new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

Solving Inequality Proofs with Large Language Models

Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.

A Lean Dataset for International Math Olympiad: Small Steps towards Writing Math Proofs for Hard Problems

Using AI to write formal proofs for mathematical problems is a challenging task that has seen some advancements in recent years. Automated systems such as Lean can verify the correctness of proofs written in formal language, yet writing the proofs in formal language can be challenging for humans and machines. The miniF2F benchmark has 20 IMO problems in its test set, yet formal proofs are available only for 6 of these problems (3 of which are only written by mathematicians). The model with best accuracy can only prove 2 of these 20 IMO problems, from 1950s and 60s, while its training set is a secret. In this work, we write complete, original formal proofs for the remaining IMO problems in Lean along with 3 extra problems from IMO 2022 and 2023. This effort expands the availability of proof currently in the public domain by creating 5,880 lines of Lean proof. The goal of the paper is to pave the way for developing AI models that can automatically write the formal proofs for all the IMO problems in miniF2F and beyond by providing an evaluation benchmark. In this pursuit, we devise a method to decompose the proofs of these problems into their building blocks, constructing a dataset of 1,329 lemmas with more than 40k lines of Lean code. These lemmas are not trivial, yet they are approachable, providing the opportunity to evaluate and diagnose the failures and successes of AI models. We evaluate the ability of the SOTA LLMs on our dataset and analyze their success and failure modes from different perspectives. Our dataset and code is available at: https://github.com/roozbeh-yz/IMO-Steps.

zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training

The recent advancements in deep learning have brought about significant changes in various aspects of people's lives. Meanwhile, these rapid developments have raised concerns about the legitimacy of the training process of deep neural networks. To protect the intellectual properties of AI developers, directly examining the training process by accessing the model parameters and training data is often prohibited for verifiers. In response to this challenge, we present zero-knowledge deep learning (zkDL), an efficient zero-knowledge proof for deep learning training. To address the long-standing challenge of verifiable computations of non-linearities in deep learning training, we introduce zkReLU, a specialized proof for the ReLU activation and its backpropagation. zkReLU turns the disadvantage of non-arithmetic relations into an advantage, leading to the creation of FAC4DNN, our specialized arithmetic circuit design for modelling neural networks. This design aggregates the proofs over different layers and training steps, without being constrained by their sequential order in the training process. With our new CUDA implementation that achieves full compatibility with the tensor structures and the aggregated proof design, zkDL enables the generation of complete and sound proofs in less than a second per batch update for an 8-layer neural network with 10M parameters and a batch size of 64, while provably ensuring the privacy of data and model parameters. To our best knowledge, we are not aware of any existing work on zero-knowledge proof of deep learning training that is scalable to million-size networks.

Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification

Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.

Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation

Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.

DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition

We introduce DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals are synthesized into a chain-of-thought process, combined with DeepSeek-V3's step-by-step reasoning, to create an initial cold start for reinforcement learning. This process enables us to integrate both informal and formal mathematical reasoning into a unified model. The resulting model, DeepSeek-Prover-V2-671B, achieves state-of-the-art performance in neural theorem proving, reaching 88.9% pass ratio on the MiniF2F-test and solving 49 out of 658 problems from PutnamBench. In addition to standard benchmarks, we introduce ProverBench, a collection of 325 formalized problems, to enrich our evaluation, including 15 selected problems from the recent AIME competitions (years 24-25). Further evaluation on these 15 AIME problems shows that the model successfully solves 6 of them. In comparison, DeepSeek-V3 solves 8 of these problems using majority voting, highlighting that the gap between formal and informal mathematical reasoning in large language models is substantially narrowing.

Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation

We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.

Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data

Neural networks trained by gradient descent (GD) have exhibited a number of surprising generalization behaviors. First, they can achieve a perfect fit to noisy training data and still generalize near-optimally, showing that overfitting can sometimes be benign. Second, they can undergo a period of classical, harmful overfitting -- achieving a perfect fit to training data with near-random performance on test data -- before transitioning ("grokking") to near-optimal generalization later in training. In this work, we show that both of these phenomena provably occur in two-layer ReLU networks trained by GD on XOR cluster data where a constant fraction of the training labels are flipped. In this setting, we show that after the first step of GD, the network achieves 100% training accuracy, perfectly fitting the noisy labels in the training data, but achieves near-random test accuracy. At a later training step, the network achieves near-optimal test accuracy while still fitting the random labels in the training data, exhibiting a "grokking" phenomenon. This provides the first theoretical result of benign overfitting in neural network classification when the data distribution is not linearly separable. Our proofs rely on analyzing the feature learning process under GD, which reveals that the network implements a non-generalizable linear classifier after one step and gradually learns generalizable features in later steps.

Gradient is All You Need?

In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.