UPB @ ACTI: Detecting Conspiracies using fine tuned Sentence Transformers
Abstract
A combination of pre-trained sentence Transformer models and data augmentation techniques achieved high F1 scores in both binary and fine-grained conspiracy theory detection tasks.
Conspiracy theories have become a prominent and concerning aspect of online discourse, posing challenges to information integrity and societal trust. As such, we address conspiracy theory detection as proposed by the ACTI @ EVALITA 2023 shared task. The combination of pre-trained sentence Transformer models and data augmentation techniques enabled us to secure first place in the final leaderboard of both sub-tasks. Our methodology attained F1 scores of 85.71% in the binary classification and 91.23% for the fine-grained conspiracy topic classification, surpassing other competing systems.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper