Upload folder using huggingface_hub
Browse files- config.json +1 -1
- configuration_midashenglm.py +2 -3
- model.safetensors.index.json +1 -1
- modeling_midashenglm.py +68 -55
- preprocessor_config.json +2 -2
- processing_midashenglm.py +66 -36
- processor_config.json +2 -2
- tokenizer_config.json +2 -2
config.json
CHANGED
@@ -67,7 +67,7 @@
|
|
67 |
"torch_dtype": "bfloat16",
|
68 |
"use_cache": true,
|
69 |
"use_sliding_window": false,
|
70 |
-
"vocab_size":
|
71 |
},
|
72 |
"torch_dtype": "float32",
|
73 |
"transformers_version": "4.52.4"
|
|
|
67 |
"torch_dtype": "bfloat16",
|
68 |
"use_cache": true,
|
69 |
"use_sliding_window": false,
|
70 |
+
"vocab_size": 151936
|
71 |
},
|
72 |
"torch_dtype": "float32",
|
73 |
"transformers_version": "4.52.4"
|
configuration_midashenglm.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
from
|
2 |
-
from typing import Optional, Tuple, Union
|
3 |
|
4 |
from transformers import PretrainedConfig
|
5 |
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
@@ -66,7 +65,7 @@ class MiDashengLMConfig(PretrainedConfig):
|
|
66 |
self,
|
67 |
audio_encoder_config: Dict = {},
|
68 |
subsample_factor: int = 5,
|
69 |
-
text_config: Dict =
|
70 |
**kwargs,
|
71 |
):
|
72 |
self.audio_encoder_config = DashengConfig(**audio_encoder_config)
|
|
|
1 |
+
from typing import Dict, Optional, Tuple, Union
|
|
|
2 |
|
3 |
from transformers import PretrainedConfig
|
4 |
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
|
|
65 |
self,
|
66 |
audio_encoder_config: Dict = {},
|
67 |
subsample_factor: int = 5,
|
68 |
+
text_config: Dict = {},
|
69 |
**kwargs,
|
70 |
):
|
71 |
self.audio_encoder_config = DashengConfig(**audio_encoder_config)
|
model.safetensors.index.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"audio_encoder.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 9384832268
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"audio_encoder.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
modeling_midashenglm.py
CHANGED
@@ -1,13 +1,14 @@
|
|
|
|
1 |
import collections.abc
|
2 |
from dataclasses import dataclass
|
3 |
-
from
|
4 |
-
from typing import Any, Callable, Iterable, List, Optional, Tuple, Type, Union
|
5 |
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
import torchaudio.transforms as audio_transforms
|
9 |
from torch import Tensor
|
10 |
from transformers import GenerationMixin, PreTrainedModel
|
|
|
11 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
12 |
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
13 |
Qwen2_5OmniTextConfig,
|
@@ -18,28 +19,33 @@ from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
|
|
18 |
|
19 |
from .configuration_midashenglm import DashengConfig, MiDashengLMConfig
|
20 |
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
return (x, x)
|
26 |
|
27 |
|
28 |
class AudioPatchEmbed(nn.Module):
|
29 |
def __init__(
|
30 |
self,
|
31 |
-
input_size:
|
32 |
-
patch_size:
|
33 |
-
patch_stride:
|
34 |
in_chans: int = 1,
|
35 |
embed_dim: int = 768,
|
36 |
norm_layer: Optional[Callable] = None,
|
37 |
flatten: bool = False,
|
38 |
):
|
39 |
super().__init__()
|
40 |
-
self.input_size =
|
41 |
-
self.patch_size =
|
42 |
-
self.patch_stride =
|
43 |
self.grid_size = (
|
44 |
self.input_size[0] // self.patch_stride[0],
|
45 |
self.input_size[1] // self.patch_stride[1],
|
@@ -48,7 +54,10 @@ class AudioPatchEmbed(nn.Module):
|
|
48 |
self.flatten = flatten
|
49 |
|
50 |
self.proj = nn.Conv2d(
|
51 |
-
in_chans,
|
|
|
|
|
|
|
52 |
)
|
53 |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
54 |
|
@@ -78,14 +87,13 @@ class DashengMlp(nn.Module):
|
|
78 |
in_features: int,
|
79 |
hidden_features: Optional[int] = None,
|
80 |
out_features: Optional[int] = None,
|
81 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
82 |
drop: float = 0.0,
|
83 |
):
|
84 |
super().__init__()
|
85 |
out_features = out_features or in_features
|
86 |
hidden_features = hidden_features or in_features
|
87 |
self.fc1 = nn.Linear(in_features, hidden_features)
|
88 |
-
self.act =
|
89 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
90 |
self.drop = nn.Dropout(drop)
|
91 |
|
@@ -173,13 +181,10 @@ class DashengBlock(nn.Module):
|
|
173 |
drop: float = 0.0,
|
174 |
attn_drop: float = 0.0,
|
175 |
init_values: Optional[float] = None,
|
176 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
177 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
178 |
-
attention_type: Type[nn.Module] = DashengAttention,
|
179 |
):
|
180 |
super().__init__()
|
181 |
-
self.norm1 =
|
182 |
-
self.attn =
|
183 |
dim,
|
184 |
num_heads=num_heads,
|
185 |
qkv_bias=qkv_bias,
|
@@ -190,11 +195,10 @@ class DashengBlock(nn.Module):
|
|
190 |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
191 |
)
|
192 |
|
193 |
-
self.norm2 =
|
194 |
self.mlp = DashengMlp(
|
195 |
in_features=dim,
|
196 |
hidden_features=int(dim * mlp_ratio),
|
197 |
-
act_layer=act_layer,
|
198 |
drop=drop,
|
199 |
)
|
200 |
self.ls2 = (
|
@@ -250,7 +254,6 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
250 |
torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
|
251 |
)
|
252 |
|
253 |
-
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
254 |
self.pos_drop = nn.Dropout(p=config.drop_rate)
|
255 |
self.blocks = nn.ModuleList(
|
256 |
DashengBlock(
|
@@ -261,11 +264,10 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
261 |
init_values=config.init_values,
|
262 |
drop=config.drop_rate,
|
263 |
attn_drop=config.attn_drop_rate,
|
264 |
-
norm_layer=norm_layer,
|
265 |
)
|
266 |
for i in range(config.depth)
|
267 |
)
|
268 |
-
self.norm =
|
269 |
|
270 |
self.post_init()
|
271 |
|
@@ -295,7 +297,7 @@ class DashengAudioTransformer(PreTrainedModel):
|
|
295 |
self,
|
296 |
x: torch.Tensor,
|
297 |
x_length: Optional[torch.Tensor] = None,
|
298 |
-
) -> torch.Tensor:
|
299 |
x = self.front_end(x)
|
300 |
target_length_in_patches = self.target_length // 4
|
301 |
x = x.unsqueeze(1)
|
@@ -363,10 +365,10 @@ class AudioProjectorSubsample(nn.Module):
|
|
363 |
|
364 |
@dataclass
|
365 |
class Qwen25OmniTextModelOutput(ModelOutput):
|
366 |
-
logits: torch.FloatTensor = None
|
367 |
-
past_key_values: Optional[
|
368 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
369 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
370 |
|
371 |
|
372 |
class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
|
@@ -390,10 +392,22 @@ class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
|
|
390 |
|
391 |
def forward(
|
392 |
self,
|
|
|
|
|
393 |
return_dict: Optional[bool] = None,
|
394 |
**kwargs: Any,
|
395 |
-
) -> Qwen25OmniTextModelOutput:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
outputs: BaseModelOutputWithPast = self.model(
|
|
|
|
|
397 |
return_dict=True,
|
398 |
**kwargs,
|
399 |
)
|
@@ -463,23 +477,26 @@ class MiDashengLMModel(PreTrainedModel):
|
|
463 |
def _prepare_with_input_ids(
|
464 |
self,
|
465 |
input_ids: torch.Tensor,
|
466 |
-
audio_embeddings: torch.Tensor,
|
467 |
-
audio_token_id: int,
|
468 |
) -> torch.Tensor:
|
469 |
-
special_mask = input_ids == audio_token_id
|
470 |
-
assert audio_embeddings.shape[1] <= (special_mask.sum(-1)).max(), (
|
471 |
-
"Mask and audio embeddings seem to have different sizes: "
|
472 |
-
f"{audio_embeddings.shape=}, {special_mask=}, {input_ids=}, "
|
473 |
-
f"{audio_embeddings.shape[1]=} vs {(special_mask.sum(-1)).max()=}"
|
474 |
-
)
|
475 |
input_embeddings = self.decoder.model.embed_tokens(input_ids)
|
476 |
-
audio_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
483 |
|
484 |
def forward(
|
485 |
self,
|
@@ -487,7 +504,6 @@ class MiDashengLMModel(PreTrainedModel):
|
|
487 |
input_values: Optional[Tensor] = None,
|
488 |
inputs_embeds: Optional[Tensor] = None,
|
489 |
audio_length: Optional[Iterable[int]] = None,
|
490 |
-
attention_mask: Optional[Tensor] = None,
|
491 |
audio_token_id: Optional[int] = None,
|
492 |
**kwargs: Any,
|
493 |
):
|
@@ -498,6 +514,11 @@ class MiDashengLMModel(PreTrainedModel):
|
|
498 |
)
|
499 |
|
500 |
if input_values is not None:
|
|
|
|
|
|
|
|
|
|
|
501 |
input_values = input_values.to(self.device)
|
502 |
audio_encoder_hidden_states = self._forward_audio_encoder(
|
503 |
input_values, audio_length=audio_length
|
@@ -530,7 +551,6 @@ class MiDashengLMModel(PreTrainedModel):
|
|
530 |
return self.decoder(
|
531 |
input_ids=None,
|
532 |
inputs_embeds=inputs_embeds,
|
533 |
-
attention_mask=attention_mask,
|
534 |
**kwargs,
|
535 |
)
|
536 |
|
@@ -548,6 +568,7 @@ class MiDashengLMModel(PreTrainedModel):
|
|
548 |
raise ValueError(
|
549 |
"Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
|
550 |
)
|
|
|
551 |
|
552 |
if input_values is not None:
|
553 |
input_values = input_values.to(self.device)
|
@@ -555,15 +576,7 @@ class MiDashengLMModel(PreTrainedModel):
|
|
555 |
input_values, audio_length=audio_length
|
556 |
)
|
557 |
else:
|
558 |
-
|
559 |
-
input_values = torch.zeros(
|
560 |
-
batch,
|
561 |
-
0,
|
562 |
-
self.audio_encoder.embed_dim,
|
563 |
-
device=input_ids.device,
|
564 |
-
)
|
565 |
-
|
566 |
-
input_ids = input_ids.to(self.device)
|
567 |
inputs_embeds = self._prepare_with_input_ids(
|
568 |
input_ids=input_ids,
|
569 |
audio_embeddings=audio_encoder_hidden_states,
|
|
|
1 |
+
import collections
|
2 |
import collections.abc
|
3 |
from dataclasses import dataclass
|
4 |
+
from typing import Any, Callable, Iterable, Optional, Sequence, Tuple, Union, cast
|
|
|
5 |
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
import torchaudio.transforms as audio_transforms
|
9 |
from torch import Tensor
|
10 |
from transformers import GenerationMixin, PreTrainedModel
|
11 |
+
from transformers.cache_utils import Cache
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
13 |
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
14 |
Qwen2_5OmniTextConfig,
|
|
|
19 |
|
20 |
from .configuration_midashenglm import DashengConfig, MiDashengLMConfig
|
21 |
|
22 |
+
_Tuple2 = Union[int, Tuple[int, int], Sequence[int]]
|
23 |
|
24 |
+
|
25 |
+
def _resolve_tuple2(x: _Tuple2) -> Tuple[int, int]:
|
26 |
+
if isinstance(x, collections.abc.Sequence):
|
27 |
+
assert len(x) == 2, (
|
28 |
+
f"Expected a sequence of length 2, got {x} with length {len(x)}"
|
29 |
+
)
|
30 |
+
return cast(Tuple[int, int], tuple(x))
|
31 |
return (x, x)
|
32 |
|
33 |
|
34 |
class AudioPatchEmbed(nn.Module):
|
35 |
def __init__(
|
36 |
self,
|
37 |
+
input_size: _Tuple2 = 64,
|
38 |
+
patch_size: _Tuple2 = 16,
|
39 |
+
patch_stride: _Tuple2 = 16,
|
40 |
in_chans: int = 1,
|
41 |
embed_dim: int = 768,
|
42 |
norm_layer: Optional[Callable] = None,
|
43 |
flatten: bool = False,
|
44 |
):
|
45 |
super().__init__()
|
46 |
+
self.input_size = _resolve_tuple2(input_size)
|
47 |
+
self.patch_size = _resolve_tuple2(patch_size)
|
48 |
+
self.patch_stride = _resolve_tuple2(patch_stride)
|
49 |
self.grid_size = (
|
50 |
self.input_size[0] // self.patch_stride[0],
|
51 |
self.input_size[1] // self.patch_stride[1],
|
|
|
54 |
self.flatten = flatten
|
55 |
|
56 |
self.proj = nn.Conv2d(
|
57 |
+
in_chans,
|
58 |
+
embed_dim,
|
59 |
+
kernel_size=self.patch_size,
|
60 |
+
stride=self.patch_stride,
|
61 |
)
|
62 |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
63 |
|
|
|
87 |
in_features: int,
|
88 |
hidden_features: Optional[int] = None,
|
89 |
out_features: Optional[int] = None,
|
|
|
90 |
drop: float = 0.0,
|
91 |
):
|
92 |
super().__init__()
|
93 |
out_features = out_features or in_features
|
94 |
hidden_features = hidden_features or in_features
|
95 |
self.fc1 = nn.Linear(in_features, hidden_features)
|
96 |
+
self.act = nn.GELU()
|
97 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
98 |
self.drop = nn.Dropout(drop)
|
99 |
|
|
|
181 |
drop: float = 0.0,
|
182 |
attn_drop: float = 0.0,
|
183 |
init_values: Optional[float] = None,
|
|
|
|
|
|
|
184 |
):
|
185 |
super().__init__()
|
186 |
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
187 |
+
self.attn = DashengAttention(
|
188 |
dim,
|
189 |
num_heads=num_heads,
|
190 |
qkv_bias=qkv_bias,
|
|
|
195 |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
196 |
)
|
197 |
|
198 |
+
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
199 |
self.mlp = DashengMlp(
|
200 |
in_features=dim,
|
201 |
hidden_features=int(dim * mlp_ratio),
|
|
|
202 |
drop=drop,
|
203 |
)
|
204 |
self.ls2 = (
|
|
|
254 |
torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
|
255 |
)
|
256 |
|
|
|
257 |
self.pos_drop = nn.Dropout(p=config.drop_rate)
|
258 |
self.blocks = nn.ModuleList(
|
259 |
DashengBlock(
|
|
|
264 |
init_values=config.init_values,
|
265 |
drop=config.drop_rate,
|
266 |
attn_drop=config.attn_drop_rate,
|
|
|
267 |
)
|
268 |
for i in range(config.depth)
|
269 |
)
|
270 |
+
self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
271 |
|
272 |
self.post_init()
|
273 |
|
|
|
297 |
self,
|
298 |
x: torch.Tensor,
|
299 |
x_length: Optional[torch.Tensor] = None,
|
300 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
301 |
x = self.front_end(x)
|
302 |
target_length_in_patches = self.target_length // 4
|
303 |
x = x.unsqueeze(1)
|
|
|
365 |
|
366 |
@dataclass
|
367 |
class Qwen25OmniTextModelOutput(ModelOutput):
|
368 |
+
logits: Optional[torch.FloatTensor] = None
|
369 |
+
past_key_values: Optional[Cache] = None
|
370 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
371 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
372 |
|
373 |
|
374 |
class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
|
|
|
392 |
|
393 |
def forward(
|
394 |
self,
|
395 |
+
attention_mask: Optional[Tensor] = None,
|
396 |
+
position_ids: Optional[torch.Tensor] = None,
|
397 |
return_dict: Optional[bool] = None,
|
398 |
**kwargs: Any,
|
399 |
+
) -> Union[Tuple, Qwen25OmniTextModelOutput]:
|
400 |
+
if attention_mask is not None and position_ids is None:
|
401 |
+
position_ids = (
|
402 |
+
attention_mask.long()
|
403 |
+
.cumsum(dim=-1)
|
404 |
+
.masked_fill_(attention_mask == 0, 1)
|
405 |
+
- 1
|
406 |
+
)
|
407 |
+
|
408 |
outputs: BaseModelOutputWithPast = self.model(
|
409 |
+
attention_mask=attention_mask,
|
410 |
+
position_ids=position_ids,
|
411 |
return_dict=True,
|
412 |
**kwargs,
|
413 |
)
|
|
|
477 |
def _prepare_with_input_ids(
|
478 |
self,
|
479 |
input_ids: torch.Tensor,
|
480 |
+
audio_embeddings: Optional[torch.Tensor],
|
481 |
+
audio_token_id: Optional[int],
|
482 |
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
input_embeddings = self.decoder.model.embed_tokens(input_ids)
|
484 |
+
if audio_embeddings is not None:
|
485 |
+
special_mask = input_ids == audio_token_id
|
486 |
+
assert audio_embeddings.shape[1] <= (special_mask.sum(-1)).max(), (
|
487 |
+
"Mask and audio embeddings seem to have different sizes: "
|
488 |
+
f"{audio_embeddings.shape=}, {special_mask=}, {input_ids=}, "
|
489 |
+
f"{audio_embeddings.shape[1]=} vs {(special_mask.sum(-1)).max()=}"
|
490 |
+
)
|
491 |
+
audio_embeddings = audio_embeddings.to(input_embeddings.dtype)
|
492 |
|
493 |
+
for i in range(len(special_mask)):
|
494 |
+
mask = special_mask[i]
|
495 |
+
number_of_tokens = mask.sum(-1)
|
496 |
+
input_embeddings[i, mask] = audio_embeddings[i, :number_of_tokens]
|
497 |
+
return input_embeddings
|
498 |
+
else:
|
499 |
+
return input_embeddings
|
500 |
|
501 |
def forward(
|
502 |
self,
|
|
|
504 |
input_values: Optional[Tensor] = None,
|
505 |
inputs_embeds: Optional[Tensor] = None,
|
506 |
audio_length: Optional[Iterable[int]] = None,
|
|
|
507 |
audio_token_id: Optional[int] = None,
|
508 |
**kwargs: Any,
|
509 |
):
|
|
|
514 |
)
|
515 |
|
516 |
if input_values is not None:
|
517 |
+
if audio_token_id is None:
|
518 |
+
raise ValueError(
|
519 |
+
"If `input_values` is provided, `audio_token_id` must also be provided."
|
520 |
+
)
|
521 |
+
|
522 |
input_values = input_values.to(self.device)
|
523 |
audio_encoder_hidden_states = self._forward_audio_encoder(
|
524 |
input_values, audio_length=audio_length
|
|
|
551 |
return self.decoder(
|
552 |
input_ids=None,
|
553 |
inputs_embeds=inputs_embeds,
|
|
|
554 |
**kwargs,
|
555 |
)
|
556 |
|
|
|
568 |
raise ValueError(
|
569 |
"Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
|
570 |
)
|
571 |
+
input_ids = input_ids.to(self.device)
|
572 |
|
573 |
if input_values is not None:
|
574 |
input_values = input_values.to(self.device)
|
|
|
576 |
input_values, audio_length=audio_length
|
577 |
)
|
578 |
else:
|
579 |
+
audio_encoder_hidden_states = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
inputs_embeds = self._prepare_with_input_ids(
|
581 |
input_ids=input_ids,
|
582 |
audio_embeddings=audio_encoder_hidden_states,
|
preprocessor_config.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
-
"AutoProcessor": "processing_midashenglm.
|
4 |
},
|
5 |
"do_normalize": false,
|
6 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
7 |
"feature_size": 1,
|
8 |
"padding_side": "right",
|
9 |
"padding_value": 0.0,
|
10 |
-
"processor_class": "
|
11 |
"return_attention_mask": false,
|
12 |
"sampling_rate": 16000
|
13 |
}
|
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
|
4 |
},
|
5 |
"do_normalize": false,
|
6 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
7 |
"feature_size": 1,
|
8 |
"padding_side": "right",
|
9 |
"padding_value": 0.0,
|
10 |
+
"processor_class": "MiDashengLMProcessor",
|
11 |
"return_attention_mask": false,
|
12 |
"sampling_rate": 16000
|
13 |
}
|
processing_midashenglm.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import List, Optional, Union
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
@@ -7,8 +7,8 @@ from transformers.feature_extraction_utils import BatchFeature
|
|
7 |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
8 |
|
9 |
|
10 |
-
class
|
11 |
-
_defaults = {
|
12 |
"text_kwargs": {
|
13 |
"padding": True,
|
14 |
"padding_side": "left",
|
@@ -36,7 +36,7 @@ def calculate_mel_frames_dasheng(
|
|
36 |
)
|
37 |
|
38 |
|
39 |
-
class
|
40 |
attributes = ["feature_extractor", "tokenizer"]
|
41 |
valid_kwargs = [
|
42 |
"chat_template",
|
@@ -49,15 +49,14 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
49 |
|
50 |
def __init__(
|
51 |
self,
|
52 |
-
feature_extractor:
|
53 |
-
tokenizer:
|
54 |
model_subsampling: int = 5,
|
55 |
-
chat_template: Optional[str] = None,
|
56 |
audio_token: Optional[str] = None,
|
57 |
audio_bos_token: Optional[str] = None,
|
58 |
audio_eos_token: Optional[str] = None,
|
59 |
):
|
60 |
-
assert tokenizer is not None, "Tokenizer Needs to be passed"
|
61 |
assert audio_token is not None or hasattr(tokenizer, "audio_token"), (
|
62 |
"Either `audio_token` must be provided or tokenizer must have `audio_token` attribute."
|
63 |
)
|
@@ -67,22 +66,62 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
67 |
assert audio_eos_token is not None or hasattr(tokenizer, "audio_eos_token"), (
|
68 |
"Either `audio_eos_token` must be provided or tokenizer must have `audio_eos_token` attribute."
|
69 |
)
|
|
|
|
|
|
|
70 |
|
71 |
if chat_template is None:
|
72 |
chat_template = tokenizer.chat_template
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
@classmethod
|
88 |
def _validate_audio_sample(
|
@@ -117,7 +156,7 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
117 |
self,
|
118 |
text: Optional[List[str]] = None,
|
119 |
audio: Optional[Union[List[np.ndarray], List[torch.Tensor]]] = None,
|
120 |
-
**kwargs: Unpack[
|
121 |
) -> BatchFeature:
|
122 |
if text is None:
|
123 |
raise ValueError("You need to specify `text` input to process.")
|
@@ -135,7 +174,7 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
135 |
raise ValueError("This model does not support images or videos.")
|
136 |
|
137 |
output_kwargs = self._merge_kwargs(
|
138 |
-
|
139 |
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
140 |
**kwargs,
|
141 |
)
|
@@ -157,7 +196,9 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
157 |
|
158 |
# + Padding
|
159 |
audio_inputs = self.feature_extractor(
|
160 |
-
audio,
|
|
|
|
|
161 |
)
|
162 |
|
163 |
# remove attention mask, dasheng uses lengths
|
@@ -216,28 +257,17 @@ class MiAudioLLMProcessor(ProcessorMixin):
|
|
216 |
|
217 |
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
|
218 |
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
221 |
|
222 |
if audio is not None:
|
223 |
inputs.update(audio_inputs)
|
224 |
|
225 |
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
|
226 |
|
227 |
-
def batch_decode(self, *args, **kwargs):
|
228 |
-
"""
|
229 |
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
230 |
-
refer to the docstring of this method for more information.
|
231 |
-
"""
|
232 |
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
233 |
-
|
234 |
-
def decode(self, *args, **kwargs):
|
235 |
-
"""
|
236 |
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
237 |
-
the docstring of this method for more information.
|
238 |
-
"""
|
239 |
-
return self.tokenizer.decode(*args, **kwargs)
|
240 |
-
|
241 |
@property
|
242 |
def model_input_names(self):
|
243 |
tokenizer_input_names = self.tokenizer.model_input_names
|
|
|
1 |
+
from typing import Dict, List, Optional, Union, cast
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
7 |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
8 |
|
9 |
|
10 |
+
class MiDashengLMProcessorKwargs(ProcessingKwargs):
|
11 |
+
_defaults = { # type: ignore
|
12 |
"text_kwargs": {
|
13 |
"padding": True,
|
14 |
"padding_side": "left",
|
|
|
36 |
)
|
37 |
|
38 |
|
39 |
+
class MiDashengLMProcessor(ProcessorMixin):
|
40 |
attributes = ["feature_extractor", "tokenizer"]
|
41 |
valid_kwargs = [
|
42 |
"chat_template",
|
|
|
49 |
|
50 |
def __init__(
|
51 |
self,
|
52 |
+
feature_extractor: Wav2Vec2FeatureExtractor,
|
53 |
+
tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast],
|
54 |
model_subsampling: int = 5,
|
55 |
+
chat_template: Optional[Union[str, Dict[str, str]]] = None,
|
56 |
audio_token: Optional[str] = None,
|
57 |
audio_bos_token: Optional[str] = None,
|
58 |
audio_eos_token: Optional[str] = None,
|
59 |
):
|
|
|
60 |
assert audio_token is not None or hasattr(tokenizer, "audio_token"), (
|
61 |
"Either `audio_token` must be provided or tokenizer must have `audio_token` attribute."
|
62 |
)
|
|
|
66 |
assert audio_eos_token is not None or hasattr(tokenizer, "audio_eos_token"), (
|
67 |
"Either `audio_eos_token` must be provided or tokenizer must have `audio_eos_token` attribute."
|
68 |
)
|
69 |
+
assert not feature_extractor.do_normalize, (
|
70 |
+
"This model does not use normalization. Please set `do_normalize=False` in the feature extractor."
|
71 |
+
)
|
72 |
|
73 |
if chat_template is None:
|
74 |
chat_template = tokenizer.chat_template
|
75 |
|
76 |
+
def get_token(token_name: str) -> str:
|
77 |
+
if not hasattr(tokenizer, token_name):
|
78 |
+
raise ValueError(
|
79 |
+
f"Tokenizer does not have attribute `{token_name}`. "
|
80 |
+
"Please provide it as an argument to the processor."
|
81 |
+
)
|
82 |
+
token = getattr(tokenizer, token_name)
|
83 |
+
if not isinstance(token, str):
|
84 |
+
raise TypeError(
|
85 |
+
f"Expected token {token_name} to be a string, but got {type(token)}."
|
86 |
+
)
|
87 |
+
return token
|
88 |
|
89 |
+
self.audio_token = audio_token or get_token("audio_token")
|
90 |
+
self.audio_bos_token = audio_bos_token or get_token("audio_bos_token")
|
91 |
+
self.audio_eos_token = audio_eos_token or get_token("audio_eos_token")
|
92 |
+
|
93 |
+
self.audio_token_id = cast(
|
94 |
+
int, tokenizer.convert_tokens_to_ids(self.audio_token)
|
95 |
+
)
|
96 |
+
self.model_subsampling = model_subsampling
|
97 |
+
self.sampling_rate = feature_extractor.sampling_rate
|
98 |
|
99 |
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
|
100 |
+
self.feature_extractor: Wav2Vec2FeatureExtractor
|
101 |
+
self.tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast]
|
102 |
+
self.chat_template: Optional[Union[str, Dict[str, str]]]
|
103 |
+
|
104 |
+
def _process_messages_for_chat_template(
|
105 |
+
self,
|
106 |
+
conversation,
|
107 |
+
batch_images,
|
108 |
+
batch_videos,
|
109 |
+
batch_video_metadata,
|
110 |
+
**mm_load_kwargs,
|
111 |
+
):
|
112 |
+
if (sr := mm_load_kwargs.get("sampling_rate", None)) is not None:
|
113 |
+
if sr != self.sampling_rate:
|
114 |
+
raise ValueError(
|
115 |
+
f"This model is trained with a sampling rate of {self.sampling_rate}, "
|
116 |
+
f"but the sampling rate {sr} is used to load audio."
|
117 |
+
)
|
118 |
+
return super()._process_messages_for_chat_template(
|
119 |
+
conversation,
|
120 |
+
batch_images,
|
121 |
+
batch_videos,
|
122 |
+
batch_video_metadata,
|
123 |
+
**mm_load_kwargs,
|
124 |
+
)
|
125 |
|
126 |
@classmethod
|
127 |
def _validate_audio_sample(
|
|
|
156 |
self,
|
157 |
text: Optional[List[str]] = None,
|
158 |
audio: Optional[Union[List[np.ndarray], List[torch.Tensor]]] = None,
|
159 |
+
**kwargs: Unpack[MiDashengLMProcessorKwargs],
|
160 |
) -> BatchFeature:
|
161 |
if text is None:
|
162 |
raise ValueError("You need to specify `text` input to process.")
|
|
|
174 |
raise ValueError("This model does not support images or videos.")
|
175 |
|
176 |
output_kwargs = self._merge_kwargs(
|
177 |
+
MiDashengLMProcessorKwargs, # type: ignore # Bad type hint in transformers
|
178 |
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
179 |
**kwargs,
|
180 |
)
|
|
|
196 |
|
197 |
# + Padding
|
198 |
audio_inputs = self.feature_extractor(
|
199 |
+
audio,
|
200 |
+
sampling_rate=self.sampling_rate,
|
201 |
+
**output_kwargs["audio_kwargs"],
|
202 |
)
|
203 |
|
204 |
# remove attention mask, dasheng uses lengths
|
|
|
257 |
|
258 |
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
|
259 |
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
260 |
+
self._check_special_mm_tokens(
|
261 |
+
text,
|
262 |
+
BatchFeature(inputs), # type: ignore
|
263 |
+
modalities=["audio"],
|
264 |
+
)
|
265 |
|
266 |
if audio is not None:
|
267 |
inputs.update(audio_inputs)
|
268 |
|
269 |
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
@property
|
272 |
def model_input_names(self):
|
273 |
tokenizer_input_names = self.tokenizer.model_input_names
|
processor_config.json
CHANGED
@@ -3,8 +3,8 @@
|
|
3 |
"audio_eos_token": "<|audio_eos|>",
|
4 |
"audio_token": "<|AUDIO|>",
|
5 |
"auto_map": {
|
6 |
-
"AutoProcessor": "processing_midashenglm.
|
7 |
},
|
8 |
"model_subsampling": 5,
|
9 |
-
"processor_class": "
|
10 |
}
|
|
|
3 |
"audio_eos_token": "<|audio_eos|>",
|
4 |
"audio_token": "<|AUDIO|>",
|
5 |
"auto_map": {
|
6 |
+
"AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
|
7 |
},
|
8 |
"model_subsampling": 5,
|
9 |
+
"processor_class": "MiDashengLMProcessor"
|
10 |
}
|
tokenizer_config.json
CHANGED
@@ -337,7 +337,7 @@
|
|
337 |
"audio_eos_token": "<|audio_eos|>",
|
338 |
"audio_token": "<|AUDIO|>",
|
339 |
"auto_map": {
|
340 |
-
"AutoProcessor": "processing_midashenglm.
|
341 |
},
|
342 |
"bos_token": null,
|
343 |
"clean_up_tokenization_spaces": false,
|
@@ -355,7 +355,7 @@
|
|
355 |
"image_token": "<|IMAGE|>",
|
356 |
"model_max_length": 32768,
|
357 |
"pad_token": "<|endoftext|>",
|
358 |
-
"processor_class": "
|
359 |
"split_special_tokens": false,
|
360 |
"tokenizer_class": "Qwen2Tokenizer",
|
361 |
"unk_token": null,
|
|
|
337 |
"audio_eos_token": "<|audio_eos|>",
|
338 |
"audio_token": "<|AUDIO|>",
|
339 |
"auto_map": {
|
340 |
+
"AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
|
341 |
},
|
342 |
"bos_token": null,
|
343 |
"clean_up_tokenization_spaces": false,
|
|
|
355 |
"image_token": "<|IMAGE|>",
|
356 |
"model_max_length": 32768,
|
357 |
"pad_token": "<|endoftext|>",
|
358 |
+
"processor_class": "MiDashengLMProcessor",
|
359 |
"split_special_tokens": false,
|
360 |
"tokenizer_class": "Qwen2Tokenizer",
|
361 |
"unk_token": null,
|