new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 8

Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models

We investigate fine-tuning Vision-Language Models (VLMs) for multi-task medical image understanding, focusing on detection, localization, and counting of findings in medical images. Our objective is to evaluate whether instruction-tuned VLMs can simultaneously improve these tasks, with the goal of enhancing diagnostic accuracy and efficiency. Using MedMultiPoints, a multimodal dataset with annotations from endoscopy (polyps and instruments) and microscopy (sperm cells), we reformulate each task into instruction-based prompts suitable for vision-language reasoning. We fine-tune Qwen2.5-VL-7B-Instruct using Low-Rank Adaptation (LoRA) across multiple task combinations. Results show that multi-task training improves robustness and accuracy. For example, it reduces the Count Mean Absolute Error (MAE) and increases Matching Accuracy in the Counting + Pointing task. However, trade-offs emerge, such as more zero-case point predictions, indicating reduced reliability in edge cases despite overall performance gains. Our study highlights the potential of adapting general-purpose VLMs to specialized medical tasks via prompt-driven fine-tuning. This approach mirrors clinical workflows, where radiologists simultaneously localize, count, and describe findings - demonstrating how VLMs can learn composite diagnostic reasoning patterns. The model produces interpretable, structured outputs, offering a promising step toward explainable and versatile medical AI. Code, model weights, and scripts will be released for reproducibility at https://github.com/simula/PointDetectCount.

CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification

The CLIP (Contrastive Language-Image Pretraining) model has exhibited outstanding performance in recognition problems, such as zero-shot image classification and object detection. However, its ability to count remains understudied due to the inherent challenges of transforming counting--a regression task--into a recognition task. In this paper, we investigate CLIP's potential in counting, focusing specifically on estimating crowd sizes. Existing classification-based crowd-counting methods have encountered issues, including inappropriate discretization strategies, which impede the application of CLIP and result in suboptimal performance. To address these challenges, we propose the Enhanced Blockwise Classification (EBC) framework. In contrast to previous methods, EBC relies on integer-valued bins that facilitate the learning of robust decision boundaries. Within our model-agnostic EBC framework, we introduce CLIP-EBC, the first fully CLIP-based crowd-counting model capable of generating density maps. Comprehensive evaluations across diverse crowd-counting datasets demonstrate the state-of-the-art performance of our methods. Particularly, EBC can improve existing models by up to 76.9%. Moreover, our CLIP-EBC model surpasses current crowd-counting methods, achieving mean absolute errors of 55.0 and 6.3 on ShanghaiTech part A and part B datasets, respectively. The code will be made publicly available.

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.

More efficient manual review of automatically transcribed tabular data

Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.

Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers

Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.

Questioning the Survey Responses of Large Language Models

As large language models increase in capability, researchers have started to conduct surveys of all kinds on these models with varying scientific motivations. In this work, we examine what we can learn from a model's survey responses on the basis of the well-established American Community Survey (ACS) by the U.S. Census Bureau. Evaluating more than a dozen different models, varying in size from a few hundred million to ten billion parameters, hundreds of thousands of times each on questions from the ACS, we systematically establish two dominant patterns. First, smaller models have a significant position and labeling bias, for example, towards survey responses labeled with the letter "A". This A-bias diminishes, albeit slowly, as model size increases. Second, when adjusting for this labeling bias through randomized answer ordering, models still do not trend toward US population statistics or those of any cognizable population. Rather, models across the board trend toward uniformly random aggregate statistics over survey responses. This pattern is robust to various different ways of prompting the model, including what is the de-facto standard. Our findings demonstrate that aggregate statistics of a language model's survey responses lack the signals found in human populations. This absence of statistical signal cautions about the use of survey responses from large language models at present time.

Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters

This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.

Is Your Automated Software Engineer Trustworthy?

Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com

A Closer Look at AUROC and AUPRC under Class Imbalance

In machine learning (ML), a widespread adage is that the area under the precision-recall curve (AUPRC) is a superior metric for model comparison to the area under the receiver operating characteristic (AUROC) for binary classification tasks with class imbalance. This paper challenges this notion through novel mathematical analysis, illustrating that AUROC and AUPRC can be concisely related in probabilistic terms. We demonstrate that AUPRC, contrary to popular belief, is not superior in cases of class imbalance and might even be a harmful metric, given its inclination to unduly favor model improvements in subpopulations with more frequent positive labels. This bias can inadvertently heighten algorithmic disparities. Prompted by these insights, a thorough review of existing ML literature was conducted, utilizing large language models to analyze over 1.5 million papers from arXiv. Our investigation focused on the prevalence and substantiation of the purported AUPRC superiority. The results expose a significant deficit in empirical backing and a trend of misattributions that have fuelled the widespread acceptance of AUPRC's supposed advantages. Our findings represent a dual contribution: a significant technical advancement in understanding metric behaviors and a stark warning about unchecked assumptions in the ML community. All experiments are accessible at https://github.com/mmcdermott/AUC_is_all_you_need.

Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains 156,309 unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to 26,734 (17.1%) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of 0.847 pm 0.050 (internal out-of sample validation) and 0.761 pm 0.052 (external validation). For a harmonised prevalence of 17%, at 80% recall our model detects septic patients with 39% precision 3.7 hours in advance.

DengueNet: Dengue Prediction using Spatiotemporal Satellite Imagery for Resource-Limited Countries

Dengue fever presents a substantial challenge in developing countries where sanitation infrastructure is inadequate. The absence of comprehensive healthcare systems exacerbates the severity of dengue infections, potentially leading to life-threatening circumstances. Rapid response to dengue outbreaks is also challenging due to limited information exchange and integration. While timely dengue outbreak forecasts have the potential to prevent such outbreaks, the majority of dengue prediction studies have predominantly relied on data that impose significant burdens on individual countries for collection. In this study, our aim is to improve health equity in resource-constrained countries by exploring the effectiveness of high-resolution satellite imagery as a nontraditional and readily accessible data source. By leveraging the wealth of publicly available and easily obtainable satellite imagery, we present a scalable satellite extraction framework based on Sentinel Hub, a cloud-based computing platform. Furthermore, we introduce DengueNet, an innovative architecture that combines Vision Transformer, Radiomics, and Long Short-term Memory to extract and integrate spatiotemporal features from satellite images. This enables dengue predictions on an epi-week basis. To evaluate the effectiveness of our proposed method, we conducted experiments on five municipalities in Colombia. We utilized a dataset comprising 780 high-resolution Sentinel-2 satellite images for training and evaluation. The performance of DengueNet was assessed using the mean absolute error (MAE) metric. Across the five municipalities, DengueNet achieved an average MAE of 43.92. Our findings strongly support the efficacy of satellite imagery as a valuable resource for dengue prediction, particularly in informing public health policies within countries where manually collected data is scarce and dengue virus prevalence is severe.

High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning

Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos.