File size: 20,180 Bytes
6a21313 780d274 6a21313 780d274 6a21313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
# --------------------------------------------------------
# Copyright (c) 2025 NVIDIA
# Licensed under customized NSCLv1 [see LICENSE.md for details]
# --------------------------------------------------------
# Based on https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py
# https://github.com/OpenGVLab/InternVL/?tab=MIT-1-ov-file#readme
# Importing torch before transformers can cause `segmentation fault`
from transformers import AutoTokenizer, AutoConfig
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
import base64
import os
from io import BytesIO
from typing import Tuple
import math
import requests
import torch
from torch import Tensor
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from typing import Optional, Any, Union, Dict, List
from tqdm import tqdm
import torch.nn.functional as F
from datasets import Dataset
from torch.utils.data import DataLoader
from .modeling_eagle_chat import Eagle2ChatModel
from .configuration_eagle_chat import Eagle2ChatConfig
from .conversation import get_conv_template
from .configuration_siglip import SiglipVisionConfig
from .modeling_siglip import SiglipVisionModel
from .flash_attention import *
from .llama_bidirectional_model import LlamaBidirectionalModel
from transformers import PreTrainedModel
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)
def load_image(image):
if isinstance(image, Image.Image):
return image
elif isinstance(image, str) and os.path.exists(image):
return Image.open(image)
elif isinstance(image, dict):
if 'disk_path' in image:
return Image.open(image['disk_path'])
elif 'base64' in image:
return Image.open(BytesIO(base64.b64decode(image['base64'])))
elif 'url' in image:
response = requests.get(image['url'])
return Image.open(BytesIO(response.content))
elif 'bytes' in image:
return Image.open(BytesIO(image['bytes']))
else:
raise ValueError(f'Invalid image: {image}')
else:
raise ValueError(f'Invalid image: {image}')
def build_transform(input_size, norm_type='imagenet'):
if norm_type == 'imagenet':
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
elif norm_type == 'siglip':
MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
"""
previous version mainly foucs on ratio.
We also consider area ratio here.
"""
best_factor = float('-inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
"""
new area > 60% of original image area is enough.
"""
factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
if factor_based_on_area_n_ratio > best_factor:
best_factor = factor_based_on_area_n_ratio
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def split_model(model_path, device):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
print('world_size', world_size)
num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
num_layers_per_gpu = [num_layers_per_gpu_] * world_size
num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
print(num_layers_per_gpu)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = device
device_map['mlp1'] = device
device_map['language_model.model.tok_embeddings'] = device
device_map['language_model.model.embed_tokens'] = device
device_map['language_model.output'] = device
device_map['language_model.model.norm'] = device
device_map['language_model.lm_head'] = device
device_map['language_model.model.rotary_emb'] = device
device_map[f'language_model.model.layers.{num_layers - 1}'] = device
return device_map
class llama_NemoRetrieverColEmbedConfig(Eagle2ChatConfig):
model_type = "llama_nemoretrievercolembed"
q_max_length: Optional[int]
p_max_length: Optional[int]
query_prefix: str
passage_prefix: str
pooling: str
bidirectional_attention: bool
def __init__(
self,
q_max_length: Optional[int] = 512,
p_max_length: Optional[int] = 10240,
query_prefix: str = "query:",
passage_prefix: str = "passage:",
pooling: str = "last",
bidirectional_attention: bool = False,
max_input_tiles: int = 2,
img_context_token_id: int = 128258, #tokenizer.convert_tokens_to_ids("<IMG_CONTEXT>")
out_dimension: int = -1,
**kwargs,
):
self.q_max_length = q_max_length
self.p_max_length = p_max_length
self.query_prefix = query_prefix
self.passage_prefix = passage_prefix
self.pooling = pooling
self.bidirectional_attention = bidirectional_attention
self.img_context_token_id = img_context_token_id
self.max_input_tiles = max_input_tiles
self.out_dimension = out_dimension
super().__init__(**kwargs)
class llama_NemoRetrieverColEmbed(Eagle2ChatModel):
config_class = llama_NemoRetrieverColEmbedConfig
_supports_flash_attn_2 = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.padding = True
self.q_max_length = 512
self.p_max_length = 10240
self.pad_to_multiple_of = None
self.query_prefix = 'query:'
self.passage_prefix = 'passage:'
if isinstance(args[0], llama_NemoRetrieverColEmbedConfig):
tokenizer = AutoTokenizer.from_pretrained(args[0]._name_or_path, trust_remote_code=True)
tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
tokenizer.padding_side = 'left'
self.tokenizer = tokenizer
self.norm_type = 'siglip'
self.image_size = self.config.force_image_size
self.max_input_tiles = 6
self.system_message = ""
self.use_visual_embedding = True
def process_documents(self, documents: Union[Dict,List[Dict]], **kwargs):
if isinstance(documents, dict):
images = documents["images"]
texts = documents["texts"]
assert len(texts) == len(images)
elif isinstance(documents, list):
images = [pair['image'] for pair in documents ]
texts = [pair['text'] for pair in documents ]
else:
raise ValueError("The documents need to be a dict or list of dicts")
if self.passage_prefix:
texts = [self.passage_prefix + ' ' + t for t in texts]
contents, pil_images, max_input_tile_list, llm_onlys = [], [], [], []
for image, text in zip(images, texts):
prefix = ''
llm_only = True
if image != '':
pil_images.append(load_image(image))
prefix = '<image>'
max_input_tile_list.append(self.max_input_tiles)
llm_only = False
else:
pil_images.append(None)
max_input_tile_list.append(self.max_input_tiles)
llm_onlys.append(llm_only)
content = text
if prefix!='':
content = prefix + ' ' + content
if self.passage_prefix:
content = self.passage_prefix + ' ' + content
contents.append(content)
transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)
template = get_conv_template(self.config.template)
template.system_message = self.system_message
content_prompts = []
pixel_values_list = []
for content, pil_image, max_input_tiles, llm_only in zip(contents, pil_images, max_input_tile_list, llm_onlys):
if pil_image is not None:
if self.config.dynamic_image_size:
image_tiles = dynamic_preprocess(
pil_image, image_size=self.image_size, max_num=max_input_tiles,
use_thumbnail=self.config.use_thumbnail)
else:
image_tiles = [pil_image]
pixel_values = [transform(item) for item in image_tiles]
pixel_values = torch.stack(pixel_values).to(dtype=torch.bfloat16)
pixel_values_list.append(pixel_values)
else:
pixel_values = None
IMG_START_TOKEN='<img>'
IMG_END_TOKEN='</img>'
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
if pixel_values is not None and '<image>' not in content and not llm_only:
content = '<image> ' + content
# Reseting conversation messages
template.messages.clear()
# TODO: do we need this template?
template.append_message(template.roles[0], content) # user
template.append_message(template.roles[1], None) # assistant
content_prompt = template.get_prompt()
if '<image>' not in content:
content_prompt = content_prompt
else:
num_patches = pixel_values.shape[0]
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
content_prompt = content_prompt.replace('<image>', image_tokens, 1)
content_prompts.append(content_prompt)
model_inputs = self.tokenizer(content_prompts,
truncation=True,
max_length=self.p_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors='pt')
if len(pixel_values_list)>1:
pixel_values_squeezed = torch.concat(pixel_values_list, axis=0)
elif len(pixel_values_list)==1:
pixel_values_squeezed = pixel_values_list[0]
else:
pixel_values_squeezed = None
batch_docs = {
"input_ids": model_inputs['input_ids'],
"attention_mask": model_inputs['attention_mask'],
"pixel_values": None
}
if pixel_values_squeezed is not None:
batch_docs["pixel_values"] = pixel_values_squeezed
return batch_docs
def process_queries(self, queries: List[str], **kwargs):
template = get_conv_template(self.config.template)
template.system_message = self.system_message
query_prompts = []
for query in queries:
if self.query_prefix:
query = f"{self.query_prefix} {query}"
# Reseting conversation messages
template.messages.clear()
template.append_message(template.roles[0], query) # user
template.append_message(template.roles[1], None) # assistant
query_prompt = template.get_prompt()
query_prompts.append(query_prompt)
batch_query = self.tokenizer(
query_prompts,
truncation=True,
max_length=self.q_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors='pt'
)
return batch_query
def get_scores(
self,
query_embeddings: Union[torch.Tensor, List[torch.Tensor]],
passage_embeddings: Union[torch.Tensor, List[torch.Tensor]],
batch_size: Optional[int] = 8,
) -> torch.Tensor:
"""Dot-product similarity between queries and passages."""
if isinstance(query_embeddings, list):
if len(query_embeddings[0].shape)==2:
# Expend Batch Dimension as ViDoRe Framework remove it
query_embeddings = [q.unsqueeze(0) for q in query_embeddings]
query_embeddings = self.padding_various_shape_tensor(query_embeddings)
if isinstance(passage_embeddings, list):
if len(passage_embeddings[0].shape)==2:
# Expend Batch Dimension as ViDoRe Framework remove it
passage_embeddings = [p.unsqueeze(0) for p in passage_embeddings]
passage_embeddings = self.padding_various_shape_tensor(passage_embeddings)
return self.colbert_score(query_embeddings, passage_embeddings, batch_size)
def colbert_score(
self,
qs: Union[torch.Tensor, List[torch.Tensor]],
ps: Union[torch.Tensor, List[torch.Tensor]],
batch_size: int = 128,
device: Optional[Union[str, torch.device]] = None,
) -> torch.Tensor:
if batch_size is None:
batch_size = 128
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")
scores_list: List[torch.Tensor] = []
for i in range(0, len(qs), batch_size):
scores_batch = []
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size].cuda(), batch_first=True, padding_value=0)
for j in range(0, len(ps), batch_size):
ps_batch = torch.nn.utils.rnn.pad_sequence(
ps[j : j + batch_size].cuda(), batch_first=True, padding_value=0
)
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
# Keep scores_batch on the GPU
scores_batch = torch.cat(scores_batch, dim=1)
scores_list.append(scores_batch)
scores = torch.cat(scores_list, dim=0)
return(scores)
def _extract_embeddings(self, dataloader: DataLoader, is_query: bool) -> List[torch.Tensor]:
qs = []
message = "query" if is_query else "document"
for batch in tqdm(dataloader, desc=f"Extracting {message} embeddings..."):
with torch.inference_mode():
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
if 'pixel_values' in batch and batch['pixel_values'] is None:
batch.pop('pixel_values')
batch = {k: v.to(self.device) for k, v in batch.items()}
embeddings = self(**batch, output_hidden_states=True).hidden_states[-1]
embeddings = embeddings*batch['attention_mask'].unsqueeze(-1)
embeddings = F.normalize(embeddings, dim=-1)
# Detecting abnormal outputs
assert torch.sum(embeddings).float().item() not in [float(0.), float("inf")]
qs.append(embeddings.contiguous())
qs_tensor = self.padding_various_shape_tensor(qs)
all_embeddings_tensor = qs_tensor.detach().cpu()
return all_embeddings_tensor
def forward_passages(self, passages, batch_size=8, **kwargs) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Forward passages as image-only documents."""
corpus = []
for image in passages:
corpus.append({
"image": image,
"text": ''
})
return self.forward_documents(corpus, batch_size)
def forward_queries(self, queries: List, batch_size=8) -> List[torch.Tensor]:
dataset = ListDataset[str](queries)
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
collate_fn=self.process_queries,
shuffle=False,
num_workers=8,
pin_memory=True,
drop_last=False,
)
return self._extract_embeddings(dataloader=dataloader, is_query=True)
def forward_documents(self, corpus: List, batch_size=8) -> List[torch.Tensor]:
images = []
texts = []
for doc in corpus:
text = doc["text"]
image = doc.get("image", "")
if image.mode != "RGB":
image = image.convert("RGB")
images.append(image)
texts.append(text)
dataset = Dataset.from_dict({"image": images, "text": texts})
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
collate_fn=self.process_documents,
shuffle=False,
num_workers=8,
pin_memory=True,
drop_last=False,
)
return self._extract_embeddings(dataloader=dataloader, is_query=False)
def padding_various_shape_tensor(self, tensors: List[torch.Tensor]) -> torch.Tensor:
"""Pad tensors of various shapes for colbert-like scoring"""
max_seq_len = max(t.shape[1] for t in tensors)
padded_tensors = [F.pad(t, (0, 0, 0, max_seq_len - t.shape[1]), mode="constant", value=0) for t in tensors]
return torch.cat(padded_tensors, dim=0)
from typing import TypeVar
from torch.utils.data import Dataset as TorchDataset
TV = TypeVar("T")
class ListDataset(TorchDataset[TV]):
def __init__(self, elements: List[TV]):
self.elements = elements
def __len__(self) -> int:
return len(self.elements)
def __getitem__(self, idx: int) -> TV:
return self.elements[idx] |