File size: 20,180 Bytes
6a21313
 
 
 
 
780d274
 
 
6a21313
780d274
6a21313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# --------------------------------------------------------
# Copyright (c) 2025 NVIDIA
# Licensed under customized NSCLv1 [see LICENSE.md for details]
# --------------------------------------------------------

# Based on https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py
# https://github.com/OpenGVLab/InternVL/?tab=MIT-1-ov-file#readme

# Importing torch before transformers can cause `segmentation fault`

from transformers import  AutoTokenizer,  AutoConfig
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
import base64
import os
from io import BytesIO
from typing import Tuple
import math
import requests
import torch
from torch import Tensor
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from typing import Optional, Any, Union, Dict, List

from tqdm import tqdm
import torch.nn.functional as F
from datasets import Dataset
from torch.utils.data import DataLoader

from .modeling_eagle_chat import Eagle2ChatModel
from .configuration_eagle_chat import Eagle2ChatConfig
from .conversation import get_conv_template 

from .configuration_siglip import SiglipVisionConfig
from .modeling_siglip import SiglipVisionModel
from .flash_attention import *

from .llama_bidirectional_model import LlamaBidirectionalModel
from transformers import PreTrainedModel

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)

def load_image(image):
    if isinstance(image, Image.Image):
        return image
    elif isinstance(image, str) and os.path.exists(image):
        return Image.open(image)
    elif isinstance(image, dict):
        if 'disk_path' in image:
            return Image.open(image['disk_path'])
        elif 'base64' in image:
            return Image.open(BytesIO(base64.b64decode(image['base64'])))
        elif 'url' in image:
            response = requests.get(image['url'])
            return Image.open(BytesIO(response.content))
        elif 'bytes' in image:
            return Image.open(BytesIO(image['bytes']))
        else:
            raise ValueError(f'Invalid image: {image}')
    else:
        raise ValueError(f'Invalid image: {image}')

def build_transform(input_size, norm_type='imagenet'):
    if norm_type == 'imagenet':
        MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    elif norm_type == 'siglip':
        MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
        
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    """
    previous version mainly foucs on ratio.
    We also consider area ratio here.
    """
    best_factor = float('-inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
        """
        new area > 60% of original image area is enough.
        """
        factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
                                     min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
        
        if factor_based_on_area_n_ratio > best_factor:
            best_factor = factor_based_on_area_n_ratio
            best_ratio = ratio
        
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def split_model(model_path, device):

    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers

    print('world_size', world_size)
    num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
    num_layers_per_gpu = [num_layers_per_gpu_] * world_size
    num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
    print(num_layers_per_gpu)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = device
    device_map['mlp1'] = device
    device_map['language_model.model.tok_embeddings'] = device
    device_map['language_model.model.embed_tokens'] = device
    device_map['language_model.output'] = device
    device_map['language_model.model.norm'] = device
    device_map['language_model.lm_head'] = device
    device_map['language_model.model.rotary_emb'] = device
    device_map[f'language_model.model.layers.{num_layers - 1}'] = device
    return device_map

class llama_NemoRetrieverColEmbedConfig(Eagle2ChatConfig):
    model_type = "llama_nemoretrievercolembed"

    q_max_length: Optional[int] 
    p_max_length: Optional[int]     
    query_prefix: str 
    passage_prefix: str
    pooling: str
    bidirectional_attention: bool

    def __init__(
        self, 
        q_max_length: Optional[int] = 512,
        p_max_length: Optional[int] = 10240,        
        query_prefix: str = "query:",
        passage_prefix: str = "passage:",
        pooling: str = "last", 
        bidirectional_attention: bool = False,
        max_input_tiles: int = 2,
        img_context_token_id: int = 128258, #tokenizer.convert_tokens_to_ids("<IMG_CONTEXT>")
        out_dimension: int = -1,
        **kwargs,
    ):
        self.q_max_length = q_max_length
        self.p_max_length = p_max_length        
        self.query_prefix = query_prefix
        self.passage_prefix = passage_prefix
        self.pooling = pooling
        self.bidirectional_attention = bidirectional_attention
        self.img_context_token_id = img_context_token_id
        self.max_input_tiles = max_input_tiles
        self.out_dimension = out_dimension
        super().__init__(**kwargs)

class llama_NemoRetrieverColEmbed(Eagle2ChatModel):

    config_class = llama_NemoRetrieverColEmbedConfig
    _supports_flash_attn_2 = True

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.padding = True
        self.q_max_length = 512
        self.p_max_length = 10240
        self.pad_to_multiple_of = None
        self.query_prefix = 'query:'
        self.passage_prefix = 'passage:'

        if isinstance(args[0], llama_NemoRetrieverColEmbedConfig):
            tokenizer = AutoTokenizer.from_pretrained(args[0]._name_or_path, trust_remote_code=True)
            tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
            tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
            tokenizer.padding_side = 'left'
            self.tokenizer = tokenizer

        self.norm_type = 'siglip'
        self.image_size = self.config.force_image_size
        self.max_input_tiles = 6
        self.system_message = ""
        self.use_visual_embedding = True
    
    def process_documents(self, documents: Union[Dict,List[Dict]], **kwargs):
        if isinstance(documents, dict):
            images = documents["images"]
            texts = documents["texts"]
            assert len(texts) == len(images)
        elif isinstance(documents, list):
            images = [pair['image'] for pair in documents ]
            texts = [pair['text'] for pair in documents ]
        else:
            raise ValueError("The documents need to be a dict or list of dicts")
        
        if self.passage_prefix:
            texts = [self.passage_prefix + ' ' + t for t in texts]

        contents, pil_images, max_input_tile_list, llm_onlys = [], [], [], []
        for image, text in zip(images, texts):
            prefix = ''
            llm_only = True
            if image != '':
                pil_images.append(load_image(image))
                prefix = '<image>'
                max_input_tile_list.append(self.max_input_tiles)
                llm_only = False
            else:
                pil_images.append(None)
                max_input_tile_list.append(self.max_input_tiles)
            
            llm_onlys.append(llm_only)

            content = text
            if prefix!='':
                content = prefix + ' ' + content
            if self.passage_prefix:
                content = self.passage_prefix + ' ' + content
            contents.append(content)
        
        transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)

        template = get_conv_template(self.config.template)
        template.system_message = self.system_message
        
        content_prompts = []
        pixel_values_list = []
        for content, pil_image, max_input_tiles, llm_only in zip(contents, pil_images, max_input_tile_list, llm_onlys):
            if pil_image is not None:
                if self.config.dynamic_image_size:
                    image_tiles = dynamic_preprocess(
                        pil_image, image_size=self.image_size, max_num=max_input_tiles,
                        use_thumbnail=self.config.use_thumbnail)
                else:
                    image_tiles = [pil_image]
                        
                pixel_values = [transform(item) for item in image_tiles]
                pixel_values = torch.stack(pixel_values).to(dtype=torch.bfloat16)
                pixel_values_list.append(pixel_values)
            else:
                pixel_values = None

            IMG_START_TOKEN='<img>'
            IMG_END_TOKEN='</img>'
            IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'        

            if pixel_values is not None and '<image>' not in content and not llm_only:
                content = '<image> ' + content

            # Reseting conversation messages
            template.messages.clear()

            # TODO: do we need this template?
            template.append_message(template.roles[0], content) # user
            template.append_message(template.roles[1], None)     # assistant
            content_prompt = template.get_prompt()

            if '<image>' not in content:
                content_prompt = content_prompt
            else:
                num_patches = pixel_values.shape[0]
                image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
                content_prompt = content_prompt.replace('<image>', image_tokens, 1)

            content_prompts.append(content_prompt)

        model_inputs = self.tokenizer(content_prompts, 
                                      truncation=True,
                                      max_length=self.p_max_length,
                                      padding=self.padding,
                                      pad_to_multiple_of=self.pad_to_multiple_of,
                                      return_tensors='pt')

        if len(pixel_values_list)>1:
            pixel_values_squeezed = torch.concat(pixel_values_list, axis=0)
        elif len(pixel_values_list)==1:
            pixel_values_squeezed = pixel_values_list[0]
        else:
            pixel_values_squeezed = None

        batch_docs = {
            "input_ids": model_inputs['input_ids'],
            "attention_mask": model_inputs['attention_mask'],
            "pixel_values": None
        }
        if pixel_values_squeezed is not None:
            batch_docs["pixel_values"] = pixel_values_squeezed
        
        return batch_docs

    def process_queries(self, queries: List[str], **kwargs):

        template = get_conv_template(self.config.template)
        template.system_message = self.system_message

        query_prompts = []
        for query in queries:
            if self.query_prefix:
                query = f"{self.query_prefix} {query}"

            # Reseting conversation messages
            template.messages.clear()

            template.append_message(template.roles[0], query)    # user
            template.append_message(template.roles[1], None)     # assistant
            query_prompt = template.get_prompt()

            query_prompts.append(query_prompt)

        
        batch_query = self.tokenizer(
            query_prompts, 
            truncation=True,
            max_length=self.q_max_length,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors='pt'
        )

        return batch_query

    def get_scores(
        self, 
        query_embeddings: Union[torch.Tensor, List[torch.Tensor]],
        passage_embeddings: Union[torch.Tensor, List[torch.Tensor]],
        batch_size: Optional[int] = 8,
    ) -> torch.Tensor:
        """Dot-product similarity between queries and passages."""        
        if isinstance(query_embeddings, list):
            if len(query_embeddings[0].shape)==2:
                # Expend Batch Dimension as ViDoRe Framework remove it
                query_embeddings = [q.unsqueeze(0) for q in query_embeddings]
            query_embeddings = self.padding_various_shape_tensor(query_embeddings)
        if isinstance(passage_embeddings, list):
            if len(passage_embeddings[0].shape)==2:
                # Expend Batch Dimension as ViDoRe Framework remove it
                passage_embeddings = [p.unsqueeze(0) for p in passage_embeddings]
            passage_embeddings = self.padding_various_shape_tensor(passage_embeddings)
        
        return self.colbert_score(query_embeddings, passage_embeddings, batch_size)

    def colbert_score(
        self,
        qs: Union[torch.Tensor, List[torch.Tensor]],
        ps: Union[torch.Tensor, List[torch.Tensor]],
        batch_size: int = 128,
        device: Optional[Union[str, torch.device]] = None,
    ) -> torch.Tensor:
        if batch_size is None:
            batch_size = 128
        if len(qs) == 0:
            raise ValueError("No queries provided")
        if len(ps) == 0:
            raise ValueError("No passages provided")
    
        scores_list: List[torch.Tensor] = []
        for i in range(0, len(qs), batch_size):
            scores_batch = []
            qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size].cuda(), batch_first=True, padding_value=0)
            for j in range(0, len(ps), batch_size):
                ps_batch = torch.nn.utils.rnn.pad_sequence(
                    ps[j : j + batch_size].cuda(), batch_first=True, padding_value=0
                )
                scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
            # Keep scores_batch on the GPU
            scores_batch = torch.cat(scores_batch, dim=1)
            scores_list.append(scores_batch)
    
        scores = torch.cat(scores_list, dim=0)
        return(scores)
    
    def _extract_embeddings(self, dataloader: DataLoader, is_query: bool) -> List[torch.Tensor]:
        qs = []
        message = "query" if is_query else "document"
        for batch in tqdm(dataloader, desc=f"Extracting {message} embeddings..."):
            with torch.inference_mode():
                with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
                    if 'pixel_values' in batch and batch['pixel_values'] is None:
                        batch.pop('pixel_values')
                    batch = {k: v.to(self.device) for k, v in batch.items()}
                    embeddings = self(**batch, output_hidden_states=True).hidden_states[-1]
                    embeddings = embeddings*batch['attention_mask'].unsqueeze(-1)
                    embeddings = F.normalize(embeddings, dim=-1)
                    
            # Detecting abnormal outputs
            assert torch.sum(embeddings).float().item() not in [float(0.), float("inf")]
            qs.append(embeddings.contiguous())
        
        qs_tensor = self.padding_various_shape_tensor(qs)
        all_embeddings_tensor = qs_tensor.detach().cpu()
        return all_embeddings_tensor

    def forward_passages(self, passages, batch_size=8, **kwargs) -> Union[torch.Tensor, List[torch.Tensor]]:
        """Forward passages as image-only documents."""
        corpus = []
        for image in passages:
            corpus.append({
                "image": image,
                "text": ''
            })
        return self.forward_documents(corpus, batch_size)
    
    def forward_queries(self, queries: List, batch_size=8) -> List[torch.Tensor]:
        dataset = ListDataset[str](queries)
        dataloader = DataLoader(
            dataset=dataset,
            batch_size=batch_size,
            collate_fn=self.process_queries,
            shuffle=False,
            num_workers=8,
            pin_memory=True,
            drop_last=False,
        )
        return self._extract_embeddings(dataloader=dataloader, is_query=True)

    def forward_documents(self, corpus: List, batch_size=8) -> List[torch.Tensor]:    
        images = []
        texts = []
        for doc in corpus:
            text = doc["text"]
            image = doc.get("image", "")
            if image.mode != "RGB":
                image = image.convert("RGB")
            images.append(image)
            texts.append(text)

        dataset = Dataset.from_dict({"image": images, "text": texts})
        dataloader = DataLoader(
            dataset=dataset,
            batch_size=batch_size,
            collate_fn=self.process_documents,
            shuffle=False,
            num_workers=8,
            pin_memory=True,
            drop_last=False,
        )
        return self._extract_embeddings(dataloader=dataloader, is_query=False)

    def padding_various_shape_tensor(self, tensors: List[torch.Tensor]) -> torch.Tensor:
        """Pad tensors of various shapes for colbert-like scoring"""
        max_seq_len = max(t.shape[1] for t in tensors)
        padded_tensors = [F.pad(t, (0, 0, 0, max_seq_len - t.shape[1]), mode="constant", value=0) for t in tensors]
        return torch.cat(padded_tensors, dim=0)


from typing import TypeVar
from torch.utils.data import Dataset as TorchDataset
TV = TypeVar("T")
class ListDataset(TorchDataset[TV]):
    def __init__(self, elements: List[TV]):
        self.elements = elements

    def __len__(self) -> int:
        return len(self.elements)

    def __getitem__(self, idx: int) -> TV:
        return self.elements[idx]