33 BLOOM: A 176B-Parameter Open-Access Multilingual Language Model Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License. 392 authors · Nov 9, 2022 10
1 BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling/. 14 authors · Dec 19, 2022
- Extending the Pre-Training of BLOOM for Improved Support of Traditional Chinese: Models, Methods and Results In this paper we present the multilingual language model BLOOM-zh that features enhanced support for Traditional Chinese. BLOOM-zh has its origins in the open-source BLOOM models presented by BigScience in 2022. Starting from released models, we extended the pre-training of BLOOM by additional 7.4 billion tokens in Traditional Chinese and English covering a variety of domains such as news articles, books, encyclopedias, educational materials as well as spoken language. In order to show the properties of BLOOM-zh, both existing and newly created benchmark scenarios are used for evaluating the performance. BLOOM-zh outperforms its predecessor on most Traditional Chinese benchmarks while maintaining its English capability. We release all our models to the research community. 9 authors · Mar 8, 2023
- Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks We present Bloom Library, a linguistically diverse set of multimodal and multilingual datasets for language modeling, image captioning, visual storytelling, and speech synthesis/recognition. These datasets represent either the most, or among the most, multilingual datasets for each of the included downstream tasks. In total, the initial release of the Bloom Library datasets covers 363 languages across 32 language families. We train downstream task models for various languages represented in the data, showing the viability of the data for future work in low-resource, multimodal NLP and establishing the first known baselines for these downstream tasks in certain languages (e.g., Bisu [bzi], with an estimated population of 700 users). Some of these first-of-their-kind baselines are comparable to state-of-the-art performance for higher-resourced languages. The Bloom Library datasets are released under Creative Commons licenses on the Hugging Face datasets hub to catalyze more linguistically diverse research in the included downstream tasks. 6 authors · Oct 26, 2022
- BloomVQA: Assessing Hierarchical Multi-modal Comprehension We propose a novel VQA dataset, based on picture stories designed for educating young children, that aims to facilitate comprehensive evaluation and characterization of vision-language models on comprehension tasks. Unlike current VQA datasets that often focus on fact-based memorization and simple reasoning tasks without principled scientific grounding, we collect data containing tasks reflecting different levels of comprehension and underlying cognitive processes, as laid out in Bloom's Taxonomy, a classic framework widely adopted in education research. The proposed BloomVQA dataset can be mapped to a hierarchical graph-based representation of visual stories, enabling automatic data augmentation and novel measures characterizing model consistency across the underlying taxonomy. We demonstrate graded evaluation and reliability analysis based on our proposed consistency metrics on state-of-the-art vision-language models. Our results suggest that, while current models achieve the most gain on low-level comprehension tasks, they generally fall short on high-level tasks requiring more advanced comprehension and cognitive skills, as 38.0% drop in VQA accuracy is observed comparing lowest and highest level tasks. Furthermore, current models show consistency patterns misaligned with human comprehension in various scenarios, suggesting emergent structures of model behaviors. 7 authors · Dec 19, 2023
26 BloombergGPT: A Large Language Model for Finance The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. As a next step, we plan to release training logs (Chronicles) detailing our experience in training BloombergGPT. 9 authors · Mar 30, 2023 5
1 Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM Animator Text-to-video is a rapidly growing research area that aims to generate a semantic, identical, and temporal coherence sequence of frames that accurately align with the input text prompt. This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient. To generate a semantic-coherent video, exhibiting a rich portrayal of temporal semantics such as the whole process of flower blooming rather than a set of "moving images", we propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence, while pre-trained latent diffusion models (LDMs) as the animator to generate the high fidelity frames. Furthermore, to ensure temporal and identical coherence while maintaining semantic coherence, we propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path interpolation. Without any video data and training requirements, Free-Bloom generates vivid and high-quality videos, awe-inspiring in generating complex scenes with semantic meaningful frame sequences. In addition, Free-Bloom is naturally compatible with LDMs-based extensions. 6 authors · Sep 25, 2023
1 LACoS-BLOOM: Low-rank Adaptation with Contrastive objective on 8 bits Siamese-BLOOM Text embeddings are useful features for several NLP applications, such as sentence similarity, text clustering, and semantic search. In this paper, we present a Low-rank Adaptation with a Contrastive objective on top of 8-bit Siamese-BLOOM, a multilingual large language model optimized to produce semantically meaningful word embeddings. The innovation is threefold. First, we cast BLOOM weights to 8-bit values. Second, we fine-tune BLOOM with a scalable adapter (LoRA) and 8-bit Adam optimizer for sentence similarity classification. Third, we apply a Siamese architecture on BLOOM model with a contrastive objective to ease the multi-lingual labeled data scarcity. The experiment results show the quality of learned embeddings from LACoS-BLOOM is proportional to the number of model parameters and the amount of unlabeled training data. With the parameter efficient fine-tuning design, we are able to run BLOOM 7.1 billion parameters end-to-end on a single GPU machine with 32GB memory. Compared to previous solution Sentence-BERT, we achieve significant improvement on both English and multi-lingual STS tasks. 3 authors · May 10, 2023
- Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model Progress in machine learning (ML) comes with a cost to the environment, given that training ML models requires significant computational resources, energy and materials. In the present article, we aim to quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle. We estimate that BLOOM's final training emitted approximately 24.7 tonnes of~\carboneq~if we consider only the dynamic power consumption, and 50.5 tonnes if we account for all processes ranging from equipment manufacturing to energy-based operational consumption. We also study the energy requirements and carbon emissions of its deployment for inference via an API endpoint receiving user queries in real-time. We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of ML models and future research directions that can contribute towards improving carbon emissions reporting. 3 authors · Nov 3, 2022
- Automated Educational Question Generation at Different Bloom's Skill Levels using Large Language Models: Strategies and Evaluation Developing questions that are pedagogically sound, relevant, and promote learning is a challenging and time-consuming task for educators. Modern-day large language models (LLMs) generate high-quality content across multiple domains, potentially helping educators to develop high-quality questions. Automated educational question generation (AEQG) is important in scaling online education catering to a diverse student population. Past attempts at AEQG have shown limited abilities to generate questions at higher cognitive levels. In this study, we examine the ability of five state-of-the-art LLMs of different sizes to generate diverse and high-quality questions of different cognitive levels, as defined by Bloom's taxonomy. We use advanced prompting techniques with varying complexity for AEQG. We conducted expert and LLM-based evaluations to assess the linguistic and pedagogical relevance and quality of the questions. Our findings suggest that LLms can generate relevant and high-quality educational questions of different cognitive levels when prompted with adequate information, although there is a significant variance in the performance of the five LLms considered. We also show that automated evaluation is not on par with human evaluation. 3 authors · Aug 8, 2024
1 Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps? We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation. 6 authors · Jan 9, 2024
- AstroM$^3$: A self-supervised multimodal model for astronomy While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach. 2 authors · Nov 13, 2024
- Interpreting Attention Layer Outputs with Sparse Autoencoders Decomposing model activations into interpretable components is a key open problem in mechanistic interpretability. Sparse autoencoders (SAEs) are a popular method for decomposing the internal activations of trained transformers into sparse, interpretable features, and have been applied to MLP layers and the residual stream. In this work we train SAEs on attention layer outputs and show that also here SAEs find a sparse, interpretable decomposition. We demonstrate this on transformers from several model families and up to 2B parameters. We perform a qualitative study of the features computed by attention layers, and find multiple families: long-range context, short-range context and induction features. We qualitatively study the role of every head in GPT-2 Small, and estimate that at least 90% of the heads are polysemantic, i.e. have multiple unrelated roles. Further, we show that Sparse Autoencoders are a useful tool that enable researchers to explain model behavior in greater detail than prior work. For example, we explore the mystery of why models have so many seemingly redundant induction heads, use SAEs to motivate the hypothesis that some are long-prefix whereas others are short-prefix, and confirm this with more rigorous analysis. We use our SAEs to analyze the computation performed by the Indirect Object Identification circuit (Wang et al.), validating that the SAEs find causally meaningful intermediate variables, and deepening our understanding of the semantics of the circuit. We open-source the trained SAEs and a tool for exploring arbitrary prompts through the lens of Attention Output SAEs. 5 authors · Jun 25, 2024
- Results of the NeurIPS 2023 Neural MMO Competition on Multi-task Reinforcement Learning We present the results of the NeurIPS 2023 Neural MMO Competition, which attracted over 200 participants and submissions. Participants trained goal-conditional policies that generalize to tasks, maps, and opponents never seen during training. The top solution achieved a score 4x higher than our baseline within 8 hours of training on a single 4090 GPU. We open-source everything relating to Neural MMO and the competition under the MIT license, including the policy weights and training code for our baseline and for the top submissions. 25 authors · Aug 17
1 Chain of Thought Monitorability: A New and Fragile Opportunity for AI Safety AI systems that "think" in human language offer a unique opportunity for AI safety: we can monitor their chains of thought (CoT) for the intent to misbehave. Like all other known AI oversight methods, CoT monitoring is imperfect and allows some misbehavior to go unnoticed. Nevertheless, it shows promise and we recommend further research into CoT monitorability and investment in CoT monitoring alongside existing safety methods. Because CoT monitorability may be fragile, we recommend that frontier model developers consider the impact of development decisions on CoT monitorability. 41 authors · Jul 15 1
1 A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution. 5 authors · Sep 22, 2024
- SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability Sparse autoencoders (SAEs) are a popular technique for interpreting language model activations, and there is extensive recent work on improving SAE effectiveness. However, most prior work evaluates progress using unsupervised proxy metrics with unclear practical relevance. We introduce SAEBench, a comprehensive evaluation suite that measures SAE performance across seven diverse metrics, spanning interpretability, feature disentanglement and practical applications like unlearning. To enable systematic comparison, we open-source a suite of over 200 SAEs across eight recently proposed SAE architectures and training algorithms. Our evaluation reveals that gains on proxy metrics do not reliably translate to better practical performance. For instance, while Matryoshka SAEs slightly underperform on existing proxy metrics, they substantially outperform other architectures on feature disentanglement metrics; moreover, this advantage grows with SAE scale. By providing a standardized framework for measuring progress in SAE development, SAEBench enables researchers to study scaling trends and make nuanced comparisons between different SAE architectures and training methodologies. Our interactive interface enables researchers to flexibly visualize relationships between metrics across hundreds of open-source SAEs at: https://saebench.xyz 14 authors · Mar 12
- Assembly and coherent control of a register of nuclear spin qubits We introduce an optical tweezer platform for assembling and individually manipulating a two-dimensional register of nuclear spin qubits. Each nuclear spin qubit is encoded in the ground ^{1}S_{0} manifold of ^{87}Sr and is individually manipulated by site-selective addressing beams. We observe that spin relaxation is negligible after 5 seconds, indicating that T_1gg5 s. Furthermore, utilizing simultaneous manipulation of subsets of qubits, we demonstrate significant phase coherence over the entire register, estimating T_2^star = left(21pm7right) s and measuring T_2^echo=left(42pm6right) s. 21 authors · Aug 10, 2021
13 Neural MMO 2.0: A Massively Multi-task Addition to Massively Multi-agent Learning Neural MMO 2.0 is a massively multi-agent environment for reinforcement learning research. The key feature of this new version is a flexible task system that allows users to define a broad range of objectives and reward signals. We challenge researchers to train agents capable of generalizing to tasks, maps, and opponents never seen during training. Neural MMO features procedurally generated maps with 128 agents in the standard setting and support for up to. Version 2.0 is a complete rewrite of its predecessor with three-fold improved performance and compatibility with CleanRL. We release the platform as free and open-source software with comprehensive documentation available at neuralmmo.github.io and an active community Discord. To spark initial research on this new platform, we are concurrently running a competition at NeurIPS 2023. 18 authors · Nov 7, 2023 1
- When to Accept Automated Predictions and When to Defer to Human Judgment? Ensuring the reliability and safety of automated decision-making is crucial. It is well-known that data distribution shifts in machine learning can produce unreliable outcomes. This paper proposes a new approach for measuring the reliability of predictions under distribution shifts. We analyze how the outputs of a trained neural network change using clustering to measure distances between outputs and class centroids. We propose this distance as a metric to evaluate the confidence of predictions under distribution shifts. We assign each prediction to a cluster with centroid representing the mean softmax output for all correct predictions of a given class. We then define a safety threshold for a class as the smallest distance from an incorrect prediction to the given class centroid. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across these data sets and network models, and indicate that the proposed metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators given a distribution shift. 5 authors · Jul 10, 2024
19 Open Problems in Mechanistic Interpretability Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing. 29 authors · Jan 27 2
13 Measuring AI Ability to Complete Long Tasks Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month. 25 authors · Mar 18 2
- A search for extremely-high-energy neutrinos and first constraints on the ultra-high-energy cosmic-ray proton fraction with IceCube We present a search for the diffuse extremely-high-energy neutrino flux using 12.6 years of IceCube data. The non-observation of neutrinos with energies well above 10 , PeV constrains the all-flavor neutrino flux at 10^{18} , eV to a level of E^2 Phi_{nu_e + nu_mu + nu_tau} simeq 10^{-8} , GeV , cm^{-2} , s^{-1} , sr^{-1}, the most stringent limit to date. Using this data, we constrain the proton fraction of ultra-high-energy cosmic rays (UHECRs) above simeq 30 , EeV to be lesssim 70,% (at 90,% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. It is the first such result to disfavor the ``proton-only" hypothesis for UHECRs using neutrino data. 427 authors · Feb 3
13 Certified Mitigation of Worst-Case LLM Copyright Infringement The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention. 5 authors · Apr 22 2
8 4K4DGen: Panoramic 4D Generation at 4K Resolution The blooming of virtual reality and augmented reality (VR/AR) technologies has driven an increasing demand for the creation of high-quality, immersive, and dynamic environments. However, existing generative techniques either focus solely on dynamic objects or perform outpainting from a single perspective image, failing to meet the needs of VR/AR applications. In this work, we tackle the challenging task of elevating a single panorama to an immersive 4D experience. For the first time, we demonstrate the capability to generate omnidirectional dynamic scenes with 360-degree views at 4K resolution, thereby providing an immersive user experience. Our method introduces a pipeline that facilitates natural scene animations and optimizes a set of 4D Gaussians using efficient splatting techniques for real-time exploration. To overcome the lack of scene-scale annotated 4D data and models, especially in panoramic formats, we propose a novel Panoramic Denoiser that adapts generic 2D diffusion priors to animate consistently in 360-degree images, transforming them into panoramic videos with dynamic scenes at targeted regions. Subsequently, we elevate the panoramic video into a 4D immersive environment while preserving spatial and temporal consistency. By transferring prior knowledge from 2D models in the perspective domain to the panoramic domain and the 4D lifting with spatial appearance and geometry regularization, we achieve high-quality Panorama-to-4D generation at a resolution of (4096 times 2048) for the first time. See the project website at https://4k4dgen.github.io. 10 authors · Jun 19, 2024 1
1 Enhancing Generalization of Invisible Facial Privacy Cloak via Gradient Accumulation The blooming of social media and face recognition (FR) systems has increased people's concern about privacy and security. A new type of adversarial privacy cloak (class-universal) can be applied to all the images of regular users, to prevent malicious FR systems from acquiring their identity information. In this work, we discover the optimization dilemma in the existing methods -- the local optima problem in large-batch optimization and the gradient information elimination problem in small-batch optimization. To solve these problems, we propose Gradient Accumulation (GA) to aggregate multiple small-batch gradients into a one-step iterative gradient to enhance the gradient stability and reduce the usage of quantization operations. Experiments show that our proposed method achieves high performance on the Privacy-Commons dataset against black-box face recognition models. 7 authors · Jan 3, 2024
- Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases The success of ChatGPT has recently attracted numerous efforts to replicate it, with instruction-tuning strategies being a key factor in achieving remarkable results. Instruction-tuning not only significantly enhances the model's performance and generalization but also makes the model's generated results more consistent with human speech patterns. However current research rarely studies the impact of different amounts of instruction data on model performance, especially in the real-world use cases. In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data. An evaluation dataset consisting of 12 major online use cases is constructed in the experiment. With Bloomz-7B1-mt as the base model, the results show that 1) merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation, 2) in tasks such as math and code, the model performance curve remains quite flat while increasing data size. We further analyze the possible causes of these phenomena and propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks. We will release our training and evaluation datasets, as well as model checkpoints. 8 authors · Mar 26, 2023