Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeQuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs
We introduce QuaRot, a new Quantization scheme based on Rotations, which is able to quantize LLMs end-to-end, including all weights, activations, and KV cache in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the hidden state without changing the output, making quantization easier. This computational invariance is applied to the hidden state (residual) of the LLM, as well as to the activations of the feed-forward components, aspects of the attention mechanism and to the KV cache. The result is a quantized model where all matrix multiplications are performed in 4-bits, without any channels identified for retention in higher precision. Our quantized LLaMa2-70B model has losses of at most 0.29 WikiText-2 perplexity and retains 99% of the zero-shot performance. Code is available at: https://github.com/spcl/QuaRot.
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding
Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with average length of 3,000+ tokens. This task is challenging due to a high-dimensional space of multi-label assignment (tens of thousands of ICD codes) and the long-tail challenge: only a few codes (common diseases) are frequently assigned while most codes (rare diseases) are infrequently assigned. This study addresses the long-tail challenge by adapting a prompt-based fine-tuning technique with label semantics, which has been shown to be effective under few-shot setting. To further enhance the performance in medical domain, we propose a knowledge-enhanced longformer by injecting three domain-specific knowledge: hierarchy, synonym, and abbreviation with additional pretraining using contrastive learning. Experiments on MIMIC-III-full, a benchmark dataset of code assignment, show that our proposed method outperforms previous state-of-the-art method in 14.5% in marco F1 (from 10.3 to 11.8, P<0.001). To further test our model on few-shot setting, we created a new rare diseases coding dataset, MIMIC-III-rare50, on which our model improves marco F1 from 17.1 to 30.4 and micro F1 from 17.2 to 32.6 compared to previous method.
Accurate LoRA-Finetuning Quantization of LLMs via Information Retention
The LoRA-finetuning quantization of LLMs has been extensively studied to obtain accurate yet compact LLMs for deployment on resource-constrained hardware. However, existing methods cause the quantized LLM to severely degrade and even fail to benefit from the finetuning of LoRA. This paper proposes a novel IR-QLoRA for pushing quantized LLMs with LoRA to be highly accurate through information retention. The proposed IR-QLoRA mainly relies on two technologies derived from the perspective of unified information: (1) statistics-based Information Calibration Quantization allows the quantized parameters of LLM to retain original information accurately; (2) finetuning-based Information Elastic Connection makes LoRA utilizes elastic representation transformation with diverse information. Comprehensive experiments show that IR-QLoRA can significantly improve accuracy across LLaMA and LLaMA2 families under 2-4 bit-widths, e.g., 4- bit LLaMA-7B achieves 1.4% improvement on MMLU compared with the state-of-the-art methods. The significant performance gain requires only a tiny 0.31% additional time consumption, revealing the satisfactory efficiency of our IRQLoRA. We highlight that IR-QLoRA enjoys excellent versatility, compatible with various frameworks (e.g., NormalFloat and Integer quantization) and brings general accuracy gains. The code is available at https://github.com/htqin/ir-qlora.
EMQ: Evolving Training-free Proxies for Automated Mixed Precision Quantization
Mixed-Precision Quantization~(MQ) can achieve a competitive accuracy-complexity trade-off for models. Conventional training-based search methods require time-consuming candidate training to search optimized per-layer bit-width configurations in MQ. Recently, some training-free approaches have presented various MQ proxies and significantly improve search efficiency. However, the correlation between these proxies and quantization accuracy is poorly understood. To address the gap, we first build the MQ-Bench-101, which involves different bit configurations and quantization results. Then, we observe that the existing training-free proxies perform weak correlations on the MQ-Bench-101. To efficiently seek superior proxies, we develop an automatic search of proxies framework for MQ via evolving algorithms. In particular, we devise an elaborate search space involving the existing proxies and perform an evolution search to discover the best correlated MQ proxy. We proposed a diversity-prompting selection strategy and compatibility screening protocol to avoid premature convergence and improve search efficiency. In this way, our Evolving proxies for Mixed-precision Quantization~(EMQ) framework allows the auto-generation of proxies without heavy tuning and expert knowledge. Extensive experiments on ImageNet with various ResNet and MobileNet families demonstrate that our EMQ obtains superior performance than state-of-the-art mixed-precision methods at a significantly reduced cost. The code will be released.
QTIP: Quantization with Trellises and Incoherence Processing
Post-training quantization (PTQ) reduces the memory footprint of LLMs by quantizing weights to low-precision datatypes. Since LLM inference is usually memory-bound, PTQ methods can improve inference throughput. Recent state-of-the-art PTQ approaches use vector quantization (VQ) to quantize multiple weights at once, which improves information utilization through better shaping. However, VQ requires a codebook with size exponential in the dimension. This limits current VQ-based PTQ works to low VQ dimensions (le 8) that in turn limit quantization quality. Here, we introduce QTIP, which instead uses trellis coded quantization (TCQ) to achieve ultra-high-dimensional quantization. TCQ uses a stateful decoder that separates the codebook size from the bitrate and effective dimension. QTIP introduces a spectrum of lookup-only to computed lookup-free trellis codes designed for a hardware-efficient "bitshift" trellis structure; these codes achieve state-of-the-art results in both quantization quality and inference speed.
TransICD: Transformer Based Code-wise Attention Model for Explainable ICD Coding
International Classification of Disease (ICD) coding procedure which refers to tagging medical notes with diagnosis codes has been shown to be effective and crucial to the billing system in medical sector. Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors. Moreover, training skilled coders also requires time and human resources. Therefore, automating the ICD code determination process is an important task. With the advancement of artificial intelligence theory and computational hardware, machine learning approach has emerged as a suitable solution to automate this process. In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document. Finally, they are fed to separate dense layers for corresponding code prediction. Furthermore, to handle the imbalance in the code frequency of clinical datasets, we employ a label distribution aware margin (LDAM) loss function. The experimental results on the MIMIC-III dataset show that our proposed model outperforms other baselines by a significant margin. In particular, our best setting achieves a micro-AUC score of 0.923 compared to 0.868 of bidirectional recurrent neural networks. We also show that by using the code-wise attention mechanism, the model can provide more insights about its prediction, and thus it can support clinicians to make reliable decisions. Our code is available online (https://github.com/biplob1ly/TransICD)
Towards Accurate Image Coding: Improved Autoregressive Image Generation with Dynamic Vector Quantization
Existing vector quantization (VQ) based autoregressive models follow a two-stage generation paradigm that first learns a codebook to encode images as discrete codes, and then completes generation based on the learned codebook. However, they encode fixed-size image regions into fixed-length codes and ignore their naturally different information densities, which results in insufficiency in important regions and redundancy in unimportant ones, and finally degrades the generation quality and speed. Moreover, the fixed-length coding leads to an unnatural raster-scan autoregressive generation. To address the problem, we propose a novel two-stage framework: (1) Dynamic-Quantization VAE (DQ-VAE) which encodes image regions into variable-length codes based on their information densities for an accurate and compact code representation. (2) DQ-Transformer which thereby generates images autoregressively from coarse-grained (smooth regions with fewer codes) to fine-grained (details regions with more codes) by modeling the position and content of codes in each granularity alternately, through a novel stacked-transformer architecture and shared-content, non-shared position input layers designs. Comprehensive experiments on various generation tasks validate our superiorities in both effectiveness and efficiency. Code will be released at https://github.com/CrossmodalGroup/DynamicVectorQuantization.
Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code
Code Large Language Models (Code LLMs) have emerged as powerful tools, revolutionizing the software development landscape by automating the coding process and reducing time and effort required to build applications. This paper focuses on training Code LLMs to specialize in the field of quantum computing. We begin by discussing the unique needs of quantum computing programming, which differ significantly from classical programming approaches or languages. A Code LLM specializing in quantum computing requires a foundational understanding of quantum computing and quantum information theory. However, the scarcity of available quantum code examples and the rapidly evolving field, which necessitates continuous dataset updates, present significant challenges. Moreover, we discuss our work on training Code LLMs to produce high-quality quantum code using the Qiskit library. This work includes an examination of the various aspects of the LLMs used for training and the specific training conditions, as well as the results obtained with our current models. To evaluate our models, we have developed a custom benchmark, similar to HumanEval, which includes a set of tests specifically designed for the field of quantum computing programming using Qiskit. Our findings indicate that our model outperforms existing state-of-the-art models in quantum computing tasks. We also provide examples of code suggestions, comparing our model to other relevant code LLMs. Finally, we introduce a discussion on the potential benefits of Code LLMs for quantum computing computational scientists, researchers, and practitioners. We also explore various features and future work that could be relevant in this context.
PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization. Several existing sub 2-bit post-training quantization (PTQ) methods utilize a mix-precision scheme by leveraging an unstructured fine-grained mask to explicitly distinguish salient weights, while which introduces an extra 1-bit or more per weight. To explore the real limit of PTQ, we propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time. Specifically, we first introduce a one-dimensional structured mask with negligibly additional 0.0002-bit per weight based on input activations from the perspective of reducing the upper bound of quantization error to allocate corresponding salient weight channels to 4-bit. For non-salient channels binarization, an efficient block-wise scaling factors optimization framework is then presented to take implicit row-wise correlations and angular biases into account. Different from prior works that concentrate on adjusting quantization methodologies, we further propose a novel paradigm called quantization preprocessing, where we argue that transforming the weight distribution of the pretrained model before quantization can alleviate the difficulty in per-channel extremely low-bit PTQ. Extensive experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization. Codes are available at https://github.com/zjq0455/PTQ1.61.
CoSQA+: Enhancing Code Search Dataset with Matching Code
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets are problematic: either using unrealistic queries, or with mismatched codes, and typically using one-to-one query-code pairing, which fails to reflect the reality that a query might have multiple valid code matches. This paper introduces CoSQA+, pairing high-quality queries (reused from CoSQA) with multiple suitable codes. We collect code candidates from diverse sources and form candidate pairs by pairing queries with these codes. Utilizing the power of large language models (LLMs), we automate pair annotation, filtering, and code generation for queries without suitable matches. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. Furthermore, we propose a new metric Mean Multi-choice Reciprocal Rank (MMRR), to assess one-to-N code search performance. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
Mercury: Ultra-Fast Language Models Based on Diffusion
We present Mercury, a new generation of commercial-scale large language models (LLMs) based on diffusion. These models are parameterized via the Transformer architecture and trained to predict multiple tokens in parallel. In this report, we detail Mercury Coder, our first set of diffusion LLMs designed for coding applications. Currently, Mercury Coder comes in two sizes: Mini and Small. These models set a new state-of-the-art on the speed-quality frontier. Based on independent evaluations conducted by Artificial Analysis, Mercury Coder Mini and Mercury Coder Small achieve state-of-the-art throughputs of 1109 tokens/sec and 737 tokens/sec, respectively, on NVIDIA H100 GPUs and outperform speed-optimized frontier models by up to 10x on average while maintaining comparable quality. We discuss additional results on a variety of code benchmarks spanning multiple languages and use-cases as well as real-world validation by developers on Copilot Arena, where the model currently ranks second on quality and is the fastest model overall. We also release a public API at https://platform.inceptionlabs.ai/ and free playground at https://chat.inceptionlabs.ai
Autoregressive Image Generation using Residual Quantization
For autoregressive (AR) modeling of high-resolution images, vector quantization (VQ) represents an image as a sequence of discrete codes. A short sequence length is important for an AR model to reduce its computational costs to consider long-range interactions of codes. However, we postulate that previous VQ cannot shorten the code sequence and generate high-fidelity images together in terms of the rate-distortion trade-off. In this study, we propose the two-stage framework, which consists of Residual-Quantized VAE (RQ-VAE) and RQ-Transformer, to effectively generate high-resolution images. Given a fixed codebook size, RQ-VAE can precisely approximate a feature map of an image and represent the image as a stacked map of discrete codes. Then, RQ-Transformer learns to predict the quantized feature vector at the next position by predicting the next stack of codes. Thanks to the precise approximation of RQ-VAE, we can represent a 256times256 image as 8times8 resolution of the feature map, and RQ-Transformer can efficiently reduce the computational costs. Consequently, our framework outperforms the existing AR models on various benchmarks of unconditional and conditional image generation. Our approach also has a significantly faster sampling speed than previous AR models to generate high-quality images.
Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models
In this work, we introduce Mini-Gemini, a simple and effective framework enhancing multi-modality Vision Language Models (VLMs). Despite the advancements in VLMs facilitating basic visual dialog and reasoning, a performance gap persists compared to advanced models like GPT-4 and Gemini. We try to narrow the gap by mining the potential of VLMs for better performance and any-to-any workflow from three aspects, i.e., high-resolution visual tokens, high-quality data, and VLM-guided generation. To enhance visual tokens, we propose to utilize an additional visual encoder for high-resolution refinement without increasing the visual token count. We further construct a high-quality dataset that promotes precise image comprehension and reasoning-based generation, expanding the operational scope of current VLMs. In general, Mini-Gemini further mines the potential of VLMs and empowers current frameworks with image understanding, reasoning, and generation simultaneously. Mini-Gemini supports a series of dense and MoE Large Language Models (LLMs) from 2B to 34B. It is demonstrated to achieve leading performance in several zero-shot benchmarks and even surpasses the developed private models. Code and models are available at https://github.com/dvlab-research/MiniGemini.
Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers
Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.
Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, muCode, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. muCode iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of muCode at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
MedCodER: A Generative AI Assistant for Medical Coding
Medical coding is essential for standardizing clinical data and communication but is often time-consuming and prone to errors. Traditional Natural Language Processing (NLP) methods struggle with automating coding due to the large label space, lengthy text inputs, and the absence of supporting evidence annotations that justify code selection. Recent advancements in Generative Artificial Intelligence (AI) offer promising solutions to these challenges. In this work, we introduce MedCodER, a Generative AI framework for automatic medical coding that leverages extraction, retrieval, and re-ranking techniques as core components. MedCodER achieves a micro-F1 score of 0.60 on International Classification of Diseases (ICD) code prediction, significantly outperforming state-of-the-art methods. Additionally, we present a new dataset containing medical records annotated with disease diagnoses, ICD codes, and supporting evidence texts (https://doi.org/10.5281/zenodo.13308316). Ablation tests confirm that MedCodER's performance depends on the integration of each of its aforementioned components, as performance declines when these components are evaluated in isolation.
More for Keys, Less for Values: Adaptive KV Cache Quantization
This paper introduces an information-aware quantization framework that adaptively compresses the key-value (KV) cache in large language models (LLMs). Although prior work has underscored the distinct roles of key and value cache during inference, our systematic analysis -- examining singular value distributions, spectral norms, and Frobenius norms -- reveals, for the first time, that key matrices consistently exhibit higher norm values and are more sensitive to quantization than value matrices. Furthermore, our theoretical analysis shows that matrices with higher spectral norms amplify quantization errors more significantly. Motivated by these insights, we propose a mixed-precision quantization strategy, KV-AdaQuant, which allocates more bit-width for keys and fewer for values since key matrices have higher norm values. With the same total KV bit budget, this approach effectively mitigates error propagation across transformer layers while achieving significant memory savings. Our extensive experiments on multiple LLMs (1B--70B) demonstrate that our mixed-precision quantization scheme maintains high model accuracy even under aggressive compression. For instance, using 4-bit for Key and 2-bit for Value achieves an accuracy of 75.2%, whereas reversing the assignment (2-bit for Key and 4-bit for Value) yields only 54.7% accuracy. The code is available at https://tinyurl.com/kv-adaquant
QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks
Post-training quantization (PTQ) reduces the memory footprint of LLMs by quantizing their weights to low-precision. In this work, we introduce QuIP#, a weight-only PTQ method that achieves state-of-the-art results in extreme compression regimes (le 4 bits per weight) using three novel techniques. First, QuIP# improves the incoherence processing from QuIP by using the randomized Hadamard transform, which is faster and has better theoretical properties. Second, QuIP# uses vector quantization techniques to take advantage of the ball-shaped sub-Gaussian distribution that incoherent weights possess: specifically, we introduce a set of hardware-efficient codebooks based on the highly symmetric E_8 lattice, which achieves the optimal 8-dimension unit ball packing. Third, QuIP# uses fine-tuning to improve fidelity to the original model. Our experiments show that QuIP# outperforms existing PTQ methods, enables new behaviors in PTQ scaling, and supports fast inference.
MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods
Mamba is an efficient sequence model that rivals Transformers and demonstrates significant potential as a foundational architecture for various tasks. Quantization is commonly used in neural networks to reduce model size and computational latency. However, applying quantization to Mamba remains underexplored, and existing quantization methods, which have been effective for CNN and Transformer models, appear inadequate for Mamba models (e.g., Quarot suffers a 21% accuracy drop on Vim-T^dagger even under W8A8). We have pioneered the exploration of this issue and identified several key challenges. First, significant outliers are present in gate projections, output projections, and matrix multiplications. Second, Mamba's unique parallel scan further amplifies these outliers, leading to uneven and heavy-tailed data distributions. Third, even with the application of the Hadamard transform, the variance across channels in weights and activations still remains inconsistent. To these ends, we propose MambaQuant, a post-training quantization (PTQ) framework consisting of: 1) Karhunen-Loeve Transformation (KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse channel distributions. 2) Smooth-Fused rotation, which equalizes channel variances and can merge additional parameters into model weights. Experiments show that MambaQuant can quantize both weights and activations into 8-bit with less than 1% accuracy loss for Mamba-based vision and language tasks. To the best of our knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba family, paving the way for further advancements in its application.
mbrs: A Library for Minimum Bayes Risk Decoding
Minimum Bayes risk (MBR) decoding is a decision rule of text generation tasks that outperforms conventional maximum a posterior (MAP) decoding using beam search by selecting high-quality outputs based on a utility function rather than those with high-probability. Typically, it finds the most suitable hypothesis from the set of hypotheses under the sampled pseudo-references. mbrs is a library of MBR decoding, which can flexibly combine various metrics, alternative expectation estimations, and algorithmic variants. It is designed with a focus on speed measurement and calling count of code blocks, transparency, reproducibility, and extensibility, which are essential for researchers and developers. We published our mbrs as an MIT-licensed open-source project, and the code is available on GitHub. GitHub: https://github.com/naist-nlp/mbrs
Extreme Compression of Large Language Models via Additive Quantization
The emergence of accurate open large language models (LLMs) has led to a race towards quantization techniques for such models enabling execution on end-user devices. In this paper, we revisit the problem of "extreme" LLM compression--defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter, from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our work builds on top of Additive Quantization, a classic algorithm from the MCQ family, and adapts it to the quantization of language models. The resulting algorithm advances the state-of-the-art in LLM compression, outperforming all recently-proposed techniques in terms of accuracy at a given compression budget. For instance, when compressing Llama 2 models to 2 bits per parameter, our algorithm quantizes the 7B model to 6.93 perplexity (a 1.29 improvement relative to the best prior work, and 1.81 points from FP16), the 13B model to 5.70 perplexity (a .36 improvement) and the 70B model to 3.94 perplexity (a .22 improvement) on WikiText2. We release our implementation of Additive Quantization for Language Models AQLM as a baseline to facilitate future research in LLM quantization.
Modeling Diagnostic Label Correlation for Automatic ICD Coding
Given the clinical notes written in electronic health records (EHRs), it is challenging to predict the diagnostic codes which is formulated as a multi-label classification task. The large set of labels, the hierarchical dependency, and the imbalanced data make this prediction task extremely hard. Most existing work built a binary prediction for each label independently, ignoring the dependencies between labels. To address this problem, we propose a two-stage framework to improve automatic ICD coding by capturing the label correlation. Specifically, we train a label set distribution estimator to rescore the probability of each label set candidate generated by a base predictor. This paper is the first attempt at learning the label set distribution as a reranking module for medical code prediction. In the experiments, our proposed framework is able to improve upon best-performing predictors on the benchmark MIMIC datasets. The source code of this project is available at https://github.com/MiuLab/ICD-Correlation.
Quantizing Large Language Models for Code Generation: A Differentiated Replication
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language. The LLM effectiveness generally increases with its size: The higher the number of LLM's trainable parameters the better its ability to implement code. However, when it comes to deploying LLM-based code generators, larger LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint. A previous work by Wei et al. proposed to leverage quantization techniques to reduce the memory footprint of LLM-based code generators without substantially degrading their effectiveness. In short, they studied LLMs featuring up to 16B parameters, quantizing their precision from floating point 32 bits down to int 8 bits and showing their limited impact on code generation performance. Given the fast pace at which LLM capabilities and quantization techniques are evolving, in this work we present a differentiated replication of the work by Wei et al. in which we consider (i) on the one side, more recent and larger code-related LLMs, of up to 34B parameters; (ii) the latest advancements in model quantization techniques, which allow pushing the compression to the extreme quantization level of 2 bits per model parameter and; (iii) different types of calibration datasets to guide the quantization process, including code-specific ones. Our empirical evaluation reveals that the new frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70% compared to the original model without observing any significant decrease in performance. Additionally, when the quantization becomes even more extreme (3 and 2 bits), a code-specific calibration dataset helps to limit the loss of performance.
MobileNMT: Enabling Translation in 15MB and 30ms
Deploying NMT models on mobile devices is essential for privacy, low latency, and offline scenarios. For high model capacity, NMT models are rather large. Running these models on devices is challenging with limited storage, memory, computation, and power consumption. Existing work either only focuses on a single metric such as FLOPs or general engine which is not good at auto-regressive decoding. In this paper, we present MobileNMT, a system that can translate in 15MB and 30ms on devices. We propose a series of principles for model compression when combined with quantization. Further, we implement an engine that is friendly to INT8 and decoding. With the co-design of model and engine, compared with the existing system, we speed up 47.0x and save 99.5% of memory with only 11.6% loss of BLEU. The code is publicly available at https://github.com/zjersey/Lightseq-ARM.
DB-LLM: Accurate Dual-Binarization for Efficient LLMs
Large language models (LLMs) have significantly advanced the field of natural language processing, while the expensive memory and computation consumption impede their practical deployment. Quantization emerges as one of the most effective methods for improving the computational efficiency of LLMs. However, existing ultra-low-bit quantization always causes severe accuracy drops. In this paper, we empirically relieve the micro and macro characteristics of ultra-low bit quantization and present a novel Dual-Binarization method for LLMs, namely DB-LLM. For the micro-level, we take both the accuracy advantage of 2-bit-width and the efficiency advantage of binarization into account, introducing Flexible Dual Binarization (FDB). By splitting 2-bit quantized weights into two independent sets of binaries, FDB ensures the accuracy of representations and introduces flexibility, utilizing the efficient bitwise operations of binarization while retaining the inherent high sparsity of ultra-low bit quantization. For the macro-level, we find the distortion that exists in the prediction of LLM after quantization, which is specified as the deviations related to the ambiguity of samples. We propose the Deviation-Aware Distillation (DAD) method, enabling the model to focus differently on various samples. Comprehensive experiments show that our DB-LLM not only significantly surpasses the current State-of-The-Art (SoTA) in ultra-low bit quantization (eg, perplexity decreased from 9.64 to 7.23), but also achieves an additional 20\% reduction in computational consumption compared to the SOTA method under the same bit-width. Our code will be released soon.
Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study
Medical coding is the task of assigning medical codes to clinical free-text documentation. Healthcare professionals manually assign such codes to track patient diagnoses and treatments. Automated medical coding can considerably alleviate this administrative burden. In this paper, we reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models. We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation. In previous work, the macro F1 score has been calculated sub-optimally, and our correction doubles it. We contribute a revised model comparison using stratified sampling and identical experimental setups, including hyperparameters and decision boundary tuning. We analyze prediction errors to validate and falsify assumptions of previous works. The analysis confirms that all models struggle with rare codes, while long documents only have a negligible impact. Finally, we present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models. We release our code, model parameters, and new MIMIC-III and MIMIC-IV training and evaluation pipelines to accommodate fair future comparisons.
RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy
Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance.
Q-HyViT: Post-Training Quantization of Hybrid Vision Transformers with Bridge Block Reconstruction for IoT Systems
Recently, vision transformers (ViTs) have superseded convolutional neural networks in numerous applications, including classification, detection, and segmentation. However, the high computational requirements of ViTs hinder their widespread implementation. To address this issue, researchers have proposed efficient hybrid transformer architectures that combine convolutional and transformer layers with optimized attention computation of linear complexity. Additionally, post-training quantization has been proposed as a means of mitigating computational demands. For mobile devices, achieving optimal acceleration for ViTs necessitates the strategic integration of quantization techniques and efficient hybrid transformer structures. However, no prior investigation has applied quantization to efficient hybrid transformers. In this paper, we discover that applying existing post-training quantization (PTQ) methods for ViTs to efficient hybrid transformers leads to a drastic accuracy drop, attributed to the four following challenges: (i) highly dynamic ranges, (ii) zero-point overflow, (iii) diverse normalization, and (iv) limited model parameters (<5M). To overcome these challenges, we propose a new post-training quantization method, which is the first to quantize efficient hybrid ViTs (MobileViTv1, MobileViTv2, Mobile-Former, EfficientFormerV1, EfficientFormerV2). We achieve a significant improvement of 17.73% for 8-bit and 29.75% for 6-bit on average, respectively, compared with existing PTQ methods (EasyQuant, FQ-ViT, PTQ4ViT, and RepQ-ViT)}. We plan to release our code at https://gitlab.com/ones-ai/q-hyvit.
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
QR-LoRA: Efficient and Disentangled Fine-tuning via QR Decomposition for Customized Generation
Existing text-to-image models often rely on parameter fine-tuning techniques such as Low-Rank Adaptation (LoRA) to customize visual attributes. However, when combining multiple LoRA models for content-style fusion tasks, unstructured modifications of weight matrices often lead to undesired feature entanglement between content and style attributes. We propose QR-LoRA, a novel fine-tuning framework leveraging QR decomposition for structured parameter updates that effectively separate visual attributes. Our key insight is that the orthogonal Q matrix naturally minimizes interference between different visual features, while the upper triangular R matrix efficiently encodes attribute-specific transformations. Our approach fixes both Q and R matrices while only training an additional task-specific Delta R matrix. This structured design reduces trainable parameters to half of conventional LoRA methods and supports effective merging of multiple adaptations without cross-contamination due to the strong disentanglement properties between Delta R matrices. Experiments demonstrate that QR-LoRA achieves superior disentanglement in content-style fusion tasks, establishing a new paradigm for parameter-efficient, disentangled fine-tuning in generative models.
Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs
Post-Training Quantization (PTQ) is a powerful technique for model compression, reducing the precision of neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point quantization (FP8) in the context of PTQ for model inference. However, the exploration of floating-point formats smaller than 8 bits and their comparison with integer quantization remains relatively limited. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. Our work presents a novel PTQ design-space exploration, comparing minifloat and integer quantization schemes across a range of 3 to 8 bits for both weights and activations. We examine the applicability of various PTQ techniques to minifloats, including weight equalization, bias correction, SmoothQuant, gradient-based learned rounding, and the GPTQ method. Our experiments validate the effectiveness of low-precision minifloats when compared to their integer counterparts across a spectrum of accuracy-precision trade-offs on a set of reference deep learning vision workloads. Finally, we evaluate our results against an FPGA-based hardware cost model, showing that integer quantization often remains the Pareto-optimal option, given its relatively smaller hardware resource footprint.
Qrazor: Reliable and Effortless 4-bit LLM Quantization by Significant Data Razoring
Large-scale language models (LLMs) excel in language processing tasks but face deployment challenges due to high memory and computational demands. While low-bit quantization, such as 4-bit techniques, offers a potential solution, these methods often suffer from significant accuracy loss or require considerable effort for implementation such as reordering, rotation, etc. To address these challenges, we propose QRazor, a simple yet effective quantization scheme that enables 4-bit quantization of weights, activations, and KV cache in transformer-based LLMs. QRazor operates in two stages: first, quantizing data using 8 or 16-bit integers as a basis with absolute max scaling to preserve accuracy close to full-precision models, and second, compressing the quantized data to 4-bit using our significant data razoring (SDR) technique, which retains only the four most salient bits. Without any additional requirment of fine-tuning or additional training, QRazor achieves performance similar or better compared to state-of-the-art in 4-bit quantization method, surpassing Smoothquant and QLLM by over 12 points and Quarot(RTN) by more than 2.9 points in zero-shot reasoning task accuracy on the LLaMA2-7B model. Additionally, we introduce an integer-based arithmetic unit optimized for QRazor, allowing direct low-precision operations on SDR data without decompression.
TinyML Design Contest for Life-Threatening Ventricular Arrhythmia Detection
The first ACM/IEEE TinyML Design Contest (TDC) held at the 41st International Conference on Computer-Aided Design (ICCAD) in 2022 is a challenging, multi-month, research and development competition. TDC'22 focuses on real-world medical problems that require the innovation and implementation of artificial intelligence/machine learning (AI/ML) algorithms on implantable devices. The challenge problem of TDC'22 is to develop a novel AI/ML-based real-time detection algorithm for life-threatening ventricular arrhythmia over low-power microcontrollers utilized in Implantable Cardioverter-Defibrillators (ICDs). The dataset contains more than 38,000 5-second intracardiac electrograms (IEGMs) segments over 8 different types of rhythm from 90 subjects. The dedicated hardware platform is NUCLEO-L432KC manufactured by STMicroelectronics. TDC'22, which is open to multi-person teams world-wide, attracted more than 150 teams from over 50 organizations. This paper first presents the medical problem, dataset, and evaluation procedure in detail. It further demonstrates and discusses the designs developed by the leading teams as well as representative results. This paper concludes with the direction of improvement for the future TinyML design for health monitoring applications.
MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
Recent advances in large language model (LLM) pretraining have led to high-quality LLMs with impressive abilities. By compressing such LLMs via quantization to 3-4 bits per parameter, they can fit into memory-limited devices such as laptops and mobile phones, enabling personalized use. However, quantization down to 3-4 bits per parameter usually leads to moderate-to-high accuracy losses, especially for smaller models in the 1-10B parameter range, which are well-suited for edge deployments. To address this accuracy issue, we introduce the Sparse-Quantized Representation (SpQR), a new compressed format and quantization technique which enables for the first time near-lossless compression of LLMs across model scales, while reaching similar compression levels to previous methods. SpQR works by identifying and isolating outlier weights, which cause particularly-large quantization errors, and storing them in higher precision, while compressing all other weights to 3-4 bits, and achieves relative accuracy losses of less than 1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it possible to run 33B parameter LLM on a single 24 GB consumer GPU without any performance degradation at 15% speedup thus making powerful LLMs available to consumer without any downsides. SpQR comes with efficient algorithms for both encoding weights into its format, as well as decoding them efficiently at runtime. Specifically, we provide an efficient GPU inference algorithm for SpQR which yields faster inference than 16-bit baselines at similar accuracy, while enabling memory compression gains of more than 4x.
A Comparative Study on Automatic Coding of Medical Letters with Explainability
This study aims to explore the implementation of Natural Language Processing (NLP) and machine learning (ML) techniques to automate the coding of medical letters with visualised explainability and light-weighted local computer settings. Currently in clinical settings, coding is a manual process that involves assigning codes to each condition, procedure, and medication in a patient's paperwork (e.g., 56265001 heart disease using SNOMED CT code). There are preliminary research on automatic coding in this field using state-of-the-art ML models; however, due to the complexity and size of the models, the real-world deployment is not achieved. To further facilitate the possibility of automatic coding practice, we explore some solutions in a local computer setting; in addition, we explore the function of explainability for transparency of AI models. We used the publicly available MIMIC-III database and the HAN/HLAN network models for ICD code prediction purposes. We also experimented with the mapping between ICD and SNOMED CT knowledge bases. In our experiments, the models provided useful information for 97.98\% of codes. The result of this investigation can shed some light on implementing automatic clinical coding in practice, such as in hospital settings, on the local computers used by clinicians , project page https://github.com/Glenj01/Medical-Coding.
MMAD: Multi-label Micro-Action Detection in Videos
Human body actions are an important form of non-verbal communication in social interactions. This paper focuses on a specific subset of body actions known as micro-actions, which are subtle, low-intensity body movements that provide a deeper understanding of inner human feelings. In real-world scenarios, human micro-actions often co-occur, with multiple micro-actions overlapping in time, such as simultaneous head and hand movements. However, current research primarily focuses on recognizing individual micro-actions while overlooking their co-occurring nature. To narrow this gap, we propose a new task named Multi-label Micro-Action Detection (MMAD), which involves identifying all micro-actions in a given short video, determining their start and end times, and categorizing them. Achieving this requires a model capable of accurately capturing both long-term and short-term action relationships to locate and classify multiple micro-actions. To support the MMAD task, we introduce a new dataset named Multi-label Micro-Action-52 (MMA-52), specifically designed to facilitate the detailed analysis and exploration of complex human micro-actions. The proposed MMA-52 dataset is available at: https://github.com/VUT-HFUT/Micro-Action.
MPCODER: Multi-user Personalized Code Generator with Explicit and Implicit Style Representation Learning
Large Language Models (LLMs) have demonstrated great potential for assisting developers in their daily development. However, most research focuses on generating correct code, how to use LLMs to generate personalized code has seldom been investigated. To bridge this gap, we proposed MPCoder (Multi-user Personalized Code Generator) to generate personalized code for multiple users. To better learn coding style features, we utilize explicit coding style residual learning to capture the syntax code style standards and implicit style learning to capture the semantic code style conventions. We train a multi-user style adapter to better differentiate the implicit feature representations of different users through contrastive learning, ultimately enabling personalized code generation for multiple users. We further propose a novel evaluation metric for estimating similarities between codes of different coding styles. The experimental results show the effectiveness of our approach for this novel task.
Taming Scalable Visual Tokenizer for Autoregressive Image Generation
Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (2^{18}) with high dimension (256) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (1.00 rFID) and autoregressive visual generation (2.05 gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.
QuaLA-MiniLM: a Quantized Length Adaptive MiniLM
Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. A knowledge distillation approach addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, the performance of these models drops as we reduce the number of layers, notably in advanced NLP tasks such as span question answering. In addition, a separate model must be trained for each inference scenario with its distinct computational budget. Dynamic-TinyBERT tackles both limitations by partially implementing the Length Adaptive Transformer (LAT) technique onto TinyBERT, achieving x3 speedup over BERT-base with minimal accuracy loss. In this work, we expand the Dynamic-TinyBERT approach to generate a much more highly efficient model. We use MiniLM distillation jointly with the LAT method, and we further enhance the efficiency by applying low-bit quantization. Our quantized length-adaptive MiniLM model (QuaLA-MiniLM) is trained only once, dynamically fits any inference scenario, and achieves an accuracy-efficiency trade-off superior to any other efficient approaches per any computational budget on the SQuAD1.1 dataset (up to x8.8 speedup with <1% accuracy loss). The code to reproduce this work is publicly available on Github.
Mixed Non-linear Quantization for Vision Transformers
The majority of quantization methods have been proposed to reduce the model size of Vision Transformers, yet most of them have overlooked the quantization of non-linear operations. Only a few works have addressed quantization for non-linear operations, but they applied a single quantization method across all non-linear operations. We believe that this can be further improved by employing a different quantization method for each non-linear operation. Therefore, to assign the most error-minimizing quantization method from the known methods to each non-linear layer, we propose a mixed non-linear quantization that considers layer-wise quantization sensitivity measured by SQNR difference metric. The results show that our method outperforms I-BERT, FQ-ViT, and I-ViT in both 8-bit and 6-bit settings for ViT, DeiT, and Swin models by an average of 0.6%p and 19.6%p, respectively. Our method outperforms I-BERT and I-ViT by 0.6%p and 20.8%p, respectively, when training time is limited. We plan to release our code at https://gitlab.com/ones-ai/mixed-non-linear-quantization.
QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models
Recently years have witnessed a rapid development of large language models (LLMs). Despite the strong ability in many language-understanding tasks, the heavy computational burden largely restricts the application of LLMs especially when one needs to deploy them onto edge devices. In this paper, we propose a quantization-aware low-rank adaptation (QA-LoRA) algorithm. The motivation lies in the imbalanced degrees of freedom of quantization and adaptation, and the solution is to use group-wise operators which increase the degree of freedom of quantization meanwhile decreasing that of adaptation. QA-LoRA is easily implemented with a few lines of code, and it equips the original LoRA with two-fold abilities: (i) during fine-tuning, the LLM's weights are quantized (e.g., into INT4) to reduce time and memory usage; (ii) after fine-tuning, the LLM and auxiliary weights are naturally integrated into a quantized model without loss of accuracy. We apply QA-LoRA to the LLaMA and LLaMA2 model families and validate its effectiveness in different fine-tuning datasets and downstream scenarios. Code will be made available at https://github.com/yuhuixu1993/qa-lora.
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
Magic State Injection on IBM Quantum Processors Above the Distillation Threshold
The surface code family is a promising approach to implementing fault-tolerant quantum computations. Universal fault-tolerance requires error-corrected non-Clifford operations, in addition to Clifford gates, and for the former, it is imperative to experimentally demonstrate additional resources known as magic states. Another challenge is to efficiently embed surface codes into quantum hardware with connectivity constraints. This work simultaneously addresses both challenges by employing a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors (ibm\_fez) and implementing the magic state injection protocol. Our work reports error thresholds for both logical bit- and phase-flip errors, of approx0.37% and approx0.31%, respectively, which are higher than the threshold values previously reported with traditional embedding. The post-selection-based preparation of logical magic states |H_Lrangle and |T_Lrangle achieve fidelities of 0.8806pm0.0002 and 0.8665pm0.0003, respectively, which are both above the magic state distillation threshold. Additionally, we report the minimum fidelity among injected arbitrary single logical qubit states as 0.8356pm0.0003. Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation
Large language models (LLMs) have brought exciting new advances to mobile UI agents, a long-standing research field that aims to complete arbitrary natural language tasks through mobile UI interactions. However, existing UI agents usually demand high reasoning capabilities of powerful large models that are difficult to be deployed locally on end-users' devices, which raises huge concerns about user privacy and centralized serving cost. One way to reduce the required model size is to customize a smaller domain-specific model with high-quality training data, e.g. large-scale human demonstrations of diverse types of apps and tasks, while such datasets are extremely difficult to obtain. Inspired by the remarkable coding abilities of recent small language models (SLMs), we propose to convert the UI task automation problem to a code generation problem, which can be effectively solved by an on-device SLM and efficiently executed with an on-device code interpreter. Unlike normal coding tasks that can be extensively pretrained with public datasets, generating UI automation code is challenging due to the diversity, complexity, and variability of target apps. Therefore, we adopt a document-centered approach that automatically builds fine-grained API documentation for each app and generates diverse task samples based on this documentation. By guiding the agent with the synthetic documents and task samples, it learns to generate precise and efficient scripts to complete unseen tasks. Based on detailed comparisons with state-of-the-art mobile UI agents, our approach effectively improves the mobile task automation with significantly higher success rates and lower latency/token consumption. Code will be open-sourced.
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
LLMs are seeing growing use for applications such as document analysis and summarization which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in ultra-low precisions, such as sub-4-bit. In this work, we present KVQuant, which addresses this problem by incorporating novel methods for quantizing cached KV activations, including: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges; and (v) Q-Norm, where we normalize quantization centroids in order to mitigate distribution shift, providing additional benefits for 2-bit quantization. By applying our method to the LLaMA, LLaMA-2, and Mistral models, we achieve <0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving the LLaMA-7B model with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system.
CRPE: Expanding The Reasoning Capability of Large Language Model for Code Generation
We introduce CRPE (Code Reasoning Process Enhancer), an innovative three-stage framework for data synthesis and model training that advances the development of sophisticated code reasoning capabilities in large language models (LLMs). Building upon existing system-1 models, CRPE addresses the fundamental challenge of enhancing LLMs' analytical and logical processing in code generation tasks. Our framework presents a methodologically rigorous yet implementable approach to cultivating advanced code reasoning abilities in language models. Through the implementation of CRPE, we successfully develop an enhanced COT-Coder that demonstrates marked improvements in code generation tasks. Evaluation results on LiveCodeBench (20240701-20240901) demonstrate that our COT-Coder-7B-StepDPO, derived from Qwen2.5-Coder-7B-Base, with a pass@1 accuracy of 21.88, exceeds all models with similar or even larger sizes. Furthermore, our COT-Coder-32B-StepDPO, based on Qwen2.5-Coder-32B-Base, exhibits superior performance with a pass@1 accuracy of 35.08, outperforming GPT4O on the benchmark. Overall, CRPE represents a comprehensive, open-source method that encompasses the complete pipeline from instruction data acquisition through expert code reasoning data synthesis, culminating in an autonomous reasoning enhancement mechanism.
MBQ: Modality-Balanced Quantization for Large Vision-Language Models
Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.
Anchor-based Plain Net for Mobile Image Super-Resolution
Along with the rapid development of real-world applications, higher requirements on the accuracy and efficiency of image super-resolution (SR) are brought forward. Though existing methods have achieved remarkable success, the majority of them demand plenty of computational resources and large amount of RAM, and thus they can not be well applied to mobile device. In this paper, we aim at designing efficient architecture for 8-bit quantization and deploy it on mobile device. First, we conduct an experiment about meta-node latency by decomposing lightweight SR architectures, which determines the portable operations we can utilize. Then, we dig deeper into what kind of architecture is beneficial to 8-bit quantization and propose anchor-based plain net (ABPN). Finally, we adopt quantization-aware training strategy to further boost the performance. Our model can outperform 8-bit quantized FSRCNN by nearly 2dB in terms of PSNR, while satisfying realistic needs at the same time. Code is avaliable at https://github.com/NJU- Jet/SR_Mobile_Quantization.
Stable Code Technical Report
We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.
MiniCPM-V: A GPT-4V Level MLLM on Your Phone
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong OCR capability and 1.8M pixel high-resolution image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
A Model for Every User and Budget: Label-Free and Personalized Mixed-Precision Quantization
Recent advancement in Automatic Speech Recognition (ASR) has produced large AI models, which become impractical for deployment in mobile devices. Model quantization is effective to produce compressed general-purpose models, however such models may only be deployed to a restricted sub-domain of interest. We show that ASR models can be personalized during quantization while relying on just a small set of unlabelled samples from the target domain. To this end, we propose myQASR, a mixed-precision quantization method that generates tailored quantization schemes for diverse users under any memory requirement with no fine-tuning. myQASR automatically evaluates the quantization sensitivity of network layers by analysing the full-precision activation values. We are then able to generate a personalised mixed-precision quantization scheme for any pre-determined memory budget. Results for large-scale ASR models show how myQASR improves performance for specific genders, languages, and speakers.
OHQ: On-chip Hardware-aware Quantization
Quantization emerges as one of the most promising approaches for deploying advanced deep models on resource-constrained hardware. Mixed-precision quantization leverages multiple bit-width architectures to unleash the accuracy and efficiency potential of quantized models. However, existing mixed-precision quantization suffers exhaustive search space that causes immense computational overhead. The quantization process thus relies on separate high-performance devices rather than locally, which also leads to a significant gap between the considered hardware metrics and the real deployment.In this paper, we propose an On-chip Hardware-aware Quantization (OHQ) framework that performs hardware-aware mixed-precision quantization without accessing online devices. First, we construct the On-chip Quantization Awareness (OQA) pipeline, enabling perceive the actual efficiency metrics of the quantization operator on the hardware.Second, we propose Mask-guided Quantization Estimation (MQE) technique to efficiently estimate the accuracy metrics of operators under the constraints of on-chip-level computing power.By synthesizing network and hardware insights through linear programming, we obtain optimized bit-width configurations. Notably, the quantization process occurs on-chip entirely without any additional computing devices and data access. We demonstrate accelerated inference after quantization for various architectures and compression ratios, achieving 70% and 73% accuracy for ResNet-18 and MobileNetV3, respectively. OHQ improves latency by 15~30% compared to INT8 on deployment.
Matching-oriented Product Quantization For Ad-hoc Retrieval
Product quantization (PQ) is a widely used technique for ad-hoc retrieval. Recent studies propose supervised PQ, where the embedding and quantization models can be jointly trained with supervised learning. However, there is a lack of appropriate formulation of the joint training objective; thus, the improvements over previous non-supervised baselines are limited in reality. In this work, we propose the Matching-oriented Product Quantization (MoPQ), where a novel objective Multinoulli Contrastive Loss (MCL) is formulated. With the minimization of MCL, we are able to maximize the matching probability of query and ground-truth key, which contributes to the optimal retrieval accuracy. Given that the exact computation of MCL is intractable due to the demand of vast contrastive samples, we further propose the Differentiable Cross-device Sampling (DCS), which significantly augments the contrastive samples for precise approximation of MCL. We conduct extensive experimental studies on four real-world datasets, whose results verify the effectiveness of MoPQ. The code is available at https://github.com/microsoft/MoPQ.
How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study
Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.
MiniCPM4: Ultra-Efficient LLMs on End Devices
This paper introduces MiniCPM4, a highly efficient large language model (LLM) designed explicitly for end-side devices. We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. Specifically, in terms of model architecture, we propose InfLLM v2, a trainable sparse attention mechanism that accelerates both prefilling and decoding phases for long-context processing. Regarding training data, we propose UltraClean, an efficient and accurate pre-training data filtering and generation strategy, and UltraChat v2, a comprehensive supervised fine-tuning dataset. These datasets enable satisfactory model performance to be achieved using just 8 trillion training tokens. Regarding training algorithms, we propose ModelTunnel v2 for efficient pre-training strategy search, and improve existing post-training methods by introducing chunk-wise rollout for load-balanced reinforcement learning and data-efficient tenary LLM, BitCPM. Regarding inference systems, we propose CPM.cu that integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding. To meet diverse on-device requirements, MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively. Sufficient evaluation results show that MiniCPM4 outperforms open-source models of similar size across multiple benchmarks, highlighting both its efficiency and effectiveness. Notably, MiniCPM4-8B demonstrates significant speed improvements over Qwen3-8B when processing long sequences. Through further adaptation, MiniCPM4 successfully powers diverse applications, including trustworthy survey generation and tool use with model context protocol, clearly showcasing its broad usability.
LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise Relevance Propagation
Vision transformers (ViTs) have demonstrated remarkable performance across various visual tasks. However, ViT models suffer from substantial computational and memory requirements, making it challenging to deploy them on resource-constrained platforms. Quantization is a popular approach for reducing model size, but most studies mainly focus on equal bit-width quantization for the entire network, resulting in sub-optimal solutions. While there are few works on mixed precision quantization (MPQ) for ViTs, they typically rely on search space-based methods or employ mixed precision arbitrarily. In this paper, we introduce LRP-QViT, an explainability-based method for assigning mixed-precision bit allocations to different layers based on their importance during classification. Specifically, to measure the contribution score of each layer in predicting the target class, we employ the Layer-wise Relevance Propagation (LRP) method. LRP assigns local relevance at the output layer and propagates it through all layers, distributing the relevance until it reaches the input layers. These relevance scores serve as indicators for computing the layer contribution score. Additionally, we have introduced a clipped channel-wise quantization aimed at eliminating outliers from post-LayerNorm activations to alleviate severe inter-channel variations. To validate and assess our approach, we employ LRP-QViT across ViT, DeiT, and Swin transformer models on various datasets. Our experimental findings demonstrate that both our fixed-bit and mixed-bit post-training quantization methods surpass existing models in the context of 4-bit and 6-bit quantization.
OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models
Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.
Mini-Monkey: Multi-Scale Adaptive Cropping for Multimodal Large Language Models
Recently, there has been significant interest in enhancing the capability of multimodal large language models (MLLMs) to process high-resolution images. Most existing methods focus on adopting a cropping strategy to improve the ability of multimodal large language models to understand image details. However, this cropping operation inevitably causes the segmentation of objects and connected areas, which impairs the MLLM's ability to recognize small or irregularly shaped objects or text. This issue is particularly evident in lightweight MLLMs. Addressing this issue, we propose Mini-Monkey, a lightweight MLLM that incorporates a plug-and-play method called multi-scale adaptive crop strategy (MSAC). Mini-Monkey adaptively generates multi-scale representations, allowing it to select non-segmented objects from various scales. To mitigate the computational overhead introduced by MSAC, we propose a Scale Compression Mechanism (SCM), which effectively compresses image tokens. Mini-Monkey achieves state-of-the-art performance among 2B-parameter MLLMs. It not only demonstrates leading performance on a variety of general multimodal understanding tasks but also shows consistent improvements in document understanding capabilities. On the OCRBench, Mini-Monkey achieves a score of 802, outperforming 8B-parameter state-of-the-art model InternVL2-8B. Besides, our model and training strategy are very efficient, which can be trained with only eight RTX 3090. The code is available at https://github.com/Yuliang-Liu/Monkey.
OMPQ: Orthogonal Mixed Precision Quantization
To bridge the ever increasing gap between deep neural networks' complexity and hardware capability, network quantization has attracted more and more research attention. The latest trend of mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization. However, this also results in a difficult integer programming formulation, and forces most existing approaches to use an extremely time-consuming search process even with various relaxations. Instead of solving a problem of the original integer programming, we propose to optimize a proxy metric, the concept of network orthogonality, which is highly correlated with the loss of the integer programming but also easy to optimize with linear programming. This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy. Specifically, we achieve 72.08% Top-1 accuracy on ResNet-18 with 6.7Mb, which does not require any searching iterations. Given the high efficiency and low data dependency of our algorithm, we used it for the post-training quantization, which achieve 71.27% Top-1 accuracy on MobileNetV2 with only 1.5Mb. Our code is available at https://github.com/MAC-AutoML/OMPQ.