FW-VTON: Flattening-and-Warping for Person-to-Person Virtual Try-on
Abstract
A novel method, FW-VTON, addresses the person-to-person try-on task by extracting, warping, and integrating garments onto target individuals, achieving state-of-the-art results.
Traditional virtual try-on methods primarily focus on the garment-to-person try-on task, which requires flat garment representations. In contrast, this paper introduces a novel approach to the person-to-person try-on task. Unlike the garment-to-person try-on task, the person-to-person task only involves two input images: one depicting the target person and the other showing the garment worn by a different individual. The goal is to generate a realistic combination of the target person with the desired garment. To this end, we propose Flattening-and-Warping Virtual Try-On (FW-VTON), a method that operates in three stages: (1) extracting the flattened garment image from the source image; (2) warping the garment to align with the target pose; and (3) integrating the warped garment seamlessly onto the target person. To overcome the challenges posed by the lack of high-quality datasets for this task, we introduce a new dataset specifically designed for person-to-person try-on scenarios. Experimental evaluations demonstrate that FW-VTON achieves state-of-the-art performance, with superior results in both qualitative and quantitative assessments, and also excels in garment extraction subtasks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper