Matt
commited on
Commit
·
3273420
1
Parent(s):
00d2f15
initial commit
Browse files- model.safetensors +3 -0
- modeling_florence2.py +1 -20
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff7f7928171b33203bc41d524a6b61e9a6789500e49084b84993927c4f81a90
|
3 |
+
size 3317087180
|
modeling_florence2.py
CHANGED
@@ -26,7 +26,7 @@ import torch.utils.checkpoint as checkpoint
|
|
26 |
from torch.nn import CrossEntropyLoss
|
27 |
from collections import OrderedDict
|
28 |
from einops import rearrange
|
29 |
-
from timm.
|
30 |
|
31 |
from transformers.modeling_utils import PreTrainedModel
|
32 |
from transformers.generation.utils import GenerationMixin
|
@@ -610,29 +610,10 @@ class DaViT(nn.Module):
|
|
610 |
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
611 |
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
612 |
|
613 |
-
self.apply(self._init_weights)
|
614 |
-
|
615 |
@property
|
616 |
def dim_out(self):
|
617 |
return self.embed_dims[-1]
|
618 |
|
619 |
-
def _init_weights(self, m):
|
620 |
-
if isinstance(m, nn.Linear):
|
621 |
-
trunc_normal_(m.weight, std=0.02)
|
622 |
-
if m.bias is not None:
|
623 |
-
nn.init.constant_(m.bias, 0)
|
624 |
-
elif isinstance(m, nn.Conv2d):
|
625 |
-
nn.init.normal_(m.weight, std=0.02)
|
626 |
-
for name, _ in m.named_parameters():
|
627 |
-
if name in ['bias']:
|
628 |
-
nn.init.constant_(m.bias, 0)
|
629 |
-
elif isinstance(m, nn.LayerNorm):
|
630 |
-
nn.init.constant_(m.weight, 1.0)
|
631 |
-
nn.init.constant_(m.bias, 0)
|
632 |
-
elif isinstance(m, nn.BatchNorm2d):
|
633 |
-
nn.init.constant_(m.weight, 1.0)
|
634 |
-
nn.init.constant_(m.bias, 0)
|
635 |
-
|
636 |
def forward_features_unpool(self, x):
|
637 |
"""
|
638 |
forward until avg pooling
|
|
|
26 |
from torch.nn import CrossEntropyLoss
|
27 |
from collections import OrderedDict
|
28 |
from einops import rearrange
|
29 |
+
from timm.layers import DropPath, trunc_normal_
|
30 |
|
31 |
from transformers.modeling_utils import PreTrainedModel
|
32 |
from transformers.generation.utils import GenerationMixin
|
|
|
610 |
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
611 |
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
612 |
|
|
|
|
|
613 |
@property
|
614 |
def dim_out(self):
|
615 |
return self.embed_dims[-1]
|
616 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
def forward_features_unpool(self, x):
|
618 |
"""
|
619 |
forward until avg pooling
|