# coding=utf-8 # Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Phi4Flash model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging import math logger = logging.get_logger(__name__) class Phi4FlashConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash model according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Phi4FlashModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. Example: ```python >>> from transformers import Phi4FlashModel, Phi4FlashConfig >>> # Initializing a Phi4Flash style configuration >>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning") >>> # Initializing a model from the configuration >>> model = Phi4FlashModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi4flash" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=51200, hidden_size=2560, intermediate_size=9216, num_hidden_layers=32, num_attention_heads=40, num_key_value_heads=4, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=True, rope_theta=10000.0, bos_token_id=1, eos_token_id=2, sliding_window=2047, mb_per_layer= 2, mamba_d_state=16, mamba_d_conv=4, mamba_expand=2, mamba_dt_rank="auto", mamba_conv_bias=True, mamba_proj_bias=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.mb_per_layer = mb_per_layer self.sliding_window = [ sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None for layer_idx in range(num_hidden_layers) ] self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank self.mamba_conv_bias = mamba_conv_bias self.mamba_proj_bias = mamba_proj_bias super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) @property def layers_block_type(self): layer_block_types = [] for i in range(self.num_hidden_layers): if i % 2 == 1: layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention" else: layer_block_type = "mamba" layer_block_types.append(layer_block_type) return layer_block_types