noisily typed word is the same as a futurely collected non-noisy word, or (ii) an approach to fix misidentified information from the contexts, as one does not type random words, but the ones that best fit the conversation context. In this paper, we demonstrate that both strategies are viable and complementary solutions for making ASCAs practical. We observed that no existing solution leverages advanced transformer architectures' power for these tasks and propose that: (i) Visual Transformers (VTs) are the candidate solutions for capturing long-term contextual information and (ii) transformer-powered Large Language Models (LLMs) are the candidate solutions to fix the ``typos'' (mispredictions) the model might make. Thus, we here present the first-of-its-kind approach that integrates VTs and LLMs for ASCAs. We first show that VTs achieve SOTA performance in classifying keystrokes when compared to the previous CNN benchmark. Second, we demonstrate that LLMs can mitigate the impact of real-world noise. Evaluations on the natural sentences revealed that: (i) incorporating LLMs (e.g., GPT-4o) in our ASCA pipeline boosts the performance of error-correction tasks; and (ii) the comparable performance can be attained by a lightweight, fine-tuned smaller LLM (67 times smaller than GPT-4o), using...

MLAAD: The Multi-Language Audio Anti-Spoofing Dataset

Text-to-Speech (TTS) technology brings significant advantages, such as giving a voice to those with speech impairments, but also enables audio deepfakes and spoofs. The former mislead individuals and may propagate misinformation, while the latter undermine voice biometric security systems. AI-based detection can help to address these challenges by automatically differentiating between genuine and fabricated voice recordings. However, these models are only as good as their training data, which currently is severely limited due to an overwhelming concentration on English and Chinese audio in anti-spoofing databases, thus restricting its worldwide effectiveness. In response, this paper presents the Multi-Language Audio Anti-Spoof Dataset (MLAAD), created using 52 TTS models, comprising 19 different architectures, to generate 160.1 hours of synthetic voice in 23 different languages. We train and evaluate three state-of-the-art deepfake detection models with MLAAD, and observe that MLAAD demonstrates superior performance over comparable datasets like InTheWild or FakeOrReal when used as a training resource. Furthermore, in comparison with the renowned ASVspoof 2019 dataset, MLAAD proves to be a complementary resource. In tests across eight datasets, MLAAD and ASVspoof 2019 alternately outperformed each other, both excelling on four datasets. By publishing MLAAD and making trained models accessible via an interactive webserver , we aim to democratize antispoofing technology, making it accessible beyond the realm of specialists, thus contributing to global efforts against audio spoofing and deepfakes.

Samba-asr state-of-the-art speech recognition leveraging structured state-space models

We propose Samba ASR, the first state-of-the-art Automatic Speech Recognition (ASR) model leveraging the novel Mamba architecture as both encoder and decoder, built on the foundation of state-space models (SSMs). Unlike transformer-based ASR models, which rely on self-attention mechanisms to capture dependencies, Samba ASR effectively models both local and global temporal dependencies using efficient state-space dynamics, achieving remarkable performance gains. By addressing the limitations of transformers, such as quadratic scaling with input length and difficulty in handling long-range dependencies, Samba ASR achieves superior accuracy and efficiency. Experimental results demonstrate that Samba ASR surpasses existing open-source transformer-based ASR models across various standard benchmarks, establishing it as the new state of the art in ASR. Extensive evaluations on benchmark datasets show significant improvements in Word Error Rate (WER), with competitive performance even in low-resource scenarios. Furthermore, the computational efficiency and parameter optimization of the Mamba architecture make Samba ASR a scalable and robust solution for diverse ASR tasks. Our contributions include: A new Samba ASR architecture demonstrating the superiority of SSMs over transformer-based models for speech sequence processing. A comprehensive evaluation on public benchmarks showcasing state-of-the-art performance. An analysis of computational efficiency, robustness to noise, and sequence generalization. This work highlights the viability of Mamba SSMs as a transformer-free alternative for efficient and accurate ASR. By leveraging state-space modeling advancements, Samba ASR sets a new benchmark for ASR performance and future research.

SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming

We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.

Backdoor Contrastive Learning via Bi-level Trigger Optimization

Contrastive Learning (CL) has attracted enormous attention due to its remarkable capability in unsupervised representation learning. However, recent works have revealed the vulnerability of CL to backdoor attacks: the feature extractor could be misled to embed backdoored data close to an attack target class, thus fooling the downstream predictor to misclassify it as the target. Existing attacks usually adopt a fixed trigger pattern and poison the training set with trigger-injected data, hoping for the feature extractor to learn the association between trigger and target class. However, we find that such fixed trigger design fails to effectively associate trigger-injected data with target class in the embedding space due to special CL mechanisms, leading to a limited attack success rate (ASR). This phenomenon motivates us to find a better backdoor trigger design tailored for CL framework. In this paper, we propose a bi-level optimization approach to achieve this goal, where the inner optimization simulates the CL dynamics of a surrogate victim, and the outer optimization enforces the backdoor trigger to stay close to the target throughout the surrogate CL procedure. Extensive experiments show that our attack can achieve a higher attack success rate (e.g., 99% ASR on ImageNet-100) with a very low poisoning rate (1%). Besides, our attack can effectively evade existing state-of-the-art defenses. Code is available at: https://github.com/SWY666/SSL-backdoor-BLTO.

Edge-ASR: Towards Low-Bit Quantization of Automatic Speech Recognition Models

Recent advances in Automatic Speech Recognition (ASR) have demonstrated remarkable accuracy and robustness in diverse audio applications, such as live transcription and voice command processing. However, deploying these models on resource constrained edge devices (e.g., IoT device, wearables) still presents substantial challenges due to strict limits on memory, compute and power. Quantization, particularly Post-Training Quantization (PTQ), offers an effective way to reduce model size and inference cost without retraining. Despite its importance, the performance implications of various advanced quantization methods and bit-width configurations on ASR models remain unclear. In this work, we present a comprehensive benchmark of eight state-of-the-art (SOTA) PTQ methods applied to two leading edge-ASR model families, Whisper and Moonshine. We systematically evaluate model performances (i.e., accuracy, memory I/O and bit operations) across seven diverse datasets from the open ASR leaderboard, analyzing the impact of quantization and various configurations on both weights and activations. Built on an extension of the LLM compression toolkit, our framework integrates edge-ASR models, diverse advanced quantization algorithms, a unified calibration and evaluation data pipeline, and detailed analysis tools. Our results characterize the trade-offs between efficiency and accuracy, demonstrating that even 3-bit quantization can succeed on high capacity models when using advanced PTQ techniques. These findings provide valuable insights for optimizing ASR models on low-power, always-on edge devices.

RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments

Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning ASRs of up to 50% in realistic end-to-end settings, with the recently released frontier Claude 4 Opus | CUA showing an alarming ASR of 48%, demonstrating that indirect prompt injection presents tangible risks for even advanced CUAs despite their capabilities and safeguards. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.

Adversarial Paraphrasing: A Universal Attack for Humanizing AI-Generated Text

The increasing capabilities of Large Language Models (LLMs) have raised concerns about their misuse in AI-generated plagiarism and social engineering. While various AI-generated text detectors have been proposed to mitigate these risks, many remain vulnerable to simple evasion techniques such as paraphrasing. However, recent detectors have shown greater robustness against such basic attacks. In this work, we introduce Adversarial Paraphrasing, a training-free attack framework that universally humanizes any AI-generated text to evade detection more effectively. Our approach leverages an off-the-shelf instruction-following LLM to paraphrase AI-generated content under the guidance of an AI text detector, producing adversarial examples that are specifically optimized to bypass detection. Extensive experiments show that our attack is both broadly effective and highly transferable across several detection systems. For instance, compared to simple paraphrasing attack--which, ironically, increases the true positive at 1% false positive (T@1%F) by 8.57% on RADAR and 15.03% on Fast-DetectGPT--adversarial paraphrasing, guided by OpenAI-RoBERTa-Large, reduces T@1%F by 64.49% on RADAR and a striking 98.96% on Fast-DetectGPT. Across a diverse set of detectors--including neural network-based, watermark-based, and zero-shot approaches--our attack achieves an average T@1%F reduction of 87.88% under the guidance of OpenAI-RoBERTa-Large. We also analyze the tradeoff between text quality and attack success to find that our method can significantly reduce detection rates, with mostly a slight degradation in text quality. Our adversarial setup highlights the need for more robust and resilient detection strategies in the light of increasingly sophisticated evasion techniques.

Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods

In various real-world applications such as machine translation, sentiment analysis, and question answering, a pivotal role is played by NLP models, facilitating efficient communication and decision-making processes in domains ranging from healthcare to finance. However, a significant challenge is posed to the robustness of these natural language processing models by text adversarial attacks. These attacks involve the deliberate manipulation of input text to mislead the predictions of the model while maintaining human interpretability. Despite the remarkable performance achieved by state-of-the-art models like BERT in various natural language processing tasks, they are found to remain vulnerable to adversarial perturbations in the input text. In addressing the vulnerability of text classifiers to adversarial attacks, three distinct attack mechanisms are explored in this paper using the victim model BERT: BERT-on-BERT attack, PWWS attack, and Fraud Bargain's Attack (FBA). Leveraging the IMDB, AG News, and SST2 datasets, a thorough comparative analysis is conducted to assess the effectiveness of these attacks on the BERT classifier model. It is revealed by the analysis that PWWS emerges as the most potent adversary, consistently outperforming other methods across multiple evaluation scenarios, thereby emphasizing its efficacy in generating adversarial examples for text classification. Through comprehensive experimentation, the performance of these attacks is assessed and the findings indicate that the PWWS attack outperforms others, demonstrating lower runtime, higher accuracy, and favorable semantic similarity scores. The key insight of this paper lies in the assessment of the relative performances of three prevalent state-of-the-art attack mechanisms.

Prediction of speech intelligibility with DNN-based performance measures

This paper presents a speech intelligibility model based on automatic speech recognition (ASR), combining phoneme probabilities from deep neural networks (DNN) and a performance measure that estimates the word error rate from these probabilities. This model does not require the clean speech reference nor the word labels during testing as the ASR decoding step, which finds the most likely sequence of words given phoneme posterior probabilities, is omitted. The model is evaluated via the root-mean-squared error between the predicted and observed speech reception thresholds from eight normal-hearing listeners. The recognition task consists of identifying noisy words from a German matrix sentence test. The speech material was mixed with eight noise maskers covering different modulation types, from speech-shaped stationary noise to a single-talker masker. The prediction performance is compared to five established models and an ASR-model using word labels. Two combinations of features and networks were tested. Both include temporal information either at the feature level (amplitude modulation filterbanks and a feed-forward network) or captured by the architecture (mel-spectrograms and a time-delay deep neural network, TDNN). The TDNN model is on par with the DNN while reducing the number of parameters by a factor of 37; this optimization allows parallel streams on dedicated hearing aid hardware as a forward-pass can be computed within the 10ms of each frame. The proposed model performs almost as well as the label-based model and produces more accurate predictions than the baseline models.

Denoising LM: Pushing the Limits of Error Correction Models for Speech Recognition

Language models (LMs) have long been used to improve results of automatic speech recognition (ASR) systems, but they are unaware of the errors that ASR systems make. Error correction models are designed to fix ASR errors, however, they showed little improvement over traditional LMs mainly due to the lack of supervised training data. In this paper, we present Denoising LM (DLM), which is a scaled error correction model trained with vast amounts of synthetic data, significantly exceeding prior attempts meanwhile achieving new state-of-the-art ASR performance. We use text-to-speech (TTS) systems to synthesize audio, which is fed into an ASR system to produce noisy hypotheses, which are then paired with the original texts to train the DLM. DLM has several key ingredients: (i) up-scaled model and data; (ii) usage of multi-speaker TTS systems; (iii) combination of multiple noise augmentation strategies; and (iv) new decoding techniques. With a Transformer-CTC ASR, DLM achieves 1.5% word error rate (WER) on test-clean and 3.3% WER on test-other on Librispeech, which to our knowledge are the best reported numbers in the setting where no external audio data are used and even match self-supervised methods which use external audio data. Furthermore, a single DLM is applicable to different ASRs, and greatly surpassing the performance of conventional LM based beam-search rescoring. These results indicate that properly investigated error correction models have the potential to replace conventional LMs, holding the key to a new level of accuracy in ASR systems.

Ask2Mask: Guided Data Selection for Masked Speech Modeling

Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomly masked within an utterance. While these methods improve performance of Automatic Speech Recognition (ASR) systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples in two different ways: 1) A fine-grained data selection is performed by masking over the highly confident input frames as chosen by the scorer. This allows the model to learn meaningful representations. 2) ATM is further extended to focus at utterance-level by weighting the final MSM loss with the utterance-level confidence score. We conduct fine-tuning experiments on two well-benchmarked corpora: LibriSpeech (matching the pre-training data) and Commonvoice, TED-LIUM, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatched conditions (up to 11.6\% relative over published results and upto 4.46\% relative over our internal baseline) while still yielding modest improvements under matched conditions.

Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada

We present automatic speech recognition (ASR) systems for Tamil and Kannada based on subword modeling to effectively handle unlimited vocabulary due to the highly agglutinative nature of the languages. We explore byte pair encoding (BPE), and proposed a variant of this algorithm named extended-BPE, and Morfessor tool to segment each word as subwords. We have effectively incorporated maximum likelihood (ML) and Viterbi estimation techniques with weighted finite state transducers (WFST) framework in these algorithms to learn the subword dictionary from a large text corpus. Using the learnt subword dictionary, the words in training data transcriptions are segmented to subwords and we train deep neural network ASR systems which recognize subword sequence for any given test speech utterance. The output subword sequence is then post-processed using deterministic rules to get the final word sequence such that the actual number of words that can be recognized is much larger. For Tamil ASR, We use 152 hours of data for training and 65 hours for testing, whereas for Kannada ASR, we use 275 hours for training and 72 hours for testing. Upon experimenting with different combination of segmentation and estimation techniques, we find that the word error rate (WER) reduces drastically when compared to the baseline word-level ASR, achieving a maximum absolute WER reduction of 6.24% and 6.63% for Tamil and Kannada respectively.

Your Attack Is Too DUMB: Formalizing Attacker Scenarios for Adversarial Transferability

Evasion attacks are a threat to machine learning models, where adversaries attempt to affect classifiers by injecting malicious samples. An alarming side-effect of evasion attacks is their ability to transfer among different models: this property is called transferability. Therefore, an attacker can produce adversarial samples on a custom model (surrogate) to conduct the attack on a victim's organization later. Although literature widely discusses how adversaries can transfer their attacks, their experimental settings are limited and far from reality. For instance, many experiments consider both attacker and defender sharing the same dataset, balance level (i.e., how the ground truth is distributed), and model architecture. In this work, we propose the DUMB attacker model. This framework allows analyzing if evasion attacks fail to transfer when the training conditions of surrogate and victim models differ. DUMB considers the following conditions: Dataset soUrces, Model architecture, and the Balance of the ground truth. We then propose a novel testbed to evaluate many state-of-the-art evasion attacks with DUMB; the testbed consists of three computer vision tasks with two distinct datasets each, four types of balance levels, and three model architectures. Our analysis, which generated 13K tests over 14 distinct attacks, led to numerous novel findings in the scope of transferable attacks with surrogate models. In particular, mismatches between attackers and victims in terms of dataset source, balance levels, and model architecture lead to non-negligible loss of attack performance.

Whisper Turns Stronger: Augmenting Wav2Vec 2.0 for Superior ASR in Low-Resource Languages

Approaching Speech-to-Text and Automatic Speech Recognition problems in low-resource languages is notoriously challenging due to the scarcity of validated datasets and the diversity of dialects. Arabic, Russian, and Portuguese exemplify these difficulties, being low-resource languages due to the many dialects of these languages across different continents worldwide. Moreover, the variety of accents and pronunciations of such languages complicate ASR models' success. With the increasing popularity of Deep Learning and Transformers, acoustic models like the renowned Wav2Vec2 have achieved superior performance in the Speech Recognition field compared to state-of-the-art approaches. However, despite Wav2Vec2's improved efficiency over traditional methods, its performance significantly declines for under-represented languages, even though it requires significantly less labeled data. This paper introduces an end-to-end framework that enhances ASR systems fine-tuned on Wav2Vec2 through data augmentation techniques. To validate our framework's effectiveness, we conducted a detailed experimental evaluation using three datasets from Mozilla's Common Voice project in Arabic, Russian, and Portuguese. Additionally, the framework presented in this paper demonstrates robustness to different diacritics. Ultimately, our approach outperforms two previous baseline models, which are the pre-trained Wav2Vec2 and the well-known Whisper ASR model, resulting in an average relative improvement of 33.9\% in Word Error Rate and a 53.2\% relative improvement in Character Error Rate.

Towards End-to-End Training of Automatic Speech Recognition for Nigerian Pidgin

The prevalence of automatic speech recognition (ASR) systems in spoken language applications has increased significantly in recent years. Notably, many African languages lack sufficient linguistic resources to support the robustness of these systems. This paper focuses on the development of an end-to-end speech recognition system customized for Nigerian Pidgin English. We investigated and evaluated different pretrained state-of-the-art architectures on a new dataset. Our empirical results demonstrate a notable performance of the variant Wav2Vec2 XLSR-53 on our dataset, achieving a word error rate (WER) of 29.6% on the test set, surpassing other architectures such as NEMO QUARTZNET and Wav2Vec2.0 BASE-100H in quantitative assessments. Additionally, we demonstrate that pretrained state-of-the-art architectures do not work well out-of-the-box. We performed zero-shot evaluation using XLSR-English as the baseline, chosen for its similarity to Nigerian Pidgin. This yielded a higher WER of 73.7%. By adapting this architecture to nuances represented in our dataset, we reduce error by 59.84%. Our dataset comprises 4,288 recorded utterances from 10 native speakers, partitioned into training, validation, and test sets. This study underscores the potential for improving ASR systems for under-resourced languages like Nigerian Pidgin English, contributing to greater inclusion in speech technology applications. We publicly release our unique parallel dataset (speech-to-text) on Nigerian Pidgin, as well as the model weights on Hugging Face. Our code would be made available to foster future research from the community.

Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages

Automatic speech recognition systems have undoubtedly advanced with the integration of multilingual and multitask models such as Whisper, which have shown a promising ability to understand and process speech across a wide range of languages. Despite their robustness, these models often fall short in handling the linguistic distinctions of minority languages. This study addresses this gap by integrating traditional and novel language models with fine-tuned Whisper models to raise their performance in less commonly studied languages. Through rigorous fine-tuning and evaluation across multiple datasets, we demonstrate substantial improvements in word error rate, particularly in low-resource scenarios. Our approach not only does take advantage of the extensive data Whisper was pre-trained on, but also complements its linguistic adaptability by incorporating language models. We obtained improvements up to 51\% for in-distribution datasets and up to 34\% for out-of-distribution sentences using statistical language models, while large language models provided moderate but consistently robust improvement across diverse linguistic contexts. The findings reveal that, while the integration reliably benefits all model sizes, the extent of improvement varies, highlighting the importance of optimized language model parameters. Finally, we emphasize the importance of selecting appropriate evaluation parameters when reporting the results using transformer-based ASR models. In summary, this research clears the way for more inclusive ASR technologies that perform better across languages by enriching their linguistic knowledge. For further implementation details of this study, the technical documentation and source code are available at http://www.github.com/hitz-zentroa/whisper-lm.

T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification

Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.

Adversarial Feature Map Pruning for Backdoor

Deep neural networks have been widely used in many critical applications, such as autonomous vehicles and medical diagnosis. However, their security is threatened by backdoor attacks, which are achieved by adding artificial patterns to specific training data. Existing defense strategies primarily focus on using reverse engineering to reproduce the backdoor trigger generated by attackers and subsequently repair the DNN model by adding the trigger into inputs and fine-tuning the model with ground-truth labels. However, once the trigger generated by the attackers is complex and invisible, the defender cannot reproduce the trigger successfully then the DNN model will not be repaired, as the trigger is not effectively removed. In this work, we propose Adversarial Feature Map Pruning for Backdoor (FMP) to mitigate backdoor from the DNN. Unlike existing defense strategies, which focus on reproducing backdoor triggers, FMP attempts to prune backdoor feature maps, which are trained to extract backdoor information from inputs. After pruning these backdoor feature maps, FMP will fine-tune the model with a secure subset of training data. Our experiments demonstrate that, compared to existing defense strategies, FMP can effectively reduce the Attack Success Rate (ASR) even against the most complex and invisible attack triggers (e.g., FMP decreases the ASR to 2.86\% in CIFAR10, which is 19.2\% to 65.41\% lower than baselines). Second, unlike conventional defense methods that tend to exhibit low robust accuracy (that is, the accuracy of the model on poisoned data), FMP achieves a higher RA, indicating its superiority in maintaining model performance while mitigating the effects of backdoor attacks (e.g., FMP obtains 87.40\% RA in CIFAR10). Our code is publicly available at: https://github.com/retsuh-bqw/FMP.

PITCH: AI-assisted Tagging of Deepfake Audio Calls using Challenge-Response

The rise of AI voice-cloning technology, particularly audio Real-time Deepfakes (RTDFs), has intensified social engineering attacks by enabling real-time voice impersonation that bypasses conventional enrollment-based authentication. To address this, we propose PITCH, a robust challenge-response method to detect and tag interactive deepfake audio calls. We developed a comprehensive taxonomy of audio challenges based on the human auditory system, linguistics, and environmental factors, yielding 20 prospective challenges. These were tested against leading voice-cloning systems using a novel dataset comprising 18,600 original and 1.6 million deepfake samples from 100 users. PITCH's prospective challenges enhanced machine detection capabilities to 88.7% AUROC score on the full unbalanced dataset, enabling us to shortlist 10 functional challenges that balance security and usability. For human evaluation and subsequent analyses, we filtered a challenging, balanced subset. On this subset, human evaluators independently scored 72.6% accuracy, while machines achieved 87.7%. Acknowledging that call environments require higher human control, we aided call receivers in making decisions with them using machines. Our solution uses an early warning system to tag suspicious incoming calls as "Deepfake-likely." Contrary to prior findings, we discovered that integrating human intuition with machine precision offers complementary advantages. Our solution gave users maximum control and boosted detection accuracy to 84.5%. Evidenced by this jump in accuracy, PITCH demonstrated the potential for AI-assisted pre-screening in call verification processes, offering an adaptable and usable approach to combat real-time voice-cloning attacks. Code to reproduce and access data at https://github.com/mittalgovind/PITCH-Deepfakes.

XMAD-Bench: Cross-Domain Multilingual Audio Deepfake Benchmark

Recent advances in audio generation led to an increasing number of deepfakes, making the general public more vulnerable to financial scams, identity theft, and misinformation. Audio deepfake detectors promise to alleviate this issue, with many recent studies reporting accuracy rates close to 99%. However, these methods are typically tested in an in-domain setup, where the deepfake samples from the training and test sets are produced by the same generative models. To this end, we introduce XMAD-Bench, a large-scale cross-domain multilingual audio deepfake benchmark comprising 668.8 hours of real and deepfake speech. In our novel dataset, the speakers, the generative methods, and the real audio sources are distinct across training and test splits. This leads to a challenging cross-domain evaluation setup, where audio deepfake detectors can be tested ``in the wild''. Our in-domain and cross-domain experiments indicate a clear disparity between the in-domain performance of deepfake detectors, which is usually as high as 100%, and the cross-domain performance of the same models, which is sometimes similar to random chance. Our benchmark highlights the need for the development of robust audio deepfake detectors, which maintain their generalization capacity across different languages, speakers, generative methods, and data sources. Our benchmark is publicly released at https://github.com/ristea/xmad-bench/.

CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese

Automatic Speech recognition (ASR) is a complex and challenging task. In recent years, there have been significant advances in the area. In particular, for the Brazilian Portuguese (BP) language, there were about 376 hours public available for ASR task until the second half of 2020. With the release of new datasets in early 2021, this number increased to 574 hours. The existing resources, however, are composed of audios containing only read and prepared speech. There is a lack of datasets including spontaneous speech, which are essential in different ASR applications. This paper presents CORAA (Corpus of Annotated Audios) v1. with 290.77 hours, a publicly available dataset for ASR in BP containing validated pairs (audio-transcription). CORAA also contains European Portuguese audios (4.69 hours). We also present a public ASR model based on Wav2Vec 2.0 XLSR-53 and fine-tuned over CORAA. Our model achieved a Word Error Rate of 24.18% on CORAA test set and 20.08% on Common Voice test set. When measuring the Character Error Rate, we obtained 11.02% and 6.34% for CORAA and Common Voice, respectively. CORAA corpora were assembled to both improve ASR models in BP with phenomena from spontaneous speech and motivate young researchers to start their studies on ASR for Portuguese. All the corpora are publicly available at https://github.com/nilc-nlp/CORAA under the CC BY-NC-ND 4.0 license.

MixAT: Combining Continuous and Discrete Adversarial Training for LLMs

Despite recent efforts in Large Language Models (LLMs) safety and alignment, current adversarial attacks on frontier LLMs are still able to force harmful generations consistently. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. As these relaxations do not correspond to discrete input tokens, such latent training methods often leave models vulnerable to a diverse set of discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.

Enabling Differentially Private Federated Learning for Speech Recognition: Benchmarks, Adaptive Optimizers and Gradient Clipping

While federated learning (FL) and differential privacy (DP) have been extensively studied, their application to automatic speech recognition (ASR) remains largely unexplored due to the challenges in training large transformer models. Specifically, large models further exacerbate issues in FL as they are particularly susceptible to gradient heterogeneity across layers, unlike the relatively uniform gradient behavior observed in shallow models. As a result, prior works struggle to converge with standard optimization techniques, even in the absence of DP mechanisms. To the best of our knowledge, no existing work establishes a competitive, practical recipe for FL with DP in the context of ASR. To address this gap, we establish the first benchmark for FL with DP in end-to-end ASR. Our approach centers on per-layer clipping and layer-wise gradient normalization: theoretical analysis reveals that these techniques together mitigate clipping bias and gradient heterogeneity across layers in deeper models. Consistent with these theoretical insights, our empirical results show that FL with DP is viable under strong privacy guarantees, provided a population of at least several million users. Specifically, we achieve user-level (7.2, 10^{-9})-DP (resp. (4.5, 10^{-9})-DP) with only a 1.3% (resp. 4.6%) absolute drop in word error rate when extrapolating to high (resp. low) population scales for FL with DP in ASR. Although our experiments focus on ASR, the underlying principles we uncover - particularly those concerning gradient heterogeneity and layer-wise gradient normalization - offer broader guidance for designing scalable, privacy-preserving FL algorithms for large models across domains. Code of all experiments and benchmarks is available at https://github.com/apple/ml-pfl4asr.

Efficient Adapter Finetuning for Tail Languages in Streaming Multilingual ASR

The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.

DFIR-Metric: A Benchmark Dataset for Evaluating Large Language Models in Digital Forensics and Incident Response

Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.

CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher

Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at https://github.com/ibndias/CIPHER.

Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation

High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR.

F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching

This paper introduces F5-TTS, a fully non-autoregressive text-to-speech system based on flow matching with Diffusion Transformer (DiT). Without requiring complex designs such as duration model, text encoder, and phoneme alignment, the text input is simply padded with filler tokens to the same length as input speech, and then the denoising is performed for speech generation, which was originally proved feasible by E2 TTS. However, the original design of E2 TTS makes it hard to follow due to its slow convergence and low robustness. To address these issues, we first model the input with ConvNeXt to refine the text representation, making it easy to align with the speech. We further propose an inference-time Sway Sampling strategy, which significantly improves our model's performance and efficiency. This sampling strategy for flow step can be easily applied to existing flow matching based models without retraining. Our design allows faster training and achieves an inference RTF of 0.15, which is greatly improved compared to state-of-the-art diffusion-based TTS models. Trained on a public 100K hours multilingual dataset, our Fairytaler Fakes Fluent and Faithful speech with Flow matching (F5-TTS) exhibits highly natural and expressive zero-shot ability, seamless code-switching capability, and speed control efficiency. Demo samples can be found at https://SWivid.github.io/F5-TTS. We release all code and checkpoints to promote community development.

HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models

Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.

Seamless: Multilingual Expressive and Streaming Speech Translation

Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication

Fast and Accurate Transferability Measurement by Evaluating Intra-class Feature Variance

Given a set of pre-trained models, how can we quickly and accurately find the most useful pre-trained model for a downstream task? Transferability measurement is to quantify how transferable is a pre-trained model learned on a source task to a target task. It is used for quickly ranking pre-trained models for a given task and thus becomes a crucial step for transfer learning. Existing methods measure transferability as the discrimination ability of a source model for a target data before transfer learning, which cannot accurately estimate the fine-tuning performance. Some of them restrict the application of transferability measurement in selecting the best supervised pre-trained models that have classifiers. It is important to have a general method for measuring transferability that can be applied in a variety of situations, such as selecting the best self-supervised pre-trained models that do not have classifiers, and selecting the best transferring layer for a target task. In this work, we propose TMI (TRANSFERABILITY MEASUREMENT WITH INTRA-CLASS FEATURE VARIANCE), a fast and accurate algorithm to measure transferability. We view transferability as the generalization of a pre-trained model on a target task by measuring intra-class feature variance. Intra-class variance evaluates the adaptability of the model to a new task, which measures how transferable the model is. Compared to previous studies that estimate how discriminative the models are, intra-class variance is more accurate than those as it does not require an optimal feature extractor and classifier. Extensive experiments on real-world datasets show that TMI outperforms competitors for selecting the top-5 best models, and exhibits consistently better correlation in 13 out of 17 cases.

A CTC Alignment-based Non-autoregressive Transformer for End-to-end Automatic Speech Recognition

Recently, end-to-end models have been widely used in automatic speech recognition (ASR) systems. Two of the most representative approaches are connectionist temporal classification (CTC) and attention-based encoder-decoder (AED) models. Autoregressive transformers, variants of AED, adopt an autoregressive mechanism for token generation and thus are relatively slow during inference. In this paper, we present a comprehensive study of a CTC Alignment-based Single-Step Non-Autoregressive Transformer (CASS-NAT) for end-to-end ASR. In CASS-NAT, word embeddings in the autoregressive transformer (AT) are substituted with token-level acoustic embeddings (TAE) that are extracted from encoder outputs with the acoustical boundary information offered by the CTC alignment. TAE can be obtained in parallel, resulting in a parallel generation of output tokens. During training, Viterbi-alignment is used for TAE generation, and multiple training strategies are further explored to improve the word error rate (WER) performance. During inference, an error-based alignment sampling method is investigated in depth to reduce the alignment mismatch in the training and testing processes. Experimental results show that the CASS-NAT has a WER that is close to AT on various ASR tasks, while providing a ~24x inference speedup. With and without self-supervised learning, we achieve new state-of-the-art results for non-autoregressive models on several datasets. We also analyze the behavior of the CASS-NAT decoder to explain why it can perform similarly to AT. We find that TAEs have similar functionality to word embeddings for grammatical structures, which might indicate the possibility of learning some semantic information from TAEs without a language model.

TeleAntiFraud-28k: A Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection

The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.

SecReEvalBench: A Multi-turned Security Resilience Evaluation Benchmark for Large Language Models

The increasing deployment of large language models in security-sensitive domains necessitates rigorous evaluation of their resilience against adversarial prompt-based attacks. While previous benchmarks have focused on security evaluations with limited and predefined attack domains, such as cybersecurity attacks, they often lack a comprehensive assessment of intent-driven adversarial prompts and the consideration of real-life scenario-based multi-turn attacks. To address this gap, we present SecReEvalBench, the Security Resilience Evaluation Benchmark, which defines four novel metrics: Prompt Attack Resilience Score, Prompt Attack Refusal Logic Score, Chain-Based Attack Resilience Score and Chain-Based Attack Rejection Time Score. Moreover, SecReEvalBench employs six questioning sequences for model assessment: one-off attack, successive attack, successive reverse attack, alternative attack, sequential ascending attack with escalating threat levels and sequential descending attack with diminishing threat levels. In addition, we introduce a dataset customized for the benchmark, which incorporates both neutral and malicious prompts, categorised across seven security domains and sixteen attack techniques. In applying this benchmark, we systematically evaluate five state-of-the-art open-weighted large language models, Llama 3.1, Gemma 2, Mistral v0.3, DeepSeek-R1 and Qwen 3. Our findings offer critical insights into the strengths and weaknesses of modern large language models in defending against evolving adversarial threats. The SecReEvalBench dataset is publicly available at https://kaggle.com/datasets/5a7ee22cf9dab6c93b55a73f630f6c9b42e936351b0ae98fbae6ddaca7fe248d, which provides a groundwork for advancing research in large language model security.

LoFT: Local Proxy Fine-tuning For Improving Transferability Of Adversarial Attacks Against Large Language Model

It has been shown that Large Language Model (LLM) alignments can be circumvented by appending specially crafted attack suffixes with harmful queries to elicit harmful responses. To conduct attacks against private target models whose characterization is unknown, public models can be used as proxies to fashion the attack, with successful attacks being transferred from public proxies to private target models. The success rate of attack depends on how closely the proxy model approximates the private model. We hypothesize that for attacks to be transferrable, it is sufficient if the proxy can approximate the target model in the neighborhood of the harmful query. Therefore, in this paper, we propose Local Fine-Tuning (LoFT), i.e., fine-tuning proxy models on similar queries that lie in the lexico-semantic neighborhood of harmful queries to decrease the divergence between the proxy and target models. First, we demonstrate three approaches to prompt private target models to obtain similar queries given harmful queries. Next, we obtain data for local fine-tuning by eliciting responses from target models for the generated similar queries. Then, we optimize attack suffixes to generate attack prompts and evaluate the impact of our local fine-tuning on the attack's success rate. Experiments show that local fine-tuning of proxy models improves attack transferability and increases attack success rate by 39%, 7%, and 0.5% (absolute) on target models ChatGPT, GPT-4, and Claude respectively.

SpeechTaxi: On Multilingual Semantic Speech Classification

Recent advancements in multilingual speech encoding as well as transcription raise the question of the most effective approach to semantic speech classification. Concretely, can (1) end-to-end (E2E) classifiers obtained by fine-tuning state-of-the-art multilingual speech encoders (MSEs) match or surpass the performance of (2) cascading (CA), where speech is first transcribed into text and classification is delegated to a text-based classifier. To answer this, we first construct SpeechTaxi, an 80-hour multilingual dataset for semantic speech classification of Bible verses, covering 28 diverse languages. We then leverage SpeechTaxi to conduct a wide range of experiments comparing E2E and CA in monolingual semantic speech classification as well as in cross-lingual transfer. We find that E2E based on MSEs outperforms CA in monolingual setups, i.e., when trained on in-language data. However, MSEs seem to have poor cross-lingual transfer abilities, with E2E substantially lagging CA both in (1) zero-shot transfer to languages unseen in training and (2) multilingual training, i.e., joint training on multiple languages. Finally, we devise a novel CA approach based on transcription to Romanized text as a language-agnostic intermediate representation and show that it represents a robust solution for languages without native ASR support. Our SpeechTaxi dataset is publicly available at: https://huggingface.co/ datasets/LennartKeller/SpeechTaxi/.

Harnessing Transfer Learning from Swahili: Advancing Solutions for Comorian Dialects

If today some African languages like Swahili have enough resources to develop high-performing Natural Language Processing (NLP) systems, many other languages spoken on the continent are still lacking such support. For these languages, still in their infancy, several possibilities exist to address this critical lack of data. Among them is Transfer Learning, which allows low-resource languages to benefit from the good representation of other languages that are similar to them. In this work, we adopt a similar approach, aiming to pioneer NLP technologies for Comorian, a group of four languages or dialects belonging to the Bantu family. Our approach is initially motivated by the hypothesis that if a human can understand a different language from their native language with little or no effort, it would be entirely possible to model this process on a machine. To achieve this, we consider ways to construct Comorian datasets mixed with Swahili. One thing to note here is that in terms of Swahili data, we only focus on elements that are closest to Comorian by calculating lexical distances between candidate and source data. We empirically test this hypothesis in two use cases: Automatic Speech Recognition (ASR) and Machine Translation (MT). Our MT model achieved ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.6826, 0.42, and 0.6532, respectively, while our ASR system recorded a WER of 39.50\% and a CER of 13.76\%. This research is crucial for advancing NLP in underrepresented languages, with potential to preserve and promote Comorian linguistic heritage in the digital age.

From Text to Actionable Intelligence: Automating STIX Entity and Relationship Extraction

Sharing methods of attack and their effectiveness is a cornerstone of building robust defensive systems. Threat analysis reports, produced by various individuals and organizations, play a critical role in supporting security operations and combating emerging threats. To enhance the timeliness and automation of threat intelligence sharing, several standards have been established, with the Structured Threat Information Expression (STIX) framework emerging as one of the most widely adopted. However, generating STIX-compatible data from unstructured security text remains a largely manual, expert-driven process. To address this challenge, we introduce AZERG, a tool designed to assist security analysts in automatically generating structured STIX representations. To achieve this, we adapt general-purpose large language models for the specific task of extracting STIX-formatted threat data. To manage the complexity, the task is divided into four subtasks: entity detection (T1), entity type identification (T2), related pair detection (T3), and relationship type identification (T4). We apply task-specific fine-tuning to accurately extract relevant entities and infer their relationships in accordance with the STIX specification. To address the lack of training data, we compiled a comprehensive dataset with 4,011 entities and 2,075 relationships extracted from 141 full threat analysis reports, all annotated in alignment with the STIX standard. Our models achieved F1-scores of 84.43% for T1, 88.49% for T2, 95.47% for T3, and 84.60% for T4 in real-world scenarios. We validated their performance against a range of open- and closed-parameter models, as well as state-of-the-art methods, demonstrating improvements of 2-25% across tasks.

Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need

The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach.

T3: Transparent Tracking & Triggering for Fine-grained Overlap of Compute & Collectives

Large Language Models increasingly rely on distributed techniques for their training and inference. These techniques require communication across devices which can reduce scaling efficiency as the number of devices increases. While some distributed techniques can overlap, and thus, hide this communication with independent computations, techniques such as Tensor Parallelism (TP) inherently serialize communication with model execution. One approach to hide this serialized communication is to interleave it with the producer operation (of the communicated data) in a fine-grained manner. However, this fine-grained interleaving of communication and computation in software can be difficult. Furthermore, as with any concurrent execution, it requires compute and memory resources to be shared between computation and communication, causing resource contention that reduces overlapping efficacy. To overcome these challenges, we propose T3 which applies hardware-software co-design to transparently overlap serialized communication while minimizing resource contention with compute. T3 transparently fuses producer operations with the subsequent communication via a simple configuration of the producer's output address space and requires minor software changes. At the hardware level, T3 adds a lightweight track and trigger mechanism to orchestrate the producer's compute, and communication. It further uses compute-enhanced memories for communication's attendant compute. As a result, T3 reduces resource contention, and efficiently overlaps serialized communication with computation. For important Transformer models like T-NLG, T3 speeds up communication-heavy sublayers by 30% geomean (max 47%) and reduces data movement by 22% geomean (max 36%). Furthermore, T3's benefits persist as models scale: geomean 29% for sublayers in sim500-billion parameter models, PALM and MT-NLG.

ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition

Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to-end Speech Benchmark (ESB) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speech system can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems. ESB is available at https://huggingface.co/esb.

PubDef: Defending Against Transfer Attacks From Public Models

Adversarial attacks have been a looming and unaddressed threat in the industry. However, through a decade-long history of the robustness evaluation literature, we have learned that mounting a strong or optimal attack is challenging. It requires both machine learning and domain expertise. In other words, the white-box threat model, religiously assumed by a large majority of the past literature, is unrealistic. In this paper, we propose a new practical threat model where the adversary relies on transfer attacks through publicly available surrogate models. We argue that this setting will become the most prevalent for security-sensitive applications in the future. We evaluate the transfer attacks in this setting and propose a specialized defense method based on a game-theoretic perspective. The defenses are evaluated under 24 public models and 11 attack algorithms across three datasets (CIFAR-10, CIFAR-100, and ImageNet). Under this threat model, our defense, PubDef, outperforms the state-of-the-art white-box adversarial training by a large margin with almost no loss in the normal accuracy. For instance, on ImageNet, our defense achieves 62% accuracy under the strongest transfer attack vs only 36% of the best adversarially trained model. Its accuracy when not under attack is only 2% lower than that of an undefended model (78% vs 80%). We release our code at https://github.com/wagner-group/pubdef.

1DCNNTrans: BISINDO Sign Language Interpreters in Improving the Inclusiveness of Public Services

Indonesia ranks fourth globally in the number of deaf cases. Individuals with hearing impairments often find communication challenging, necessitating the use of sign language. However, there are limited public services that offer such inclusivity. On the other hand, advancements in artificial intelligence (AI) present promising solutions to overcome communication barriers faced by the deaf. This study aims to explore the application of AI in developing models for a simplified sign language translation app and dictionary, designed for integration into public service facilities, to facilitate communication for individuals with hearing impairments, thereby enhancing inclusivity in public services. The researchers compared the performance of LSTM and 1D CNN + Transformer (1DCNNTrans) models for sign language recognition. Through rigorous testing and validation, it was found that the LSTM model achieved an accuracy of 94.67%, while the 1DCNNTrans model achieved an accuracy of 96.12%. Model performance evaluation indicated that although the LSTM exhibited lower inference latency, it showed weaknesses in classifying classes with similar keypoints. In contrast, the 1DCNNTrans model demonstrated greater stability and higher F1 scores for classes with varying levels of complexity compared to the LSTM model. Both models showed excellent performance, exceeding 90% validation accuracy and demonstrating rapid classification of 50 sign language gestures.

Can We Evaluate Domain Adaptation Models Without Target-Domain Labels? A Metric for Unsupervised Evaluation of Domain Adaptation

Unsupervised domain adaptation (UDA) involves adapting a model trained on a label-rich source domain to an unlabeled target domain. However, in real-world scenarios, the absence of target-domain labels makes it challenging to evaluate the performance of deep models after UDA. Additionally, prevailing UDA methods typically rely on adversarial training and self-training, which could lead to model degeneration and negative transfer, further exacerbating the evaluation problem. In this paper, we propose a novel metric called the Transfer Score to address these issues. The transfer score enables the unsupervised evaluation of domain adaptation models by assessing the spatial uniformity of the classifier via model parameters, as well as the transferability and discriminability of the feature space. Based on unsupervised evaluation using our metric, we achieve three goals: (1) selecting the most suitable UDA method from a range of available options, (2) optimizing hyperparameters of UDA models to prevent model degeneration, and (3) identifying the epoch at which the adapted model performs optimally. Our work bridges the gap between UDA research and practical UDA evaluation, enabling a realistic assessment of UDA model performance. We validate the effectiveness of our metric through extensive empirical studies conducted on various public datasets. The results demonstrate the utility of the transfer score in evaluating UDA models and its potential to enhance the overall efficacy of UDA techniques.

Ferret: Faster and Effective Automated Red Teaming with Reward-Based Scoring Technique

In today's era, where large language models (LLMs) are integrated into numerous real-world applications, ensuring their safety and robustness is crucial for responsible AI usage. Automated red-teaming methods play a key role in this process by generating adversarial attacks to identify and mitigate potential vulnerabilities in these models. However, existing methods often struggle with slow performance, limited categorical diversity, and high resource demands. While Rainbow Teaming, a recent approach, addresses the diversity challenge by framing adversarial prompt generation as a quality-diversity search, it remains slow and requires a large fine-tuned mutator for optimal performance. To overcome these limitations, we propose Ferret, a novel approach that builds upon Rainbow Teaming by generating multiple adversarial prompt mutations per iteration and using a scoring function to rank and select the most effective adversarial prompt. We explore various scoring functions, including reward models, Llama Guard, and LLM-as-a-judge, to rank adversarial mutations based on their potential harm to improve the efficiency of the search for harmful mutations. Our results demonstrate that Ferret, utilizing a reward model as a scoring function, improves the overall attack success rate (ASR) to 95%, which is 46% higher than Rainbow Teaming. Additionally, Ferret reduces the time needed to achieve a 90% ASR by 15.2% compared to the baseline and generates adversarial prompts that are transferable i.e. effective on other LLMs of larger size. Our codes are available at https://github.com/declare-lab/ferret.

Watermarking Degrades Alignment in Language Models: Analysis and Mitigation

Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.

Microbial Genetic Algorithm-based Black-box Attack against Interpretable Deep Learning Systems

Deep learning models are susceptible to adversarial samples in white and black-box environments. Although previous studies have shown high attack success rates, coupling DNN models with interpretation models could offer a sense of security when a human expert is involved, who can identify whether a given sample is benign or malicious. However, in white-box environments, interpretable deep learning systems (IDLSes) have been shown to be vulnerable to malicious manipulations. In black-box settings, as access to the components of IDLSes is limited, it becomes more challenging for the adversary to fool the system. In this work, we propose a Query-efficient Score-based black-box attack against IDLSes, QuScore, which requires no knowledge of the target model and its coupled interpretation model. QuScore is based on transfer-based and score-based methods by employing an effective microbial genetic algorithm. Our method is designed to reduce the number of queries necessary to carry out successful attacks, resulting in a more efficient process. By continuously refining the adversarial samples created based on feedback scores from the IDLS, our approach effectively navigates the search space to identify perturbations that can fool the system. We evaluate the attack's effectiveness on four CNN models (Inception, ResNet, VGG, DenseNet) and two interpretation models (CAM, Grad), using both ImageNet and CIFAR datasets. Our results show that the proposed approach is query-efficient with a high attack success rate that can reach between 95% and 100% and transferability with an average success rate of 69% in the ImageNet and CIFAR datasets. Our attack method generates adversarial examples with attribution maps that resemble benign samples. We have also demonstrated that our attack is resilient against various preprocessing defense techniques and can easily be transferred to different DNN models.

EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge

Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on EmergentTTS, we introduce EmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation https://github.com/boson-ai/EmergentTTS-Eval-public{code} and the https://huggingface.co/datasets/bosonai/EmergentTTS-Eval{dataset}.

Improving Black-box Robustness with In-Context Rewriting

Machine learning models often excel on in-distribution (ID) data but struggle with unseen out-of-distribution (OOD) inputs. Most techniques for improving OOD robustness are not applicable to settings where the model is effectively a black box, such as when the weights are frozen, retraining is costly, or the model is leveraged via an API. Test-time augmentation (TTA) is a simple post-hoc technique for improving robustness that sidesteps black-box constraints by aggregating predictions across multiple augmentations of the test input. TTA has seen limited use in NLP due to the challenge of generating effective natural language augmentations. In this work, we propose LLM-TTA, which uses LLM-generated augmentations as TTA's augmentation function. LLM-TTA outperforms conventional augmentation functions across sentiment, toxicity, and news classification tasks for BERT and T5 models, with BERT's OOD robustness improving by an average of 4.30 percentage points without regressing average ID performance. We explore selectively augmenting inputs based on prediction entropy to reduce the rate of expensive LLM augmentations, allowing us to maintain performance gains while reducing the average number of generated augmentations by 57.76%. LLM-TTA is agnostic to the task model architecture, does not require OOD labels, and is effective across low and high-resource settings. We share our data, models, and code for reproducibility.

ContextASR-Bench: A Massive Contextual Speech Recognition Benchmark

Automatic Speech Recognition (ASR) has been extensively investigated, yet prior evaluative efforts have largely been restricted to contextless paradigms. This constraint stems from the limited proficiency of conventional ASR models in context modeling and their deficiency in memory and reasoning based on world knowledge. Recent breakthroughs in the development of Large Language Models (LLMs) and corresponding Large Audio Language Models (LALMs) have markedly enhanced the visibility of general artificial intelligence capabilities. Consequently, there exists a compelling need for a benchmark that can evaluate both the generality and intelligence of ASR systems. To address this gap, we propose ContextASR-Bench: a comprehensive, large-scale benchmark designed to assess contextual speech recognition. This benchmark encompasses up to 40,000 data entries across over 10 domains, enabling a thorough evaluation of model performance in scenarios that omit or incorporate coarse-grained or fine-grained contextual information. Moreover, diverging from conventional ASR evaluations, our benchmark includes an analysis of model efficacy in recognizing named entities mentioned within the auditory input. Our extensive evaluation highlights that LALMs, with strong world knowledge and context learning capabilities, outperform conventional ASR models by a large margin. The dataset and evaluation code have been released at https://github.com/MrSupW/ContextASR-Bench.

A Survey on Non-Intrusive ASR Refinement: From Output-Level Correction to Full-Model Distillation

Automatic Speech Recognition (ASR) has become an integral component of modern technology, powering applications such as voice-activated assistants, transcription services, and accessibility tools. Yet ASR systems continue to struggle with the inherent variability of human speech, such as accents, dialects, and speaking styles, as well as environmental interference, including background noise. Moreover, domain-specific conversations often employ specialized terminology, which can exacerbate transcription errors. These shortcomings not only degrade raw ASR accuracy but also propagate mistakes through subsequent natural language processing pipelines. Because redesigning an ASR model is costly and time-consuming, non-intrusive refinement techniques that leave the model's architecture unchanged have become increasingly popular. In this survey, we systematically review current non-intrusive refinement approaches and group them into five classes: fusion, re-scoring, correction, distillation, and training adjustment. For each class, we outline the main methods, advantages, drawbacks, and ideal application scenarios. Beyond method classification, this work surveys adaptation techniques aimed at refining ASR in domain-specific contexts, reviews commonly used evaluation datasets along with their construction processes, and proposes a standardized set of metrics to facilitate fair comparisons. Finally, we identify open research gaps and suggest promising directions for future work. By providing this structured overview, we aim to equip researchers and practitioners with a clear foundation for developing more robust, accurate ASR refinement pipelines.

Pre-training for Speech Translation: CTC Meets Optimal Transport

The gap between speech and text modalities is a major challenge in speech-to-text translation (ST). Different methods have been proposed to reduce this gap, but most of them require architectural changes in ST training. In this work, we propose to mitigate this issue at the pre-training stage, requiring no change in the ST model. First, we show that the connectionist temporal classification (CTC) loss can reduce the modality gap by design. We provide a quantitative comparison with the more common cross-entropy loss, showing that pre-training with CTC consistently achieves better final ST accuracy. Nevertheless, CTC is only a partial solution and thus, in our second contribution, we propose a novel pre-training method combining CTC and optimal transport to further reduce this gap. Our method pre-trains a Siamese-like model composed of two encoders, one for acoustic inputs and the other for textual inputs, such that they produce representations that are close to each other in the Wasserstein space. Extensive experiments on the standard CoVoST-2 and MuST-C datasets show that our pre-training method applied to the vanilla encoder-decoder Transformer achieves state-of-the-art performance under the no-external-data setting, and performs on par with recent strong multi-task learning systems trained with external data. Finally, our method can also be applied on top of these multi-task systems, leading to further improvements for these models. Code and pre-trained models are available at https://github.com/formiel/fairseq.

High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models

Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.

Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.

Killing two birds with one stone: Can an audio captioning system also be used for audio-text retrieval?

Automated Audio Captioning (AAC) aims to develop systems capable of describing an audio recording using a textual sentence. In contrast, Audio-Text Retrieval (ATR) systems seek to find the best matching audio recording(s) for a given textual query (Text-to-Audio) or vice versa (Audio-to-Text). These tasks require different types of systems: AAC employs a sequence-to-sequence model, while ATR utilizes a ranking model that compares audio and text representations within a shared projection subspace. However, this work investigates the relationship between AAC and ATR by exploring the ATR capabilities of an unmodified AAC system, without fine-tuning for the new task. Our AAC system consists of an audio encoder (ConvNeXt-Tiny) trained on AudioSet for audio tagging, and a transformer decoder responsible for generating sentences. For AAC, it achieves a high SPIDEr-FL score of 0.298 on Clotho and 0.472 on AudioCaps on average. For ATR, we propose using the standard Cross-Entropy loss values obtained for any audio/caption pair. Experimental results on the Clotho and AudioCaps datasets demonstrate decent recall values using this simple approach. For instance, we obtained a Text-to-Audio R@1 value of 0.382 for Au-dioCaps, which is above the current state-of-the-art method without external data. Interestingly, we observe that normalizing the loss values was necessary for Audio-to-Text retrieval.

S2S-Arena, Evaluating Speech2Speech Protocols on Instruction Following with Paralinguistic Information

The rapid development of large language models (LLMs) has brought significant attention to speech models, particularly recent progress in speech2speech protocols supporting speech input and output. However, the existing benchmarks adopt automatic text-based evaluators for evaluating the instruction following ability of these models lack consideration for paralinguistic information in both speech understanding and generation. To address these issues, we introduce S2S-Arena, a novel arena-style S2S benchmark that evaluates instruction-following capabilities with paralinguistic information in both speech-in and speech-out across real-world tasks. We design 154 samples that fused TTS and live recordings in four domains with 21 tasks and manually evaluate existing popular speech models in an arena-style manner. The experimental results show that: (1) in addition to the superior performance of GPT-4o, the speech model of cascaded ASR, LLM, and TTS outperforms the jointly trained model after text-speech alignment in speech2speech protocols; (2) considering paralinguistic information, the knowledgeability of the speech model mainly depends on the LLM backbone, and the multilingual support of that is limited by the speech module; (3) excellent speech models can already understand the paralinguistic information in speech input, but generating appropriate audio with paralinguistic information is still a challenge.