new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 3

Towards Robust Offline-to-Online Reinforcement Learning via Uncertainty and Smoothness

To obtain a near-optimal policy with fewer interactions in Reinforcement Learning (RL), a promising approach involves the combination of offline RL, which enhances sample efficiency by leveraging offline datasets, and online RL, which explores informative transitions by interacting with the environment. Offline-to-Online (O2O) RL provides a paradigm for improving an offline trained agent within limited online interactions. However, due to the significant distribution shift between online experiences and offline data, most offline RL algorithms suffer from performance drops and fail to achieve stable policy improvement in O2O adaptation. To address this problem, we propose the Robust Offline-to-Online (RO2O) algorithm, designed to enhance offline policies through uncertainty and smoothness, and to mitigate the performance drop in online adaptation. Specifically, RO2O incorporates Q-ensemble for uncertainty penalty and adversarial samples for policy and value smoothness, which enable RO2O to maintain a consistent learning procedure in online adaptation without requiring special changes to the learning objective. Theoretical analyses in linear MDPs demonstrate that the uncertainty and smoothness lead to a tighter optimality bound in O2O against distribution shift. Experimental results illustrate the superiority of RO2O in facilitating stable offline-to-online learning and achieving significant improvement with limited online interactions.

The Effective Horizon Explains Deep RL Performance in Stochastic Environments

Reinforcement learning (RL) theory has largely focused on proving minimax sample complexity bounds. These require strategic exploration algorithms that use relatively limited function classes for representing the policy or value function. Our goal is to explain why deep RL algorithms often perform well in practice, despite using random exploration and much more expressive function classes like neural networks. Our work arrives at an explanation by showing that many stochastic MDPs can be solved by performing only a few steps of value iteration on the random policy's Q function and then acting greedily. When this is true, we find that it is possible to separate the exploration and learning components of RL, making it much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively learns a near-optimal policy by exploring randomly to collect rollouts and then performing a limited number of steps of fitted-Q iteration over those rollouts. Any regression algorithm that satisfies basic in-distribution generalization properties can be used in SQIRL to efficiently solve common MDPs. This can explain why deep RL works, since it is empirically established that neural networks generalize well in-distribution. Furthermore, SQIRL explains why random exploration works well in practice. We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" of lookahead and on the complexity of the class used for function approximation. Empirically, we also find that SQIRL performance strongly correlates with PPO and DQN performance in a variety of stochastic environments, supporting that our theoretical analysis is predictive of practical performance. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon.

Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function

Probabilistic dynamics model ensemble is widely used in existing model-based reinforcement learning methods as it outperforms a single dynamics model in both asymptotic performance and sample efficiency. In this paper, we provide both practical and theoretical insights on the empirical success of the probabilistic dynamics model ensemble through the lens of Lipschitz continuity. We find that, for a value function, the stronger the Lipschitz condition is, the smaller the gap between the true dynamics- and learned dynamics-induced Bellman operators is, thus enabling the converged value function to be closer to the optimal value function. Hence, we hypothesize that the key functionality of the probabilistic dynamics model ensemble is to regularize the Lipschitz condition of the value function using generated samples. To test this hypothesis, we devise two practical robust training mechanisms through computing the adversarial noise and regularizing the value network's spectral norm to directly regularize the Lipschitz condition of the value functions. Empirical results show that combined with our mechanisms, model-based RL algorithms with a single dynamics model outperform those with an ensemble of probabilistic dynamics models. These findings not only support the theoretical insight, but also provide a practical solution for developing computationally efficient model-based RL algorithms.

Making RL with Preference-based Feedback Efficient via Randomization

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

Contextual Bandits in Payment Processing: Non-uniform Exploration and Supervised Learning at Adyen

Uniform random exploration in decision-making systems supports off-policy learning via supervision but incurs high regret, making it impractical for many applications. Conversely, non-uniform exploration offers better immediate performance but lacks support for off-policy learning. Recent research suggests that regression oracles can bridge this gap by combining non-uniform exploration with supervised learning. In this paper, we analyze these approaches within a real-world industrial context at Adyen, a large global payments processor characterized by batch logged delayed feedback, short-term memory, and dynamic action spaces under the Empirical Risk Minimization (ERM) framework. Our analysis reveals that while regression oracles significantly improve performance, they introduce challenges due to rigid algorithmic assumptions. Specifically, we observe that as a policy improves, subsequent generations may perform worse due to shifts in the reward distribution and increased class imbalance in the training data. This degradation occurs de spite improvements in other aspects of the training data, leading to decreased performance in successive policy iterations. We further explore the long-term impact of regression oracles, identifying a potential "oscillation effect." This effect arises when regression oracles influence probability estimates and the realizability of subsequent policy models, leading to fluctuations in performance across iterations. Our findings highlight the need for more adaptable algorithms that can leverage the benefits of regression oracles without introducing instability in policy performance over time.

Technical Report: Full-Stack Fine-Tuning for the Q Programming Language

Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.

Individually Fair Learning with One-Sided Feedback

We consider an online learning problem with one-sided feedback, in which the learner is able to observe the true label only for positively predicted instances. On each round, k instances arrive and receive classification outcomes according to a randomized policy deployed by the learner, whose goal is to maximize accuracy while deploying individually fair policies. We first extend the framework of Bechavod et al. (2020), which relies on the existence of a human fairness auditor for detecting fairness violations, to instead incorporate feedback from dynamically-selected panels of multiple, possibly inconsistent, auditors. We then construct an efficient reduction from our problem of online learning with one-sided feedback and a panel reporting fairness violations to the contextual combinatorial semi-bandit problem (Cesa-Bianchi & Lugosi, 2009, Gy\"{o}rgy et al., 2007). Finally, we show how to leverage the guarantees of two algorithms in the contextual combinatorial semi-bandit setting: Exp2 (Bubeck et al., 2012) and the oracle-efficient Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016), to provide multi-criteria no regret guarantees simultaneously for accuracy and fairness. Our results eliminate two potential sources of bias from prior work: the "hidden outcomes" that are not available to an algorithm operating in the full information setting, and human biases that might be present in any single human auditor, but can be mitigated by selecting a well chosen panel.

Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping

Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.

Reward Model Ensembles Help Mitigate Overoptimization

Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the "true" reward, these learned reward models are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger "gold" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.

Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting

Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.

Does Sparsity Help in Learning Misspecified Linear Bandits?

Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in R^d that approximate the rewards in a bandit or RL with a uniform error of varepsilon, searching for an O(varepsilon)-optimal action requires pulling at least Omega(exp(d)) queries. Furthermore, Lattimore et al. (2020) show that a degraded O(varepsilond)-optimal solution can be learned within poly(d/varepsilon) queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the varepsilond barrier. In this paper, we address this question by showing that algorithms can obtain O(varepsilon)-optimal actions by querying O(varepsilon^{-s}d^s) actions, where s is the sparsity parameter, removing the exp(d)-dependence. We then establish information-theoretical lower bounds, i.e., Omega(exp(s)), to show that our upper bound on sample complexity is nearly tight if one demands an error O(s^{delta}varepsilon) for 0<delta<1. For deltageq 1, we further show that poly(s/varepsilon) queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.

A Minimaximalist Approach to Reinforcement Learning from Human Feedback

We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.

Demonstration-Regularized RL

Incorporating expert demonstrations has empirically helped to improve the sample efficiency of reinforcement learning (RL). This paper quantifies theoretically to what extent this extra information reduces RL's sample complexity. In particular, we study the demonstration-regularized reinforcement learning that leverages the expert demonstrations by KL-regularization for a policy learned by behavior cloning. Our findings reveal that using N^{E} expert demonstrations enables the identification of an optimal policy at a sample complexity of order mathcal{O}(Poly(S,A,H)/(varepsilon^2 N^{E})) in finite and mathcal{O}(Poly(d,H)/(varepsilon^2 N^{E})) in linear Markov decision processes, where varepsilon is the target precision, H the horizon, A the number of action, S the number of states in the finite case and d the dimension of the feature space in the linear case. As a by-product, we provide tight convergence guarantees for the behaviour cloning procedure under general assumptions on the policy classes. Additionally, we establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback (RLHF). In this respect, we provide theoretical evidence showing the benefits of KL-regularization for RLHF in tabular and linear MDPs. Interestingly, we avoid pessimism injection by employing computationally feasible regularization to handle reward estimation uncertainty, thus setting our approach apart from the prior works.

Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening

Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@N across a large range of N in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release

Multi-Agent Inverse Q-Learning from Demonstrations

When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .

GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents

Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.

The Benefits of Model-Based Generalization in Reinforcement Learning

Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved extremely effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, owing to the many design choices involved in empirically successful algorithms, it can be very hard to establish where the benefits are actually coming from. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a general theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.

Reinforcement learning with combinatorial actions for coupled restless bandits

Reinforcement learning (RL) has increasingly been applied to solve real-world planning problems, with progress in handling large state spaces and time horizons. However, a key bottleneck in many domains is that RL methods cannot accommodate large, combinatorially structured action spaces. In such settings, even representing the set of feasible actions at a single step may require a complex discrete optimization formulation. We leverage recent advances in embedding trained neural networks into optimization problems to propose SEQUOIA, an RL algorithm that directly optimizes for long-term reward over the feasible action space. Our approach embeds a Q-network into a mixed-integer program to select a combinatorial action in each timestep. Here, we focus on planning over restless bandits, a class of planning problems which capture many real-world examples of sequential decision making. We introduce coRMAB, a broader class of restless bandits with combinatorial actions that cannot be decoupled across the arms of the restless bandit, requiring direct solving over the joint, exponentially large action space. We empirically validate SEQUOIA on four novel restless bandit problems with combinatorial constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints. Our approach significantly outperforms existing methods -- which cannot address sequential planning and combinatorial selection simultaneously -- by an average of 24.8\% on these difficult instances.

One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration

In online reinforcement learning (online RL), balancing exploration and exploitation is crucial for finding an optimal policy in a sample-efficient way. To achieve this, existing sample-efficient online RL algorithms typically consist of three components: estimation, planning, and exploration. However, in order to cope with general function approximators, most of them involve impractical algorithmic components to incentivize exploration, such as optimization within data-dependent level-sets or complicated sampling procedures. To address this challenge, we propose an easy-to-implement RL framework called Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single objective that integrates the estimation and planning components while balancing exploration and exploitation automatically. Theoretically, we prove that MEX achieves a sublinear regret with general function approximations for Markov decision processes (MDP) and is further extendable to two-player zero-sum Markov games (MG). Meanwhile, we adapt deep RL baselines to design practical versions of MEX, in both model-free and model-based manners, which can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards. Compared with existing sample-efficient online RL algorithms with general function approximations, MEX achieves similar sample efficiency while enjoying a lower computational cost and is more compatible with modern deep RL methods.

Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning

Reinforcement learning for LLM reasoning has rapidly emerged as a prominent research area, marked by a significant surge in related studies on both algorithmic innovations and practical applications. Despite this progress, several critical challenges remain, including the absence of standardized guidelines for employing RL techniques and a fragmented understanding of their underlying mechanisms. Additionally, inconsistent experimental settings, variations in training data, and differences in model initialization have led to conflicting conclusions, obscuring the key characteristics of these techniques and creating confusion among practitioners when selecting appropriate techniques. This paper systematically reviews widely adopted RL techniques through rigorous reproductions and isolated evaluations within a unified open-source framework. We analyze the internal mechanisms, applicable scenarios, and core principles of each technique through fine-grained experiments, including datasets of varying difficulty, model sizes, and architectures. Based on these insights, we present clear guidelines for selecting RL techniques tailored to specific setups, and provide a reliable roadmap for practitioners navigating the RL for the LLM domain. Finally, we reveal that a minimalist combination of two techniques can unlock the learning capability of critic-free policies using vanilla PPO loss. The results demonstrate that our simple combination consistently improves performance, surpassing strategies like GRPO and DAPO.

Lower Bounds for Learning in Revealing POMDPs

This paper studies the fundamental limits of reinforcement learning (RL) in the challenging partially observable setting. While it is well-established that learning in Partially Observable Markov Decision Processes (POMDPs) requires exponentially many samples in the worst case, a surge of recent work shows that polynomial sample complexities are achievable under the revealing condition -- A natural condition that requires the observables to reveal some information about the unobserved latent states. However, the fundamental limits for learning in revealing POMDPs are much less understood, with existing lower bounds being rather preliminary and having substantial gaps from the current best upper bounds. We establish strong PAC and regret lower bounds for learning in revealing POMDPs. Our lower bounds scale polynomially in all relevant problem parameters in a multiplicative fashion, and achieve significantly smaller gaps against the current best upper bounds, providing a solid starting point for future studies. In particular, for multi-step revealing POMDPs, we show that (1) the latent state-space dependence is at least Omega(S^{1.5}) in the PAC sample complexity, which is notably harder than the Theta(S) scaling for fully-observable MDPs; (2) Any polynomial sublinear regret is at least Omega(T^{2/3}), suggesting its fundamental difference from the single-step case where O(T) regret is achievable. Technically, our hard instance construction adapts techniques in distribution testing, which is new to the RL literature and may be of independent interest.

Everyone Contributes! Incentivizing Strategic Cooperation in Multi-LLM Systems via Sequential Public Goods Games

Coordinating multiple large language models (LLMs) to solve complex tasks collaboratively poses a fundamental trade-off between the computation costs and collective performance compared with individual model. We introduce a novel, game-theoretically grounded reinforcement learning (RL) framework, the Multi-Agent Cooperation Sequential Public Goods Game (MAC-SPGG), to systematically incentivize cooperation in multi-LLM ensembles. In MAC-SPGG, LLM agents move in sequence, observing predecessors' outputs and updating beliefs to condition their own contributions. By redesigning the public-goods reward, effortful contributions become the unique Subgame Perfect Nash Equilibrium (SPNE), which eliminates free-riding under traditional SPGG or PGG. Its sequential protocol replaces costly round-based information exchanges with a streamlined decision flow, cutting communication overhead while retaining strategic depth. We prove the existence and uniqueness of the SPNE under realistic parameters, and empirically show that MAC-SPGG-trained ensembles outperform single-agent baselines, chain-of-thought prompting, and other cooperative methods, even achieving comparable performance to large-scale models across reasoning, math, code generation, and NLP tasks. Our results highlight the power of structured, incentive-aligned MAC-SPGG cooperation for scalable and robust multi-agent language generation.

Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula

Robustness against adversarial attacks and distribution shifts is a long-standing goal of Reinforcement Learning (RL). To this end, Robust Adversarial Reinforcement Learning (RARL) trains a protagonist against destabilizing forces exercised by an adversary in a competitive zero-sum Markov game, whose optimal solution, i.e., rational strategy, corresponds to a Nash equilibrium. However, finding Nash equilibria requires facing complex saddle point optimization problems, which can be prohibitive to solve, especially for high-dimensional control. In this paper, we propose a novel approach for adversarial RL based on entropy regularization to ease the complexity of the saddle point optimization problem. We show that the solution of this entropy-regularized problem corresponds to a Quantal Response Equilibrium (QRE), a generalization of Nash equilibria that accounts for bounded rationality, i.e., agents sometimes play random actions instead of optimal ones. Crucially, the connection between the entropy-regularized objective and QRE enables free modulation of the rationality of the agents by simply tuning the temperature coefficient. We leverage this insight to propose our novel algorithm, Quantal Adversarial RL (QARL), which gradually increases the rationality of the adversary in a curriculum fashion until it is fully rational, easing the complexity of the optimization problem while retaining robustness. We provide extensive evidence of QARL outperforming RARL and recent baselines across several MuJoCo locomotion and navigation problems in overall performance and robustness.

Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by 1, we show that our algorithm only needs to explore tilde O( d^2varepsilon^{-2}) episodes to find an varepsilon-optimal policy, where d is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an Omega(d^2varepsilon^{-2}) sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization

Despite the success of neural-based combinatorial optimization methods for end-to-end heuristic learning, out-of-distribution generalization remains a challenge. In this paper, we present a novel formulation of Combinatorial Optimization Problems (COPs) as Markov Decision Processes (MDPs) that effectively leverages common symmetries of COPs to improve out-of-distribution robustness. Starting from a direct MDP formulation of a constructive method, we introduce a generic way to reduce the state space, based on Bisimulation Quotienting (BQ) in MDPs. Then, for COPs with a recursive nature, we specialize the bisimulation and show how the reduced state exploits the symmetries of these problems and facilitates MDP solving. Our approach is principled and we prove that an optimal policy for the proposed BQ-MDP actually solves the associated COPs. We illustrate our approach on five classical problems: the Euclidean and Asymmetric Traveling Salesman, Capacitated Vehicle Routing, Orienteering and Knapsack Problems. Furthermore, for each problem, we introduce a simple attention-based policy network for the BQ-MDPs, which we train by imitation of (near) optimal solutions of small instances from a single distribution. We obtain new state-of-the-art results for the five COPs on both synthetic and realistic benchmarks. Notably, in contrast to most existing neural approaches, our learned policies show excellent generalization performance to much larger instances than seen during training, without any additional search procedure.

Refined Regret for Adversarial MDPs with Linear Function Approximation

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.

A Dataset Perspective on Offline Reinforcement Learning

The application of Reinforcement Learning (RL) in real world environments can be expensive or risky due to sub-optimal policies during training. In Offline RL, this problem is avoided since interactions with an environment are prohibited. Policies are learned from a given dataset, which solely determines their performance. Despite this fact, how dataset characteristics influence Offline RL algorithms is still hardly investigated. The dataset characteristics are determined by the behavioral policy that samples this dataset. Therefore, we define characteristics of behavioral policies as exploratory for yielding high expected information in their interaction with the Markov Decision Process (MDP) and as exploitative for having high expected return. We implement two corresponding empirical measures for the datasets sampled by the behavioral policy in deterministic MDPs. The first empirical measure SACo is defined by the normalized unique state-action pairs and captures exploration. The second empirical measure TQ is defined by the normalized average trajectory return and captures exploitation. Empirical evaluations show the effectiveness of TQ and SACo. In large-scale experiments using our proposed measures, we show that the unconstrained off-policy Deep Q-Network family requires datasets with high SACo to find a good policy. Furthermore, experiments show that policy constraint algorithms perform well on datasets with high TQ and SACo. Finally, the experiments show, that purely dataset-constrained Behavioral Cloning performs competitively to the best Offline RL algorithms for datasets with high TQ.

Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking

Reward models play a key role in aligning language model applications towards human preferences. However, this setup creates an incentive for the language model to exploit errors in the reward model to achieve high estimated reward, a phenomenon often termed reward hacking. A natural mitigation is to train an ensemble of reward models, aggregating over model outputs to obtain a more robust reward estimate. We explore the application of reward ensembles to alignment at both training time (through reinforcement learning) and inference time (through reranking). First, we show that reward models are underspecified: reward models that perform similarly in-distribution can yield very different rewards when used in alignment, due to distribution shift. Second, underspecification results in overoptimization, where alignment to one reward model does not improve reward as measured by another reward model trained on the same data. Third, overoptimization is mitigated by the use of reward ensembles, and ensembles that vary by their pretraining seeds lead to better generalization than ensembles that differ only by their fine-tuning seeds, with both outperforming individual reward models. However, even pretrain reward ensembles do not eliminate reward hacking: we show several qualitative reward hacking phenomena that are not mitigated by ensembling because all reward models in the ensemble exhibit similar error patterns.

Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning

Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 41.5% length-controlled win rate on AlpacaEval 2.0 and a 38.3% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art iterative algorithm [Dong et al., 2024] under the BT model assumption. Additionally, our ablation study highlights the benefits of incorporating KL regularization for response length control.

Adaptive Data-Free Quantization

Data-free quantization (DFQ) recovers the performance of quantized network (Q) without the original data, but generates the fake sample via a generator (G) by learning from full-precision network (P), which, however, is totally independent of Q, overlooking the adaptability of the knowledge from generated samples, i.e., informative or not to the learning process of Q, resulting into the overflow of generalization error. Building on this, several critical questions -- how to measure the sample adaptability to Q under varied bit-width scenarios? whether the largest adaptability is the best? how to generate the samples with adaptive adaptability to improve Q's generalization? To answer the above questions, in this paper, we propose an Adaptive Data-Free Quantization (AdaDFQ) method, which revisits DFQ from a zero-sum game perspective upon the sample adaptability between two players -- a generator and a quantized network. Following this viewpoint, we further define the disagreement and agreement samples to form two boundaries, where the margin is optimized to adaptively regulate the adaptability of generated samples to Q, so as to address the over-and-under fitting issues. Our AdaDFQ reveals: 1) the largest adaptability is NOT the best for sample generation to benefit Q's generalization; 2) the knowledge of the generated sample should not be informative to Q only, but also related to the category and distribution information of the training data for P. The theoretical and empirical analysis validate the advantages of AdaDFQ over the state-of-the-arts. Our code is available at https://github.com/hfutqian/AdaDFQ.

Actor-Critics Can Achieve Optimal Sample Efficiency

Actor-critic algorithms have become a cornerstone in reinforcement learning (RL), leveraging the strengths of both policy-based and value-based methods. Despite recent progress in understanding their statistical efficiency, no existing work has successfully learned an epsilon-optimal policy with a sample complexity of O(1/epsilon^2) trajectories with general function approximation when strategic exploration is necessary. We address this open problem by introducing a novel actor-critic algorithm that attains a sample-complexity of O(dH^5 log|A|/epsilon^2 + d H^4 log|F|/ epsilon^2) trajectories, and accompanying T regret when the Bellman eluder dimension d does not increase with T at more than a log T rate. Here, F is the critic function class, A is the action space, and H is the horizon in the finite horizon MDP setting. Our algorithm integrates optimism, off-policy critic estimation targeting the optimal Q-function, and rare-switching policy resets. We extend this to the setting of Hybrid RL, showing that initializing the critic with offline data yields sample efficiency gains compared to purely offline or online RL. Further, utilizing access to offline data, we provide a non-optimistic provably efficient actor-critic algorithm that only additionally requires N_{off} geq c_{off}^*dH^4/epsilon^2 in exchange for omitting optimism, where c_{off}^* is the single-policy concentrability coefficient and N_{off} is the number of offline samples. This addresses another open problem in the literature. We further provide numerical experiments to support our theoretical findings.

Cascading Reinforcement Learning

Cascading bandits have gained popularity in recent years due to their applicability to recommendation systems and online advertising. In the cascading bandit model, at each timestep, an agent recommends an ordered subset of items (called an item list) from a pool of items, each associated with an unknown attraction probability. Then, the user examines the list, and clicks the first attractive item (if any), and after that, the agent receives a reward. The goal of the agent is to maximize the expected cumulative reward. However, the prior literature on cascading bandits ignores the influences of user states (e.g., historical behaviors) on recommendations and the change of states as the session proceeds. Motivated by this fact, we propose a generalized cascading RL framework, which considers the impact of user states and state transition into decisions. In cascading RL, we need to select items not only with large attraction probabilities but also leading to good successor states. This imposes a huge computational challenge due to the combinatorial action space. To tackle this challenge, we delve into the properties of value functions, and design an oracle BestPerm to efficiently find the optimal item list. Equipped with BestPerm, we develop two algorithms CascadingVI and CascadingBPI, which are both computationally-efficient and sample-efficient, and provide near-optimal regret and sample complexity guarantees. Furthermore, we present experiments to show the improved computational and sample efficiencies of our algorithms compared to straightforward adaptations of existing RL algorithms in practice.

Offline RL with Observation Histories: Analyzing and Improving Sample Complexity

Offline reinforcement learning (RL) can in principle synthesize more optimal behavior from a dataset consisting only of suboptimal trials. One way that this can happen is by "stitching" together the best parts of otherwise suboptimal trajectories that overlap on similar states, to create new behaviors where each individual state is in-distribution, but the overall returns are higher. However, in many interesting and complex applications, such as autonomous navigation and dialogue systems, the state is partially observed. Even worse, the state representation is unknown or not easy to define. In such cases, policies and value functions are often conditioned on observation histories instead of states. In these cases, it is not clear if the same kind of "stitching" is feasible at the level of observation histories, since two different trajectories would always have different histories, and thus "similar states" that might lead to effective stitching cannot be leveraged. Theoretically, we show that standard offline RL algorithms conditioned on observation histories suffer from poor sample complexity, in accordance with the above intuition. We then identify sufficient conditions under which offline RL can still be efficient -- intuitively, it needs to learn a compact representation of history comprising only features relevant for action selection. We introduce a bisimulation loss that captures the extent to which this happens, and propose that offline RL can explicitly optimize this loss to aid worst-case sample complexity. Empirically, we show that across a variety of tasks either our proposed loss improves performance, or the value of this loss is already minimized as a consequence of standard offline RL, indicating that it correlates well with good performance.

Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances

Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.

Learning in Sparse Rewards settings through Quality-Diversity algorithms

In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.

From r to Q^*: Your Language Model is Secretly a Q-Function

Reinforcement Learning From Human Feedback (RLHF) has been a critical to the success of the latest generation of generative AI models. In response to the complex nature of the classical RLHF pipeline, direct alignment algorithms such as Direct Preference Optimization (DPO) have emerged as an alternative approach. Although DPO solves the same objective as the standard RLHF setup, there is a mismatch between the two approaches. Standard RLHF deploys reinforcement learning in a specific token-level MDP, while DPO is derived as a bandit problem in which the whole response of the model is treated as a single arm. In this work we rectify this difference, first we theoretically show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation. Using our theoretical results, we provide three concrete empirical insights. First, we show that because of its token level interpretation, DPO is able to perform some type of credit assignment. Next, we prove that under the token level formulation, classical search-based algorithms, such as MCTS, which have recently been applied to the language generation space, are equivalent to likelihood-based search on a DPO policy. Empirically we show that a simple beam search yields meaningful improvement over the base DPO policy. Finally, we show how the choice of reference policy causes implicit rewards to decline during training. We conclude by discussing applications of our work, including information elicitation in multi-tun dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.

Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms

This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.

Dual RL: Unification and New Methods for Reinforcement and Imitation Learning

The goal of reinforcement learning (RL) is to find a policy that maximizes the expected cumulative return. It has been shown that this objective can be represented as an optimization problem of state-action visitation distribution under linear constraints. The dual problem of this formulation, which we refer to as dual RL, is unconstrained and easier to optimize. In this work, we first cast several state-of-the-art offline RL and offline imitation learning (IL) algorithms as instances of dual RL approaches with shared structures. Such unification allows us to identify the root cause of the shortcomings of prior methods. For offline IL, our analysis shows that prior methods are based on a restrictive coverage assumption that greatly limits their performance in practice. To fix this limitation, we propose a new discriminator-free method ReCOIL that learns to imitate from arbitrary off-policy data to obtain near-expert performance. For offline RL, our analysis frames a recent offline RL method XQL in the dual framework, and we further propose a new method f-DVL that provides alternative choices to the Gumbel regression loss that fixes the known training instability issue of XQL. The performance improvements by both of our proposed methods, ReCOIL and f-DVL, in IL and RL are validated on an extensive suite of simulated robot locomotion and manipulation tasks. Project code and details can be found at this https://hari-sikchi.github.io/dual-rl.

Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization

Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance sigma_{1:T}^2 and the cumulative adversarial variation Sigma_{1:T}^2 for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance sigma_{max}^2 and the maximal adversarial variation Sigma_{max}^2 for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same O(sigma_{1:T^2}+Sigma_{1:T^2}) regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an O(min{log (sigma_{1:T}^2+Sigma_{1:T}^2), (sigma_{max}^2 + Sigma_{max}^2) log T}) bound, better than their O((sigma_{max}^2 + Sigma_{max}^2) log T) bound. For exp-concave and smooth functions, we achieve a new O(dlog(sigma_{1:T}^2+Sigma_{1:T}^2)) bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.

DPO Meets PPO: Reinforced Token Optimization for RLHF

In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (RTO), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, RTO is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, RTO innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.

Agnostic Reinforcement Learning: Foundations and Algorithms

Reinforcement Learning (RL) has demonstrated tremendous empirical success across numerous challenging domains. However, we lack a strong theoretical understanding of the statistical complexity of RL in environments with large state spaces, where function approximation is required for sample-efficient learning. This thesis addresses this gap by rigorously examining the statistical complexity of RL with function approximation from a learning theoretic perspective. Departing from a long history of prior work, we consider the weakest form of function approximation, called agnostic policy learning, in which the learner seeks to find the best policy in a given class Pi, with no guarantee that Pi contains an optimal policy for the underlying task. We systematically explore agnostic policy learning along three key axes: environment access -- how a learner collects data from the environment; coverage conditions -- intrinsic properties of the underlying MDP measuring the expansiveness of state-occupancy measures for policies in the class Pi, and representational conditions -- structural assumptions on the class Pi itself. Within this comprehensive framework, we (1) design new learning algorithms with theoretical guarantees and (2) characterize fundamental performance bounds of any algorithm. Our results reveal significant statistical separations that highlight the power and limitations of agnostic policy learning.

Last Switch Dependent Bandits with Monotone Payoff Functions

In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.

Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer

Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.

Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination

The reasoning capabilities of large language models (LLMs) have been a longstanding focus of research. Recent works have further enhanced these capabilities using reinforcement learning (RL), with many new methods claiming significant improvements with minimal or no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance reasoning performance. However, these breakthroughs are mostly reported on the Qwen2.5 model family and evaluated on well-known benchmarks such as MATH-500, AMC, and AIME, while failing to achieve similar gains on other models like Llama, which warrants further investigation. Our analysis shows that although Qwen2.5 achieves strong mathematical reasoning performance, its pretraining on large-scale web corpora makes it vulnerable to data contamination in popular benchmarks. As a result, results derived from these benchmarks may be unreliable. To address this, we introduce a generator that produces fully synthetic arithmetic problems of arbitrary length and difficulty, yielding a clean dataset we call RandomCalculation. Using these leakage-free datasets, we show that only accurate reward signals consistently improve performance, while noisy or incorrect signals do not. We advocate for evaluating RL methods on uncontaminated benchmarks and across diverse model families to ensure trustworthy conclusions.

Effective Reward Specification in Deep Reinforcement Learning

In the last decade, Deep Reinforcement Learning has evolved into a powerful tool for complex sequential decision-making problems. It combines deep learning's proficiency in processing rich input signals with reinforcement learning's adaptability across diverse control tasks. At its core, an RL agent seeks to maximize its cumulative reward, enabling AI algorithms to uncover novel solutions previously unknown to experts. However, this focus on reward maximization also introduces a significant difficulty: improper reward specification can result in unexpected, misaligned agent behavior and inefficient learning. The complexity of accurately specifying the reward function is further amplified by the sequential nature of the task, the sparsity of learning signals, and the multifaceted aspects of the desired behavior. In this thesis, we survey the literature on effective reward specification strategies, identify core challenges relating to each of these approaches, and propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning. Reward specification represents one of the most challenging aspects of applying reinforcement learning in real-world domains. Our work underscores the absence of a universal solution to this complex and nuanced challenge; solving it requires selecting the most appropriate tools for the specific requirements of each unique application.

Contextual Bandits with Online Neural Regression

Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms.

Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes

We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.

Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation

We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.

Policy Filtration in RLHF to Fine-Tune LLM for Code Generation

Reinforcement learning from human feedback (RLHF) is one of the key techniques that helps large language models (LLMs) to follow instructions and provide helpful and harmless responses. While direct policy optimization methods exist, state-of-the-art LLMs adopt RL-based methods (usually PPO) in RLHF to train the policy to generate good responses guided by a reward model learned from preference data. The main challenge of these methods is the inaccuracy of the intermediate reward model, especially in code generation tasks that require long and complex reasoning to score a response. We find that the reliability of the reward model varies across responses assigned with different rewards. This motivates us to filter the samples whose rewards may be unreliable to improve signal-to-noise ratio during policy learning, resulting in Policy Filtration for Proximal Policy Optimization (PF-PPO). To choose a proper policy filtration strategy for a given reward model, the coefficient of determination (R^2) between rewards and actual scores on filtered samples serves as a good metrics and helps us find several promising strategies. We provide extensive experiments to validate the effectiveness of PF-PPO in code generation tasks, and find that some variants of PF-PPO are highly effective and achieve new state-of-the-art performance across 7-billion-parameter models on HumanEval, MBPP, and a new and more challenging LeetCode Contest benchmark.