- The ACL OCL Corpus: Advancing Open Science in Computational Linguistics We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL). 5 authors · May 24, 2023
1 On the Effectiveness of Equivariant Regularization for Robust Online Continual Learning Humans can learn incrementally, whereas neural networks forget previously acquired information catastrophically. Continual Learning (CL) approaches seek to bridge this gap by facilitating the transfer of knowledge to both previous tasks (backward transfer) and future ones (forward transfer) during training. Recent research has shown that self-supervision can produce versatile models that can generalize well to diverse downstream tasks. However, contrastive self-supervised learning (CSSL), a popular self-supervision technique, has limited effectiveness in online CL (OCL). OCL only permits one iteration of the input dataset, and CSSL's low sample efficiency hinders its use on the input data-stream. In this work, we propose Continual Learning via Equivariant Regularization (CLER), an OCL approach that leverages equivariant tasks for self-supervision, avoiding CSSL's limitations. Our method represents the first attempt at combining equivariant knowledge with CL and can be easily integrated with existing OCL methods. Extensive ablations shed light on how equivariant pretext tasks affect the network's information flow and its impact on CL dynamics. 9 authors · May 5, 2023
- Vector-Quantized Vision Foundation Models for Object-Centric Learning Perceiving visual scenes as objects and background -- like humans do -- Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed slots. OCL's self-supervision of reconstructing the input from these aggregated slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. However, existing methods leverage VFM representations in diverse ways and often fail to fully exploit their potential. In response, we propose a clean architecture -- Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO) -- that unifies mainstream OCL methods. The key to our unification is simple yet effective, just shared quantizing the same VFM representation as the reconstruction target. Through mathematical modeling and statistical verification, we further analyze why VFM representations facilitate OCL aggregation and how their shared quantization as reconstruction targets strengthens OCL supervision. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. The source code is available in supplemental files. 4 authors · Feb 27
- Shepherding Slots to Objects: Towards Stable and Robust Object-Centric Learning Object-centric learning (OCL) aspires general and compositional understanding of scenes by representing a scene as a collection of object-centric representations. OCL has also been extended to multi-view image and video datasets to apply various data-driven inductive biases by utilizing geometric or temporal information in the multi-image data. Single-view images carry less information about how to disentangle a given scene than videos or multi-view images do. Hence, owing to the difficulty of applying inductive biases, OCL for single-view images remains challenging, resulting in inconsistent learning of object-centric representation. To this end, we introduce a novel OCL framework for single-view images, SLot Attention via SHepherding (SLASH), which consists of two simple-yet-effective modules on top of Slot Attention. The new modules, Attention Refining Kernel (ARK) and Intermediate Point Predictor and Encoder (IPPE), respectively, prevent slots from being distracted by the background noise and indicate locations for slots to focus on to facilitate learning of object-centric representation. We also propose a weak semi-supervision approach for OCL, whilst our proposed framework can be used without any assistant annotation during the inference. Experiments show that our proposed method enables consistent learning of object-centric representation and achieves strong performance across four datasets. Code is available at https://github.com/object-understanding/SLASH. 4 authors · Mar 31, 2023