File size: 1,475 Bytes
9ee0770 23fb24f 9ee0770 23fb24f bbd63b1 9ee0770 23fb24f 9ee0770 23fb24f 9ee0770 23fb24f 9ee0770 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: other
license_name: health-ai-developer-foundations
license_link: https://developers.google.com/health-ai-developer-foundations/terms
library_name: mlx
pipeline_tag: text-generation
extra_gated_heading: Access MedGemma on Hugging Face
extra_gated_prompt: To access MedGemma on Hugging Face, you're required to review
and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
To do this, please ensure you're logged in to Hugging Face and click below. Requests
are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/medgemma-27b-text-it
tags:
- medical
- clinical-reasoning
- thinking
- mlx
---
# mlx-community/medgemma-27b-text-it-bf16
This model [mlx-community/medgemma-27b-text-it-bf16](https://huggingface.co/mlx-community/medgemma-27b-text-it-bf16) was
converted to MLX format from [google/medgemma-27b-text-it](https://huggingface.co/google/medgemma-27b-text-it)
using mlx-lm version **0.25.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/medgemma-27b-text-it-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|